Phương pháp biện luận phương trình bằng đồ thị phương pháp giải nhanh và hiệu quả Phương pháp biện luận phương trình bằng đồ thị phương pháp giải nhanh và hiệu quả Phương pháp biện luận phương trình bằng đồ thị phương pháp giải nhanh và hiệu quả Phương pháp biện luận phương trình bằng đồ thị phương pháp giải nhanh và hiệu quả
Biện luận phương trình bẳng đồ thị Phương pháp giải: Để biện luận phương trình (m là tham số ) bằng phương pháp đồ thị, ta tiến hành như sau: • Biến đổi phương trình về dạng: • Xét các hàm số: có đồ thị , hàm số có đồ thị Giải thích : Khi đó phương trình (*) là phương trình hoành độ giao điểm của của hai đồ thị và , nên số nghiệm của phương trình bằng số điểm chung của hai đồ thị, do vậy ta thay bài toán biện luận phương trình bằng bài toán biện luận số điểm chung của hai đồ thị • Khảo sát và vẽ đồ thị của hàm số • Dựa vào đồ thị , biện luận theo m số điểm chung của và , từ đó suy ra số nghiệm của phương trình • Nêu kết luận cho bài toán để hoàn tất việc giải toán Chú ý : Để vận dụng phương pháp được thuận lợi, ta cần lưu ý hai điều sau: 1. Phương trình phải biến đổi được về dạng: (hay trong đó là hàm số bậc nhất) 2. Phải khảo sát và vẽ được đồ thị của hàm số hay ít nhất phải lạp được bảng biến thiến của hàm số Bài tập: 1. Cho hàm số : a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số . b) Tùy theo biện luận số nghiệm của phương trình : 2. Cho hàm số : a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số . b) Tùy theo biện luận số nghiệm của phương trình : 3. Cho hàm số : a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số . b) Tùy theo biện luận số nghiệm của phương trình : . Biện luận phương trình bẳng đồ thị Phương pháp giải: Để biện luận phương trình (m là tham số ) bằng phương pháp đồ thị, ta tiến hành như sau: • Biến đổi phương trình. vẽ đồ thị của hàm số . b) Tùy theo biện luận số nghiệm của phương trình : 2. Cho hàm số : a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số . b) Tùy theo biện luận số nghiệm của phương trình. phương trình : 3. Cho hàm số : a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số . b) Tùy theo biện luận số nghiệm của phương trình :