Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
181,5 KB
Nội dung
Hoạt động 1: Quan sát cạnh tường lớp học xem cạnh tường hình ảnh đường thẳng HÃy số cặp đường thẳng thuộc mặt phẳng I Vị trí tương đối hai đường thẳng không gian ã Trường hợp 1: có mặt phẳng chứa a b Khi ta nói a b đồng phẳng Theo kết đà biết hình học phẳng có ba khả sau xảy M a b a∩b = {M} a b α α a // b a b ab Định nghĩa: Hai đường thẳng song song hai đường thẳng nằm mặt phẳng điểm chung Trường hợp 2: mặt phẳng chứa a b Khi ®ã ta nãi a vµ b chÐo a a b b Hoạt động ã Cho tứ diện ABCD, ã Giải chứng minh hai đường Giả sử AB CD không thẳng AB CD chéo chéo Khi có Chỉ cặp đường mặt phẳng chứa AB thẳng chéo khác CD, suy bốn điểm A, B, tứ diện C, D đồng phẳngđiều A trái với giả thiết ABCD hình tứ diện Vậy AB CD phải chéo B D C II Tính chất ã Định lí 1: Trong không gian, qua điểm không nằm đường thẳng cho trước, có đường thẳng song song với đường thẳng đà cho d' M d Nhận xét: Hai đường thẳng song song a b xác định mặt phẳng, mp(a, b) Hoạt động ã Cho hai mặt phẳng () () Một mp() cắt () () theo giao tuyÕn a vµ b Chøng minh r»ng a b cắt I thi I điểm chung cđa (α) vµ (β) I α a γ b Định lí (về giao tuyến ba mặt phẳng) ã Nếu ba mặt phẳng phân biệt đôi cắt theo ba giao tuyến phân biệt ba giao tuyến đồng quy đôi song song víi γ I α a c γ a b α β c b β HƯ qu¶ NÕu hai mặt phẳng phân biệt chứa hai đường thẳng song song th× giao tun cđa chóng (nÕu cã) cịng song song với hai đường thẳng trùng với hai đường thẳng d d1 d d2 β d1 α d2 β d d1 α d2 Các ví dụ Ví dụ1: Cho hình chóp S.ABCD có đáy hình bình hành ABCD Xác định giao tuyến mặt phẳng (SAD) (SBC) d S d1 A B D C VÝ dô 2: Cho tø diện ABCD Gọi P,Q,R S bốn điểm lấy bốn cạnh AB, BC, CD DA Chứng minh bốn điểm P,Q,R,S đồng phẳng : a) Ba đường thẳng PQ, SR AC song song đòng quy b) Ba đường thẳng PS, RQ BD song song đồng quy A P S B D Q R C Định lí3: Hai đường thẳng phân biệt song song với đường thẳng thø ba th× song song víi γ a α b c Chú ý: Khi hai đường thẳng a b song song với đường thẳng c ta kÝ hiƯu a// b // c vµ gäi lµ ba đường thẳng song song Câu hỏi trắc nghiệm ã Các mệnh đề sau hay sai? A) Hai đường thẳng chéo điểm chung B) Hai đường thẳng điểm chung chéo C) Hai đường thẳng phân biệt không song chéo D) Hai đường thẳng phân biệt không cắt không song song chéo E) Hai đường thẳng phân biệt điểm chung song song với F) Hai đường thẳng song song với đường thẳng thứ ba song song G) Hai đường thẳng phân biệt thuộc hai mặt phẳng khác chéo Đáp án: A B C D E F G § S S § S S S ... sai? A) Hai ®êng th¼ng chÐo điểm chung B) Hai đường thẳng điểm chung chéo C) Hai đường thẳng phân biệt không song chéo D) Hai đường thẳng phân biệt không cắt không song song chéo E) Hai đường... γ I α a c γ a b c b Hệ Nếu hai mặt phẳng phân biệt chứa hai đường thẳng song song th× giao tun cđa chóng (nÕu cã) cịng song song với hai đường thẳng trùng với hai đường thẳng d d1 d d2 β d1... nghĩa: Hai đường thẳng song song hai đường thẳng nằm mặt phẳng điểm chung Trường hợp 2: mặt phẳng chứa a b Khi ta nãi a vµ b chÐo a a b b Hoạt động ã Cho tứ diện ABCD, ã Giải chứng minh hai đường