Tính bất khả quy của các đa thức lặp của một số lớp đa thức trên một trường

37 273 0
Tính bất khả quy của các đa thức lặp của một số lớp đa thức trên một trường

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ THU HƯƠNG TÍNH BẤT KHẢ QUY CỦA CÁC ĐA THỨC LẶP CỦA MỘT SỐ LỚP ĐA THỨC TRÊN MỘT TRƯỜNG LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN - 2016 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ THU HƯƠNG TÍNH BẤT KHẢ QUY CỦA CÁC ĐA THỨC LẶP CỦA MỘT SỐ LỚP ĐA THỨC TRÊN MỘT TRƯỜNG LUẬN VĂN THẠC SĨ TOÁN HỌC Chuyên ngành: Phương pháp Toán sơ cấp Mã số: 60 46 01 13 NGƯỜI HƯỚNG DẪN KHOA HỌC GS.TS LÊ THỊ THANH NHÀN THÁI NGUYÊN - 2016 i Mục lục Lời mở đầu Chương Một số kiến thức chuẩn bị 1.1 1.2 Khái niệm đa thức bất khả quy Một số tiêu chuẩn bất khả quy Q, R, C 1.3 Mở rộng trường trường phân rã 11 Chương Tính bất khả quy đa thức lặp 15 2.1 2.2 Tính khả quy đa thức lặp trường đặc số khác Tính bất khả quy đa thức lặp đa thức bậc hai 15 21 2.3 Tính bất khả quy đa thức lặp đa thức dạng xn − b 27 Kết luận 33 Tài liệu tham khảo 34 Lời mở đầu Cho K trường Một đa thức f (x) ∈ K[x] gọi bất khả quy f (x) có bậc dương f (x) khơng tích hai đa thức có bậc bé Khi đa thức = f (x) ∈ K[x] có phân tích bất khả quy f (x) = a f1 (x) fk (x) a hệ số cao f (x) fi (x) đa thức bất khả quy dạng chuẩn (tức có hệ số cao 1) Hơn nữa, phân tích bất khả quy không kể đến thứ tự nhân tử fi (x) Kết tương tự Định lí Số học Lí thuyết số Như vậy, vành đa thức K[x], đa thức bất khả quy đóng vai trò quan trọng giống vai trò số nguyên tố vành Z số nguyên Nếu Định lí Số học cho phép coi số nguyên tố viên gạch xây nên vành số nguyên, đa thức bất khả quy viên gạch xây nên vành đa thức Nhiều toán đa thức bất khả quy đặt xuất phát từ việc giải toán liên quan số nguyên tố Một tốn xét tính bất khả quy đa thức lặp số lớp đa thức Cho f (x) ∈ K[x] đa thức bậc dương Đặt f0 (x) = x, f1 (x) = f (x), fr+1 (x) = f ( fr (x)) với r ≥ Ta gọi đa thức fr (x) đa thức lặp đa thức f (x) Theo R W K Odoni [O], ta nói f (x) ổn định K fr (x) bất khả quy với r ≥ Chú ý đa thức bậc bất khả quy trường K, đa thức bậc ổn định đa thức lặp ln có bậc Mục đích luận văn trình bày lại chi tiết kết hai báo sau tính bất khả quy trường K đa thức lặp hai lớp đa thức: đa thức bậc hai đa thức dạng xn − b [1] M Ayad and D L McQuillan (2000), Irreducibility of the iterates of a quadratic polynomial over a field, Acta Arithmetica, 93, pp 87-97 [2] L Danielson and B Fein (2001), On the irreducibility of iterates of xn − b, Proc Amer Math Soc., 130, pp 1589-1596 Luận văn chia làm hai chương Chương trình bày kiến thức đa thức bất khả quy mở rộng trường Chương trình bày tính bất khả quy trường đa thức lặp hai lớp đa thức: đa thức bậc hai đa thức dạng xn − b Chương chia làm ba tiết Tiết 2.1 trình bày tính bất khả quy đa thức lặp trường đặc số khác Tiết 2.2 trình bày tính bất khả quy đa thức lặp đa thức bậc hai Tiết 2.3 trình bày tính bất khả quy đa thức lặp đa thức dạng xn − b Trong trình học tập nghiên cứu trường Đại học Khoa học - Đại học Thái Ngun, tơi nhận đề tài nghiên cứu "Tính bất khả quy đa thức lặp số lớp đa thức trường" hướng dẫn GS TS Lê Thị Thanh Nhàn Đến luận văn hồn thành Có kết dạy bảo hướng dẫn tận tình nghiêm khắc Cơ Tơi xin bày tỏ lòng biết ơn chân thành sâu sắc tới Cơ gia đình! Tơi xin gửi lời cảm ơn chân thành đến Ban giám hiệu, Phòng Đào tạo khoa Toán - Tin trường Đại học Khoa học - Đại học Thái Nguyên tạo điều kiện thuận lợi giúp đỡ tơi q trình học tập Trường thời gian nghiên cứu hồn thành luận văn Sự giúp đỡ nhiệt tình thái độ thân thiện thầy cô giáo, cán thuộc Phòng Đào tạo, Khoa Tốn - Tin để lại lòng chúng tơi ấn tượng tốt đẹp Khơng biết nói hơn, lần xin trân trọng cảm ơn Tơi xin cảm ơn gia đình, bạn bè thành viên lớp cao học toán K8A (2014 - 2016) quan tâm, tạo điều kiện, cổ vũ động viên để tơi hồn thành nhiệm vụ Tơi xin trân trọng cảm ơn! Tác giả Nguyễn Thị Thu Hương Chương Một số kiến thức chuẩn bị 1.1 Khái niệm đa thức bất khả quy Trong suốt chương này, giả thiết K trường Ta gọi đa thức f (x) ∈ K[x] có dạng chuẩn hệ số cao f (x) Định nghĩa 1.1.1 Cho f (x) ∈ K[x] Ta nói f (x) bất khả quy K f (x) có bậc dương f (x) khơng tích hai đa thức có bậc thấp Chú ý tính bất khả quy đa thức phụ thuộc vào trường sở Chẳng hạn, đa thức x2 − bất khả quy Q không bất khả quy R Tương tự, đa thức x2 + bất khả quy R không bất khả quy C Bổ đề 1.1.2 Đa thức f (x) bất khả quy f (x + a) bất khả quy với a ∈ K Chứng minh Cho a ∈ K Với h(x) ∈ K[x] ta đặt h1 (x) = h(x − a) Chú ý deg h1 (x) = deg h(x) Vì f (x + a) = k(x)g(x) phân tích đa thức f (x + a) thành tích hai đa thức có bậc thấp f (x) = k1 (x)g1 (x) phân tích f (x) thành tích hai đa thức có bậc thấp Vì f (x) bất khả quy f (x + a) bất khả quy Bổ đề 1.1.3 Trên trường K, phát biểu sau (i) Đa thức bậc bất khả quy (ii) Đa thức bậc bậc bất khả quy khơng có nghiệm K Chứng minh (i) Đa thức bậc rõ ràng khơng thể tích hai đa thức bậc thấp hơn, bất khả quy (ii) Cho f (x) ∈ K[x] đa thức bậc Giả sử f (x) có nghiệm x = a ∈ K Vì deg f (x) > nên f (x) = (x − a)g(x), g(x) ∈ K[x] deg g(x) = deg f (x) − ≥ Do f (x) khả quy Ngược lại, giả sử f (x) khả quy Vì f (x) có bậc nên f (x) phân tích thành tích hai đa thức có bậc thấp hơn, hai đa thức phải có bậc Rõ ràng đa thức bậc trường ln có nghiệm trường đó, f (x) có nghiệm K Chú ý phát biểu (ii) bổ đề không cho trường hợp bậc đa thức lớn Cụ thể, f (x) bậc lớn có nghiệm K f (x) khả quy Tuy nhiên, tồn đa thức khơng có nghiệm K khả quy Chẳng hạn đa thức (x2 + 1)2 khơng có nghiệm R khả quy R Cho F trường chứa K Một phần tử a ∈ F gọi phần tử đại số K nghiệm đa thức khác với hệ số K Nếu a không đại số K ta nói a siêu việt K Mệnh đề 1.1.4 Cho F trường chứa K a ∈ F phần tử đại số K Khi tồn đa thức p(x) ∈ K[x] bất khả quy dạng chuẩn nhận a làm nghiệm Hơn nữa, g(x) ∈ K[x] nhận a làm nghiệm g(x) bội p(x) Chứng minh Vì a phần tử đại số K nên tồn f (x) ∈ K[x] đa thức khác có bậc bé nhận a làm nghiệm Đặt p(x) = b−1 f (x), b hệ số cao f (x) Khi p(x) ∈ K[x] đa thức dạng chuẩn có bậc bé nhận a làm nghiệm Rõ ràng deg p(x) > Nếu p(x) khả quy p(x) tích hai đa thức K[x] với bậc bé hai đa thức phải nhận a làm nghiệm, điều mâu thuẫn với cách chọn p(x) Do p(x) bất khả quy Giả sử g(x) ∈ K[x] nhận a làm nghiệm Nếu g(x) không chia hết cho p(x) p(x) bất khả quy nên gcd(g(x), p(x)) = Do tồn q(x), h(x) ∈ K[x] cho = p(x)q(x) + g(x)h(x) Thay x = a vào hai vế ta = 0, điều vô lý Vậy g(x) chia hết cho p(x) Giả sử q(x) ∈ K[x] đa thức bất khả quy dạng chuẩn nhận a làm nghiệm Theo chứng minh trên, q(x) bội p(x) Viết q(x) = p(x)k(x) với k(x) ∈ K[x] Vì q(x) bất khả quy nên k(x) = c với = c ∈ K Do q(x) = cp(x) Đồng hệ số cao hai vế với ý q(x) p(x) có dạng chuẩn, ta suy c = 1.Vì p(x) = q(x) Định nghĩa 1.1.5 Cho a phần tử đại số K Đa thức p(x) ∈ K[x] bất khả quy dạng chuẩn nhận a làm nghiệm gọi đa thức bất khả quy a Đa thức x3 −2 ∈ Q[x] bất khả quy (vì có bậc khơng có nghiệm hữu √ tỷ), đa thức bất khả quy phần tử Đa thức x2 + ∈ R[x] bất khả quy (vì có bậc khơng có nghiệm thực), đa thức bất khả quy số phức i Mệnh đề 1.1.6 Cho p(x) ∈ K[x] đa thức có bậc dương Khi p(x) bất khả quy p(x) | a(x)b(x) kéo theo p(x) | a(x) p(x) | b(x) với a(x), b(x) ∈ K[x] Đặc biệt, đa thức bất khả quy p(x) ước tích hữu hạn đa thức p(x) phải ước đa thức Chứng minh Cho p(x) bất khả quy Giả sử p(x) | a(x)b(x) a(x), b(x) không bội p(x) Do p(x) bất khả quy nên gcd(p(x), a(x)) = gcd (p(x), b(x)) = Suy tồn s(x), r(x), e(x), f (x) ∈ K[x] cho = s(x)p(x) + r(x)a(x) = e(x)p(x) + f (x)b(x) Nhân vế với vế hai đẳng thức ta có = p(x)g(x) + r(x) f (x)a(x)b(x) với g(x) ∈ K[x] đa thức Vì p(x) | a(x)b(x) nên đa thức bên vế phải đẳng thức bội p(x), đa thức bên vế trái không chia hết cho p(x) Điều vơ lý Ngược lại, p(x) có bậc dương nên p(x) = không khả nghịch Giả sử p(x) = a(x)b(x) với a(x), b(x) ∈ K[x] Khi p(x) | a(x)b(x) Theo giả thiết, p(x) | a(x) p(x) | b(x) Vì p(x) khơng có ước thực sự, p(x) bất khả quy Định lý Số học nói số tự nhiên lớn phân tích thành tích thừa số nguyên tố phân tích không kể đến thứ tự thừa số Kết sau tương tự đa thức Định lý 1.1.7 Mỗi đa thức dạng chuẩn bậc dương K[x] phân tích thành tích đa thức bất khả quy dạng chuẩn phân tích không kể đến thứ tự nhân tử Chứng minh Trước hết, ta chứng minh tồn phân tích quy nạp theo bậc đa thức Giả sử f (x) ∈ K[x] đa thức dạng chuẩn bậc d > Nếu d = f (x) bất khả quy phân tích bất khả quy f (x) f (x) = f (x) Cho d > giả sử kết cho đa thức bậc nhỏ d Nếu f (x) bất khả quy f (x) có phân tích bất khả quy f (x) = f (x) Vì ta giả thiết f (x) khả quy Khi f (x) = g(x)h(x) với deg g(x), deg h(x) < deg f (x) Đặt g∗ (x) = a−1 g(x) với a hệ số cao g(x) Khi ta có f (x) = g∗ (x)(ah(x)) Đồng hệ số hai vế ta suy ah(x) có dạng chuẩn Do f (x) = g∗ (x)h∗ (x) với g∗ (x), h∗ (x) = ah(x) đa thức dạng chuẩn có bậc nhỏ d Theo giả thiết quy nạp, g∗ (x) h∗ (x) phân tích thành tích hữu hạn đa thức bất khả quy dạng chuẩn Vì f (x) phân tích thành tích hữu hạn đa thức bất khả quy dạng chuẩn Bây ta chứng minh tính phân tích Giả sử f (x) có hai phân tích thành nhân tử bất khả quy dạng chuẩn f (x) = p1 (x) p2 (x) pn (x) = q1 (x) q2 (x) qm (x) Ta chứng minh quy nạp theo n n = m sau đánh lại thứ tự nhân tử vế bên phải ta có pi (x) = qi (x) với i = 1, 2, , n Do p1 (x) bất khả quy p1 (x) | q1 (x) q2 (x) qm (x) nên ta có p1 (x) | qi (x) với i Khơng tính tổng quát ta giả thiết p1 (x) | q1 (x) Biểu diễn q1 (x) = p1 (x)t1 (x) Vì q1 (x) bất khả quy nên t1 (x) = a ∈ K Do q1 (x) = ap1 (x) Do p1 (x) q1 (x) có dạng chuẩn nên a = Vì p1 (x) = q1 (x) Cho n = Nếu m > giản ước hai vế cho p1 (x) ta = q2 (x) qm (x), điều vơ lí Vậy, kết cho n = Cho n > Vì p1 (x) = q1 (x) nên p2 (x) p3 (x) pn (x) = q2 (x) q3 (x) qm (x) Theo giả thiết quy nạp ta có n−1 = m−1 việc đánh số lại thứ tự nhân tử bất khả quy vế phải ta suy pi (x) = qi (x) với i = 2, , n Từ định lý ta có kết sau: Hệ 1.1.8 Cho f (x) ∈ K[x] đa thức với hệ số cao an Khi tồn phân tích f (x) = an f1 (x) fk (x) với f1 (x), , fk (x) nhân tử bất khả quy dạng chuẩn, phân tích không kể đến thứ tự nhân tử 1.2 Một số tiêu chuẩn bất khả quy Q, R, C Định lí Đại số phát biểu đa thức bậc dương với hệ số phức có nghiệm phức Vì đa thức bất khả quy C đa thức bậc Sử dụng Định lí Đại số, đa thức bất khả quy R đa thức bậc đa thức bậc hai vơ nghiệm thực (tức có biệt thức âm) Như vậy, tốn xét tính bất khả quy đa thức R C giải trọn vẹn Tuy nhiên, toán xét tính bất khả quy đa thức trường Q số hữu tỷ tốn mở Tiết trình bày số tiêu chuẩn bất khả quy đa thức Q, R, C Trước hết ta xét tiêu chuẩn bất khả quy Q Giả sử f (x) ∈ Q[x] Chú ý để xét tính bất khả quy trường Q, việc quy đồng mẫu số cần xét đa thức với hệ số nguyên Từ đến hết mục giả thiết f (x) = an xn + + a1 x + a0 ∈ Z[x], an = n > Chú ý đa thức bậc lớn có nghiệm Q khả quy Q Vì vậy, nhiều trường hợp ta tìm nghiệm hữu tỷ để xét tính bất khả quy f (x) Q Sau ví dụ minh họa Ví dụ 1.2.1 (i) f (x) = 10x3 + 3x2 − 106x + 21 khả quy Q (ii) g(x) = 9x3 + 6x2 − 8x + bất khả quy Q 34 Tài liệu tham khảo Tiếng Việt [1] Lê Thị Thanh Nhàn (2015), Lý thuyết đa thức, NXB Đại học Quốc gia Hà Nội Tiếng Anh [2] Ayad M and McQuillan D L (2000), “Irreducibility of the iterates of a quadratic polynomial over a field”, Acta Arithmetica, 93, pp 87-97 [3] Danielson L and Fein B (2001), “On the irreducibility of iterates of xn − b”, Proc Amer Math Soc., 130, pp 1589-1596 [4] Gathen J V and Gerhard J (2003), Modern Computer Algebra, Cambridge University Press, Cambridge [5] Schinzel A (2000), Polynomials with special regards to reducibility, Cambridge Univ Press ... Chương Tính bất khả quy đa thức lặp 15 2.1 2.2 Tính khả quy đa thức lặp trường đặc số khác Tính bất khả quy đa thức lặp đa thức bậc hai 15 21 2.3 Tính bất khả quy đa thức lặp đa thức dạng xn −... 2.1 trình bày tính bất khả quy đa thức lặp trường đặc số khác Tiết 2.2 trình bày tính bất khả quy đa thức lặp đa thức bậc hai Tiết 2.3 trình bày tính bất khả quy đa thức lặp đa thức dạng xn − b... hai đa thức có bậc thấp Chú ý tính bất khả quy đa thức phụ thuộc vào trường sở Chẳng hạn, đa thức x2 − bất khả quy Q không bất khả quy R Tương tự, đa thức x2 + bất khả quy R không bất khả quy

Ngày đăng: 15/11/2017, 15:06

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan