Đ2 Hai đờng thẳngchéo nhau và hai đờng thẳngsong song. Tiết 16-18: I) Mục tiêu: - Nắm đợc khái niệm hai đờng thẳngsongsong với nhau và hai đờng thẳng chéo nhau trong không gian. - Biết sử dụng các định lý để giải bài tập. II) Chuẩn bị: - GV: Giáo án, bài tập, hình vẽ. - HS: SGK, thớc kẻ, compa. III) Ph ơng pháp: - Gợi mở nêu vấn đề. IV) Tiến trình. Tiết 1 - ổn định lớp - Bài mới: HĐ1: Vị trí tơng đối của hai đờng thẳng trong không gian. A B D C A B D C Hoạt động của GV Hoạt động của HS CH1: Quan sát hình vẽ và chỉ ra các cặp đờng thẳng cùng thuộc một mp và không cùng thuộc một mp? CH2: Nêu vị trí tơng đối của 2 đờng thẳng trong mp? CH3: Trong không gian hai đờng thẳng không có điểm chung thì songsong với nhau đúng hay sai? CH4: Nêu định nghĩa 2 đờng thẳngsong song, 2 đờng thẳng chéo nhau trong không gian? CH5: Chỉ ra các cặp đt songsong và chéo nhau trên hình hộp ABCD.ABCD? - Trả lời câu hỏi. - Bổ sung hoàn chỉnh (nếu cần). Gợi ý trả lời: CH1: Cùng thuộc mp: AB và CD; AA và DD; Không cùng thuộc mp: AB và CC; AA và CD; . CH2: Cắt nhau,song song, trùng nhau. CH3: Sai CH4: 2 đt cùng tuộc mp và không có điểm chung thì song song. 2 đt không cùng thuộc một mp thì chéo nhau. CH6: Cho tứ diện ABCD, chứng minh 2 đờng thẳng AB và CD chéo nhau. Chỉ ra các cặp đờng thẳngchéo nhau khác của tứ diện này? CH5: Cặp đt song song: AB và CD; AB và AB; . Cặp đt chéo nhau AB và CC; AA và BC . CH6: AC và BD; AD và BC. - Ghi nhận kiến thức. HĐ2: Tính chất. Hoạt động của GV Hoạt động của HS CH1: Qua một điểm không nằm trên đt kẻ đợc bao nhiêu đt songsong với đt đã cho? CH2: Hai đt thẳngsongsong có xác định một mp không? CH3: Cho 2 mp (P) và (Q). Một mp(R) cắt (P) và (Q) lần lợt theo các giao tuyến a và b. Cmr khi a và b cắt nhau tại I thì I là điểm chung của (P) và (Q). - GV nêu tính chất 1 - Trả lời câu hỏi. - Bổ sung hoàn chỉnh (nếu cần). Gợi ý trả lời: CH1: Kẻ đợc duy nhất 1 đt CH2: Xác định duy nhất 1 mp. CH3: I thuộc a nên I thuộc (P) I thuộc b nên I thuộc (Q) Suy ra I là điểm chung của (P) và (Q). - Ghi nhận kiến thức. HĐ3: Củng cố. - Nhấn mạnh vị trí tơng đối của 2 đờng thẳng trong không gian. - Nhấn mạnh định nghĩa 2 đt song song, 2 đt chéo nhau và cách xác định. - BTVN: Đọc phần tiếp theo của bài. Tiết 2 - ổn định lớp. - Kiểm tra bài cũ: 1) Trình bày vị trí tơng đối của 2 đt trong không gian. 2) Nêu định nghĩa 2 đt songsong và 2 đờng thẳngchéo nhau. - Bài mới: HĐ1: Tính chất. Hoạt động của GV Hoạt động của HS CH1: Nếu 2 mp cắt nhau theo 3 giao uyến phân biệt thì quan hệ của 3 giao tuyến nh thế nào với nhau? GV nêu tính chất 2 và ứng dụng trong bài tập. CH2: Nếu 2 mp phân biệt chứa 2 đt songsong thì giao tuyến của chúng - Trả lời câu hỏi. - Bổ sung hoàn chỉnh (nếu cần). Gợi ý trả lời: CH1: 3 giao tuyến đôi một songsong hoặc đồng quy CH2: Giao tuyến songsong với 2 đt hoặc trùng vào một trong hai đt. quan hệ thế nào với 2 đt songsong đó? - GV nêu hệ quả và ứng dụng CH3: Hai đt phân biệt cùng songsong với đt thứ 3 thì có songsong với nhau không? - GV nêu tính chất 3 và ứng dụng. CH3: Hai đt đó songsong với nhau. - Nghe giảng và ghi nhận kiến thức. HĐ2: Ví dụ. 1) Cho hình chóp S.ABCD có đáy là hình bình hành. Xác định giao tuyến của các mp(SAD) và (SBC); (SAB) và (SCD); (SAC) và SBD). 2) Cho tứ diện ABCD. Gọi I, J lần lợt là trung điểm của BC và BD. (P) là mp qua ị và cắt AC, AD lần lợt tại M, N. Chứng minh rằng tứ giác IJNM là hình thang. Nếu M là trung điểm của AC thì tứ giác là hình gì? 3) Cho tứ diện ABCD. Gọi M, N, P, Q, R, S lần lợt là trung điểm của cá đoạn thẳng AC, BD, AB, CD, AD, BC. Chứng minh rằng các đoạn thẳng MN, PQ, RS đồng quy tại trung điểm mỗi đoạn. HĐ3: Củng cố. - Nhấn mạnh các tính chất và các ứng dụng trong bài tập. - Nhấn mạnh phơng pháp xác định giao tuyến của 2 mp nhờ quan hệ song song. -BTVN: bài 1-3(SGK-T59,60). Tiết 3 - ổn định lớp. - Kiểm tra bài cũ: 1) Trình bày vị trí tơng đối của 2 đt trong không gian. 2) Nêu các tính chất. - Bài mới: HĐ1: Chữa bài tập. Hoạt động của GV Hoạt động của HS Bài 1: Cho tứ diện ABCD. Gọi P, Q, R, S là 4 điểm lần lợt lấy trên 4 cạnh AB, BC, CD, AD. Chứng minh rằng nếu 4 điểm P, Q, R, S đồng phẳng thì: a) Ba đt PQ, RS và AC hoặc songsong hoặc đồng quy. b) Ba đt PS, RQ và BD hoặc songsong hoặc đồng quy. Bài 2: - Trình bày lời giải. - NHận xét sửa lỗi (nếu có) Hớng dẫn: Bài 1: - Vận dụng tính chất 2. Cần chỉ ra 3 mp phân biệt cắt nhau theo 3 giao tuyến phân biệt là 3 đờng thẳng cần chứng minh. Cho tứ diện ABCD và 3 điểm P, Q, R lần lợt lấy trên 3 cạnh AB, CD, BC. Tìm giao điểm của AD và mp(PQR) trong 2 trờng hợp sau: a) PR songsong với AC. b) PR cắt AC Bài 3: Cho tứ diện ABCD. Gọi M, N lần lợt là trung điểm của các cạnh AB, CD và G là trung điểm của đoạn MN. a) Tìm giao điểm A của AG và mp(BCD) b) Qua M kẻ đt Mx songsong với AA và Mx cắt (BCD) tại M. Chứng minh B, M, A thẳng hàng và BM=MA=AN c) Chứng minh GA=3GA Bài 2: Sử dụng hệ quả của tính chất 2 và qua hệ các đt trong mp để xác định giao điểm Bài 3: - Vận dụng quan hệ giữa các đt trong mp. - Chứng minh 3 điểm nằm trên 2 mp phân biệt. - Sử dụng tính chất trọng tâm tam giác. - Nghe giảng và ghi nhận kiến thức. HĐ2: Củng cố. - Nhấn mạnh các tính chất và ứng dụng của chúng trong bài tập. - Rút kinh nghiệm và củng cố cách trình bày lập luận một bài toán. . Đ2 Hai đờng thẳng chéo nhau và hai đờng thẳng song song. Tiết 16-18: I) Mục tiêu: - Nắm đợc khái niệm hai đờng thẳng song song với nhau và hai đờng. tuyến song song với 2 đt hoặc trùng vào một trong hai đt. quan hệ thế nào với 2 đt song song đó? - GV nêu hệ quả và ứng dụng CH3: Hai đt phân biệt cùng song