Đề và đáp án thi lần 2 môn VLĐC De 3_DACT tài liệu, giáo án, bài giảng , luận văn, luận án, đồ án, bài tập lớn về tất cả...
http://toanhocmuonmau.violet.vn SỞ GD – ĐT BẮC GIANG ( ĐỀ CHÍNH THỨC ) ĐỀ KIỂM TRA HỌC KÌ II NĂM HỌC 2010 – 2011 MÔN TOÁN LỚP 12 Thời gian làm bài: 90 phút ( không kể thời gian phát ñề) A. PHẦN CHUNG CHO TẤT CẢ HỌC SINH (8 ñiểm). Câu I. (3 ñiểm ) Cho hàm số ( ) 3 2 3 2, 1 y x x= − + − 1. Khảo sát sự biến thiên và vẽ ñồ thị (C ) của hàm số (1). 2. Viết phương trình tiếp tuyến của ñồ thị hàm số (C ) tại ñiểm A(3; -2). Câu II. (2 ñiểm ) 1. Tính tích phân sau: 3 1 2 ln I x xdx = ∫ 2. Tính diện tích hình phẳng giới hạn bởi các ñường lần lượt có phương trình y = 0, 2 6 y x x = − + . Câu III. (2 ñiểm ) Trong không gian với hệ tọa ñộ Oxyz, cho ñiểm A(-1; -1; 0) và mặt phẳng (P): x + y – 2z – 4 = 0. 1.Viết phương trình tham số của ñường thẳng d ñi qua A và vuông góc với mặt phẳng (P). 2.Tìm tọa ñộ ñiểm B ñối xứng với A qua mặt phẳng (P). Câu IV. (1 ñiểm ) Tìm tham số m ñể phương trình sau có hai nghiệm thực phân biệt nằm trong khoảng 1 ;1024 16 : ( ) 2 2 0,5 4 log log 0 x x m − − = B. PHẦN RIÊNG – PHẦN TỰ CHỌN (2 ñiểm ) Học sinh chỉ ñược làm một trong hai phần (phần I hoặc phần II) I. Dành cho học sinh học theo chương trình chuẩn: Câu Va. (1 ñ i ể m ) Tính th ể tích c ủ a kh ố i h ộ p ABCD.A’B’C’D’. bi ế t t ứ di ệ n AA’B’D’ là t ứ di ệ n ñề u c ạ nh a. Câu VIa. (1 ñ i ể m ) Gi ả i ph ươ ng trình sau trong t ậ p h ợ p s ố ph ứ c: 4 2 5 4 0 x x + + = . II. Dành cho học sinh học theo chương trình nâng cao: Câu Vb. (1 ñiểm ) Cho hình lăng trụ ñứng tam giác ABC.A’B’C’, có ñáy là tam giác ABC vuông tại A, 60 o ACB = , AC = a, AC’ = 3a. Tính thể tích khối lăng trụ ñó theo a. Câu VIb. (1 ñiểm ) Tìm các số thực a, b, c ñể phương trình 3 2 0 z az bz c + + + = nhận các số phức 1 z i = − và 2 z = làm nghiệ m. __________________ H ế t __________________ Họ tên thí sinh: Số báo danh: http://toanhocmuonmau.violet.vn HƯỚNG DẪN CHẤM ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KÌ II NĂM HỌC 2010-2011 MÔN TOÁN, LỚP 12. Chú ý : Dưới ñây chỉ là sơ lược từng bước giải và cách cho ñiểm từng phần của mỗi bài. Bài làm của học sinh yêu cầu phải chi tiết ,lập luận chặt chẽ. Nếu học sinh giải cách khác ñúng thì chấm và cho ñiểm từng phần tương ứng . Câu Đáp án vắn tắt Điểm 1) (2ñ) * Tập xác ñịnh :D= ℝ * Sự biến thiên + →+∞ →−∞ = −∞ = +∞ lim ; lim x x y y 0,25 Ta có 2 y' 3x 6x = − + ; 2 x 0 y' 0 3x 6x 0 x 2 = = ⇔ − + = ⇔ = 0,5 +Bảng biến thiên x −∞ 0 2 +∞ y ' - + - y +∞ 2 -2 −∞ 0,5 + Hàm số ñồng biến trên khoảng (0;2); nghịch biến trên các khoảng ( ;0) −∞ và (2; ) +∞ + Hàm số ñạt cực tiểu tại x=0, y ct =-2; ñạt cực ñại tại x=2, y cñ =2 0,25 * Vẽ ñồ thị ñúng 0,5 2) (1ñ) +) Tiếp tuyến của ñồ thị (C) tại ñiểm A(3;-2) có hệ số góc là y'(3) 9 = − 0,5 I (3ñ) +) Phương trình tiếp tuyến của ñồ thị (C) tại A(3;-2) là: y 9(x 3) 2 9x 25 = − − − = − + 0,5 1) Đặt 2 1 du dx u ln x x dv 2xdx v x = = ⇒ = = 0,25 3 2 3 1 1 I x ln x | xdx = − ∫ 0,25 2 3 1 x 9ln3 | 9ln3 4 2 = − = − 0,5 II (2ñ) 2) Phương trình hoành ñộ giao ñiểm: 2 x 0 x 6x 0 x 6 = − + = ⇔ = 0,25 http://toanhocmuonmau.violet.vn Diện tích hình phẳng ñã cho là: 6 2 0 S | x 6x |dx = − + ∫ 0,25 6 2 3 2 6 0 0 1 ( x 6x)dx ( x 3x )| 36 3 = − + = − + = ∫ 0,5 1) + Mặt phẳng (P) có một véc tơ pháp tuyến là n (1;1; 2) = − 0,25 + Đường thẳng d ñi qua A(-1;-1;0) và vuông góc với mặt phẳng (P) có một véc tơ chỉ phương là n (1;1; 2) = − . 0,25 + Phương trình tham số của ñường thẳng d là: x 1 t y 1 t (t ) z 2t = − + = − + ∈ = − ℝ 0,5 2) Gọi H là giao ñiểm của d và (P). Điểm H thuộc ñường thẳng d nên H(-1+t;-1+t;-2t). 0,25 Điểm H thuộc mặt phẳng (P) nên 1 t 1 t KHOA GIÁO DỤC ĐẠI CƯƠNG THI HỌC HKII NĂM HỌC 2016-2017 BỘ MÔN: VH-NN MÔN THI: VẬT LÝ ĐẠI CƯƠNG (LẦN 2) THỜI GIAN LÀM BÀI: 60 PHÚT TP.HCM, Ngày Tháng Năm 2017 (HSSV không sử dụng tài liệu) Giáo viên coi thi 1: Giáo viên coi thi 2: PHẦN I: TRẮC NGHIỆM (20 câu – điểm): Câu 1: Chọn đáp án sai A Tại vị trí xác định Trái Đất ( khối lượng vật có khối lượng m( kg) M ( kg) , bán kính R ( m) ) gần mặt đất g = G rơi tự với gia tốc trọng trường M m / s2 R2 ( ( h