This subsection consists of the design requirements for elevated highway bridge structures, including superstructures, substructures and foundations of the Danang Priority Infrastructure Investment Project (DNPIIP), Danang, Vietnam. The Co Co Bridge, crossing the Co Co river in Cam Le district of Danang City, has a total length of about 90 m. The bridge isdesigned to serve 4 traffic lanes and pedestrian load in both sides. The minimum requirement for the width of the bridge shall be 2+7.5+7.5+2 =19.0 m when the sidewalk width is 2 m and the roadway width is 15 m. Concrete structure shall be designed for the main construction material of the bridge because it is located near the coastal area so the exposed condition shall be considered as severe environment and the steel structure shall be concerned for the corrosion protection that would require higher construction costs, long term inspection and maintenance. The arch structure shall be proposed in design of this bridge since its architecture produces better visual effects and the aesthetic consideration plays an important role in the plan of the bridge construction becausethe site is in the development area of the district.
CDM Project Office for Danang City PIIP 8th Floor of CIENCO Tower 77 Nguyen Du Street, Hai Chau District, Danang City, Vietnam Tel 05 11 388 6778 | Fax 05 11 388 6998 eMail: danangoffice@cdmvietnam.com DANANG PRIORITY INFRASTRUCTURE INVESTMENT PROJECT- DANANG PIIP PACKAGE: A23+ A24+ B27 -Phase 2- Detailed Design SUBCOMPONENT C57 : CO CO BRIDGE CALCULATION Danang, 29 December 2011 Contents Structural Design Criteria 1.1 1.2 1.3 1.4 1.5 1.6 1.7 General Design Standards and Codes of Practice Horizontal and Vertical Clearance Materials Loads Load Factors and Combinations Design Considerations / Limit States 10 32 36 Structural Model 47 Seismic Load on Bridge 62 Foundation and Pile Design 70 Arch Ribs Design 119 RC Bracing Design 157 Hanger Design 216 Deck and Diaphragm Girder Design 220 Deck Slab Design 237 10 Tied Beam Design 243 11 Abutment Wall Design 252 Detailed Design of The Co Co Bridge Structural Design Criteria Design Criteria SUBCOMPONENT C –URBAN ROADS AND BRIDGES THE SOUTHERN LINK ROAD : BASIC DESIGN OF THE CO CO BRIDGE STRUCTURAL DESIGN OF HIGHWAY BRIDGE 1.1 General This subsection consists of the design requirements for elevated highway bridge structures, including superstructures, substructures and foundations of the Danang Priority Infrastructure Investment Project (DN-PIIP), Danang, Vietnam The Co Co Bridge, crossing the Co Co river in Cam Le district of Danang City, has a total length of about 90 m The bridge is designed to serve traffic lanes and pedestrian load in both sides The minimum requirement for the width of the bridge shall be 2+7.5+7.5+2 =19.0 m when the sidewalk width is m and the roadway width is 15 m Concrete structure shall be designed for the main construction material of the bridge because it is located near the coastal area so the exposed condition shall be considered as severe environment and the steel structure shall be concerned for the corrosion protection that would require higher construction costs, long term inspection and maintenance The arch structure shall be proposed in design of this bridge since its architecture produces better visual effects and the aesthetic consideration plays an important role in the plan of the bridge construction because the site is in the development area of the district INCLINED THROUGH RIGID FRAME TIED CONCRETE ARCH BRIDGE For through rigid frame tied arch bridge, the arch ribs are fixed to form a rigid frame For a small span bridge, the pier can stand small thrust forces caused by self-weight of the arch but for a large span, the tied bars shall be used to reduce the horizontal force transmitted to the pier and the foundation The tied cables shall be installed inside the edge tie girders in both side of the bridge Most of this kind of bridge has single span, however, the details at the joint on the top of the pier is so complicated because the arch ribs, the piers, the crossbeam and tie beams are joined together The single span of 90 m for the arch bridge shall be proposed The size of the arch ribs becomes large then they will be located outside the sidewalk to keep the bridge width as per minimum requirement Two arch ribs are designed to be slightly inclined inward about 10º not only strengthen the out-of-plane stability of the arch structure but also give a good aesthetic appearance Danang PIIP : Component C – Urban Roads and Bridges Detailed Design for the Construction of the Southern Link Road International Inc.(USA) 29 December 2011 Design Criteria Design Outline The bridge structures shall be designed for a minimum service life of 100 years The design of highway bridges shall satisfy certain criteria as follows: 1) Small deflections and good resilience to dynamic responses to ensure passenger safety and a high level of comfort 2) Low probability of resonance 3) Conceptual simplicity and standardization for ease of construction, schematic quality control, fast track construction and higher maintenance reliability 4) Reduction of environmental noise and vibration impact 5) Limited hours available for inspection, maintenance and repair In addition, the design works shall have a high aesthetic character as recommended in the following criteria: The bridge structures shall be proportioned to present an appearance of slenderness The bridge structures shall be harmonized with the surrounding landscape and visual intrusion shall be reduced as far as practical All visible longitudinal lines shall be smooth without any appearance of sagging or interruption at piers Aesthetic and visual continuity shall be maintained within the whole project The edge to the viaduct (and any features) shall be detailed to a high standard to complement and emphasize the horizontal line The edge shall be also detailed to avoid water or other unsightly staining Exposed pipe work, ducts and cables shall be avoided as far as practical If unavoidable, they shall be masked by covers in recesses, blended with the background of structure Danang PIIP : Component C – Urban Roads and Bridges Detailed Design for the Construction of the Southern Link Road International Inc.(USA) 29 December 2011 Design Criteria Design Limit States General Each component and connection shall satisfy Equation 1.1 for each limit state, unless otherwise specified For service and extreme event limit states, resistance factors shall be taken as 1.0, except for bolts, for which the provisions of Art.6.5.5 shall apply All limit states shall be considered of equal importance Q i i i Rn Rr (1.1) In which : For loads for which a maximum value of i is appropriate : i D R I 0.95 (1.2) For loads for which a minimum value of i is appropriate : i D R I (1.3) where : i = load factor = resistance factor i = load modifier : a factor relating to ductility, redundancy and operational importance D = a factor relating to ductility (1.0 for all limit states) R = a factor relating to redundancy (1.05 for strength limit state, 1.0 for others) I = a factor relating to operational importance (1.0 for all limit states) Danang PIIP : Component C – Urban Roads and Bridges Detailed Design for the Construction of the Southern Link Road International Inc.(USA) 29 December 2011 Design Criteria The structures shall be designed and checked at every stage of construction until the completion of the bridge for specified limit states to achieve the objectives of constructability, safety and serviceability: 1) Ultimate limit state or strength design shall ensure that strength and stability, both global and local, are provided to resist specified statistically significant load combinations that the viaduct is expected to experience in its design life 2) Service limit state shall ensure durability and set restrictions on stress, deformations and crack width under regular service conditions 3) Extreme Event limit state shall be taken to ensure the structural survival of a bridge during a major earthquake or flood, or when collided by a vessel or vehicle, possibly under scoured conditions 4) Fatigue limit state guarantees the safety of the structure and limits the crack growth against damage due to repetitive loadings It ensures the reference stress range is below the truncated limit for different classes of details Fatigue damage shall be assessed over the designated service life of 100 years Fatigue design for concrete structures shall be based on ACI 358 Danang PIIP : Component C – Urban Roads and Bridges Detailed Design for the Construction of the Southern Link Road International Inc.(USA) 29 December 2011 Design Criteria 1.2 Design Standards and Codes of Practice The bridge structures shall be designed in accordance with all applicable portions of the following standards and codes: Vietnam : 22 TCN 272 – 2005, Bridge Design Standard : TCXDVN 356 – 2005, Design Standard for Reinforced Concrete Structures : TCXDVN 375 – 2006, Design of Structures for Earthquake Resistance ACI : ACI 224R-01, Control of Cracking in Concrete Structures : ACI 318-05, Building Code Requirements for Structural Concrete : ACI 336.3R-93, Design and Construction of Drilled Piers : ACI 341.2R-97, Seismic Analysis and Design of Concrete Bridge Systems : ACI 343-95 (Reapproved 2004), Analysis and Design of Reinforced Concrete Bridge Structures : ACI 358.1R-92 Analysis and Design of Reinforced and Prestressed Concrete Guideway Structures : ACI 435R-95 (Reapproved 2000), Control of Deflection in Concrete Structures AASHTO: AASHTO, LRFD Bridge Design Specifications – SI Units (2005 Interim Revisions) 3rd Edition : AASHTO, Guide Specifications for Design and Construction of Segmental Concrete Bridge, 2nd Edition, 1999 : AASHTO, Guide Specifications, Thermal Effects in Concrete Bridge Superstructures ASCE : ASCE 7-05, Minimum Design Loads for Buildings and other Structures AISC : American Institute of Steel Construction, Specifications for Structural Steel Buildings, March 9, 2005 ASTM : American Society for Testing and Materials Standards BS : BS 5400, Part 4, Code of Practice for Design of Concrete Bridges Danang PIIP : Component C – Urban Roads and Bridges Detailed Design for the Construction of the Southern Link Road International Inc.(USA) 29 December 2011 Design Criteria PCI : Prestressed Concrete Institute The edition of each standard used shall be that current at the date of signing the Contract Later editions that become available during the course of the Contract may be used upon receipt of written statement of “No Objection” from owner In the event of conflicting requirements between the Local Design Specifications and other standards and codes of practice, the Local Design Specifications shall take precedence For requirements which have not been included in the Design Specifications, the order of code adoption shall follow the sequence of American standards and others 1.3 Horizontal and Vertical Clearance 1.3.1 Navigational This river shall not be in class I to class VI of waterway therefore no requirement for navigational horizontal and vertical clearance shall be applied However the minimum vertical clearance between highest water level and bridge soffit shall not be less than 500 mm 1.3.2 Highway 1.3.2.1 Highway Vertical The vertical clearance of highway structures shall be in conformance with the Highway Design Standard TCVN 4054-2005 Possible reduction of vertical clearance, due to settlement of an overpass structure, shall be investigated If the expected settlement exceeds 25 mm, it shall be added to the specified clearance The vertical clearance to sign supports and pedestrian overpasses should be 300 mm greater than the highway structure clearance, and the vertical clearance from the roadway to the soffit of bridge structure should not be less than 4750 mm 1.3.2.2 Highway Horizontal The bridge width shall not be less than that of the approach roadway section, including shoulders or curbs, gutters, and sidewalks No object on or under a bridge, other than a barrier, should be located closer than 1200 mm to the edge of a designated traffic lane The inside face of a barrier should not be closer than 600 mm to either the face of the object or the edge of a designated traffic lane Danang PIIP : Component C – Urban Roads and Bridges Detailed Design for the Construction of the Southern Link Road International Inc.(USA) 29 December 2011 Design Criteria 1.4 Materials 1.4.1 Concrete The minimum 28-days concrete cylinder strength test in accordance with ASTM C39-99 for bridge structures shall be as follows: Table 1.4-1: Concrete Strengths Typical Use fc (N/mm2) Ec (kN/mm2) Lean concrete Normal concrete Bored piles, Foundation, Abutment, Deck Slab Bracing Precast Deck Slab, Prestressed Girders, Arch Ribs 15 25 35 20.8 26.9 31.8 50 38.0 These are minimum requirements, however, higher concrete may be used after approval from the engineer In particular for cast in situ segmental deck, higher concrete strength may be used in order to obtain minimum strength prior to stressing tendons earlier, thus speeding up the construction 1.4.2 Reinforcing Bars The steel bars for concrete reinforcement shall be in accordance with TCVN 16512008 as follows : 1) CB300-T, fy = 300 N/mm2 for plain round bars of diameter less than 10 mm 2) CB400-V, fy = 400 N/mm2 for deformed bars of diameter 10 mm (D10) or greater Danang PIIP : Component C – Urban Roads and Bridges Detailed Design for the Construction of the Southern Link Road International Inc.(USA) 29 December 2011 Detailed Design of The Co Co Bridge 10 Tied Beam Design Project : Subject : Co Co Bridge Tied Beam Design Forces in Tied Beam at End Service State LoadCase P Ton S101 133 S102 102 S103 74 S104 36 S105 134 S106 102 S107 68 S108 36 S109 150 S110 119 S111 84 S112 53 S113 151 S114 119 S115 84 S116 53 S117 186 S118 155 S119 186 S120 155 S121 203 S122 172 S123 203 S124 172 V2 Ton ‐26 ‐40 ‐6 ‐21 ‐26 ‐40 ‐6 ‐21 ‐27 ‐41 ‐7 ‐22 ‐27 ‐41 ‐7 ‐22 ‐1 ‐16 ‐1 ‐16 ‐2 ‐17 ‐2 ‐17 V3 Ton ‐15 ‐12 ‐10 ‐5 ‐15 ‐12 ‐9 ‐5 ‐17 ‐14 ‐10 ‐7 ‐17 ‐14 ‐10 ‐7 ‐8 ‐4 ‐8 ‐4 ‐10 ‐6 ‐10 ‐6 T Ton‐m ‐48 ‐45 ‐30 ‐26 ‐48 ‐45 ‐28 ‐26 ‐49 ‐47 ‐30 ‐28 ‐49 ‐47 ‐30 ‐28 ‐26 ‐24 ‐26 ‐24 ‐27 ‐25 ‐27 ‐25 M2 Ton‐m ‐42 ‐33 ‐28 ‐14 ‐42 ‐33 ‐23 ‐14 ‐48 ‐39 ‐30 ‐20 ‐48 ‐39 ‐30 ‐20 ‐21 ‐12 ‐21 ‐12 ‐27 ‐18 ‐27 ‐18 M3 Ton‐m ‐133 ‐217 ‐63 ‐146 ‐133 ‐217 ‐62 ‐146 ‐135 ‐219 ‐64 ‐148 ‐135 ‐219 ‐64 ‐148 ‐42 ‐126 ‐42 ‐126 ‐44 ‐128 ‐44 ‐128 36 203 ‐41 ‐1 ‐17 ‐4 ‐49 ‐24 ‐48 ‐12 ‐219 ‐42 Strength Limit State LoadCase P Ton U101 210 U102 193 U103 147 U104 131 U105 399 U106 383 U201 88 U202 72 U203 88 U204 72 U205 54 U206 38 U207 123 U208 106 U301 189 U302 141 U303 172 U304 124 U305 175 U306 127 U307 159 U308 111 U309 335 V2 Ton ‐51 ‐58 ‐19 ‐26 ‐4 ‐12 ‐20 ‐28 ‐9 ‐16 ‐15 ‐23 ‐13 ‐21 ‐44 ‐19 ‐51 ‐27 ‐41 ‐16 ‐48 ‐24 ‐8 V3 Ton ‐24 ‐22 ‐12 ‐10 ‐13 ‐11 ‐13 ‐11 ‐10 ‐8 ‐6 ‐4 ‐17 ‐16 ‐22 ‐13 ‐20 ‐11 ‐21 ‐12 ‐19 ‐10 ‐13 T Ton‐m ‐74 ‐73 ‐42 ‐40 ‐33 ‐32 ‐38 ‐36 ‐39 ‐38 ‐33 ‐32 ‐42 ‐42 ‐66 ‐41 ‐65 ‐39 ‐66 ‐41 ‐65 ‐40 ‐34 M2 Ton‐m ‐67 ‐62 ‐36 ‐31 ‐32 ‐28 ‐37 ‐32 ‐30 ‐25 ‐13 ‐8 ‐51 ‐49 ‐61 ‐36 ‐56 ‐31 ‐58 ‐34 ‐53 ‐29 ‐34 M3 Ton‐m ‐251 ‐295 ‐144 ‐188 ‐51 ‐95 ‐133 ‐177 ‐109 ‐153 ‐119 ‐163 ‐117 ‐167 ‐222 ‐140 ‐266 ‐184 ‐220 ‐138 ‐264 ‐182 ‐68 MIN MAX Project : Subject : Co Co Bridge Tied Beam Design U310 U311 U312 U313 U314 U315 U316 U317 U318 U319 U320 U321 U322 U323 U324 318 321 305 169 120 152 104 196 147 179 131 315 298 342 325 ‐16 ‐5 ‐13 ‐43 ‐18 ‐50 ‐26 ‐42 ‐17 ‐50 ‐25 ‐7 ‐14 ‐6 ‐14 ‐11 ‐12 ‐10 ‐19 ‐10 ‐17 ‐8 ‐23 ‐14 ‐21 ‐12 ‐10 ‐8 ‐15 ‐13 ‐33 ‐35 ‐33 ‐64 ‐39 ‐63 ‐37 ‐68 ‐43 ‐67 ‐42 ‐32 ‐31 ‐37 ‐35 ‐29 ‐31 ‐27 ‐53 ‐28 ‐48 ‐23 ‐66 ‐42 ‐62 ‐37 ‐26 ‐21 ‐40 ‐35 ‐112 ‐66 ‐110 ‐220 ‐137 ‐264 ‐181 ‐223 ‐140 ‐267 ‐184 ‐65 ‐110 ‐68 ‐113 MIN MAX 38 399 ‐58 ‐4 ‐24 ‐4 ‐74 ‐31 ‐67 ‐8 ‐295 ‐51 V2 Ton ‐13 ‐20 ‐13 ‐20 ‐7 ‐7 ‐40 ‐28 ‐40 ‐28 ‐27 ‐15 ‐27 ‐15 ‐15 ‐27 ‐15 ‐27 ‐3 ‐15 ‐3 ‐15 ‐35 ‐35 ‐42 ‐35 ‐29 ‐23 ‐29 ‐23 V3 Ton ‐5 ‐5 ‐2 10 ‐2 10 ‐10 ‐10 ‐7 ‐7 ‐16 ‐32 ‐16 ‐32 ‐13 ‐28 ‐13 ‐28 ‐33 ‐33 ‐22 ‐33 ‐19 ‐30 ‐19 ‐30 T Ton‐m ‐36 ‐29 ‐36 ‐29 ‐25 ‐18 ‐25 ‐18 ‐46 ‐32 ‐46 ‐32 ‐35 ‐21 ‐35 ‐21 ‐45 ‐59 ‐45 ‐59 ‐34 ‐48 ‐34 ‐48 ‐62 ‐62 ‐55 ‐62 ‐44 ‐51 ‐44 ‐51 M2 Ton‐m ‐14 21 ‐14 21 ‐5 30 ‐5 30 ‐29 16 ‐29 16 ‐19 26 ‐19 26 ‐48 ‐93 ‐48 ‐93 ‐39 ‐84 ‐39 ‐84 ‐97 ‐97 ‐63 ‐97 ‐53 ‐88 ‐53 ‐88 M3 Ton‐m ‐64 ‐133 ‐64 ‐133 ‐9 ‐78 ‐9 ‐78 ‐280 ‐197 ‐280 ‐197 ‐225 ‐143 ‐225 ‐143 ‐69 ‐152 ‐70 ‐152 ‐15 ‐97 ‐15 ‐97 ‐216 ‐216 ‐285 ‐216 ‐231 ‐162 ‐231 ‐162 ‐42 ‐33 10 ‐62 ‐18 ‐97 30 ‐285 ‐9 Extreme Event Limit State LoadCase P Ton E1 249 E2 259 E3 249 E4 259 E5 300 E6 311 E7 300 E8 310 E9 39 E10 196 E11 39 E12 196 E13 91 E14 248 E15 91 E16 247 E17 177 E18 21 E19 177 E20 20 E21 229 E22 72 E23 229 E24 72 E25 ‐42 E26 ‐42 E27 ‐32 E28 ‐43 E29 19 E30 E31 19 E32 MIN MAX ‐43 311 Project : Subject : Co Co Bridge Tied Beam Design Forces in Tied Beam at Midspan Service State LoadCase P V2 Ton Ton S101 85 ‐4 S102 57 ‐6 S103 58 S104 22 ‐1 S105 85 ‐4 S106 57 ‐6 S107 50 S108 22 ‐1 S109 107 ‐4 S110 79 ‐7 S111 73 S112 44 ‐1 S113 107 ‐4 S114 79 ‐7 S115 73 S116 45 ‐1 S117 155 S118 127 S119 156 S120 128 S121 178 S122 150 S123 178 S124 150 MIN MAX 22 178 Strength Limit State LoadCase P Ton U101 143 U102 128 U103 132 U104 117 U105 310 U106 295 U201 79 U202 64 U203 79 U204 64 U205 38 U206 24 U207 119 U208 104 U301 131 U302 123 U303 117 U304 108 U305 125 U306 117 U307 110 U308 102 U309 260 V3 Ton ‐2 ‐2 0 ‐2 ‐2 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 T Ton‐m ‐11 ‐11 ‐2 ‐2 ‐11 ‐11 ‐2 ‐2 ‐11 ‐11 ‐2 ‐2 ‐11 ‐11 ‐2 ‐2 7 7 7 M2 Ton‐m ‐3 ‐2 ‐1 ‐3 ‐2 ‐1 ‐3 ‐3 ‐1 ‐1 ‐3 ‐3 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 M3 Ton‐m ‐36 ‐23 15 ‐36 ‐23 15 ‐26 ‐13 12 25 ‐26 ‐13 12 25 94 107 94 107 104 117 104 117 ‐7 ‐2 ‐11 ‐3 ‐36 117 V2 Ton ‐10 ‐11 ‐1 ‐1 ‐1 0 ‐1 ‐7 ‐8 ‐8 ‐9 ‐1 V3 Ton ‐2 ‐2 0 ‐2 ‐2 0 0 0 0 ‐2 ‐2 ‐2 ‐2 ‐1 T Ton‐m ‐19 ‐19 ‐3 ‐2 12 12 ‐2 ‐2 ‐2 ‐2 ‐3 ‐3 ‐2 ‐2 ‐15 ‐3 ‐15 ‐2 ‐15 ‐2 ‐15 ‐2 M2 Ton‐m ‐5 ‐5 ‐2 ‐2 ‐2 ‐2 ‐1 ‐1 ‐1 ‐1 0 ‐2 ‐2 ‐4 ‐2 ‐4 ‐2 ‐4 ‐2 ‐4 ‐2 ‐2 M3 Ton‐m ‐62 ‐55 11 18 194 201 53 60 ‐37 ‐30 16 14 ‐32 25 ‐25 32 ‐61 ‐4 ‐54 166 Project : Subject : Co Co Bridge Tied Beam Design U310 U311 U312 U313 U314 U315 U316 U317 U318 U319 U320 U321 U322 U323 U324 246 254 239 105 97 90 82 151 143 136 128 234 219 280 265 6 ‐7 ‐8 ‐8 ‐9 ‐1 6 ‐1 ‐1 ‐1 ‐2 ‐2 ‐1 ‐1 ‐2 ‐2 ‐1 ‐1 9 ‐16 ‐3 ‐15 ‐3 ‐15 ‐2 ‐15 ‐2 8 9 ‐2 ‐2 ‐2 ‐4 ‐1 ‐3 ‐1 ‐5 ‐2 ‐4 ‐2 ‐1 ‐1 ‐2 ‐2 173 137 144 ‐46 11 ‐39 18 ‐46 10 ‐40 17 152 159 151 158 MIN MAX 24 310 ‐11 ‐2 ‐19 12 ‐5 ‐62 201 V2 Ton 4 9 ‐9 ‐3 ‐9 ‐3 ‐4 ‐4 ‐3 ‐3 8 ‐7 ‐7 ‐10 ‐7 ‐5 ‐2 ‐5 ‐2 V3 Ton 3 3 ‐1 ‐1 ‐1 ‐1 ‐3 ‐3 ‐3 ‐3 ‐4 ‐4 ‐3 ‐4 ‐3 ‐4 ‐3 ‐4 T Ton‐m ‐3 ‐4 ‐3 ‐4 5 5 ‐9 ‐5 ‐9 ‐5 3 ‐5 ‐8 ‐5 ‐8 4 ‐10 ‐10 ‐10 ‐10 ‐2 ‐1 ‐2 ‐1 M2 Ton‐m 1 2 ‐2 ‐2 ‐1 ‐1 ‐2 ‐5 ‐2 ‐5 ‐1 ‐4 ‐1 ‐4 ‐5 ‐5 ‐4 ‐5 ‐3 ‐4 ‐3 ‐4 M3 Ton‐m 86 31 86 31 155 101 155 101 ‐94 ‐23 ‐94 ‐23 ‐24 47 ‐24 47 78 78 148 77 148 77 ‐47 ‐47 ‐101 ‐47 ‐31 23 ‐31 23 ‐10 ‐4 ‐10 ‐5 ‐101 155 Extreme Event Limit State LoadCase P Ton E1 186 E2 263 E3 186 E4 263 E5 232 E6 308 E7 232 E8 308 E9 80 E10 231 E11 80 E12 231 E13 126 E14 276 E15 125 E16 276 E17 89 E18 ‐62 E19 89 E20 ‐62 E21 134 E22 ‐17 E23 134 E24 ‐17 E25 ‐94 E26 ‐94 E27 ‐18 E28 ‐94 E29 28 E30 ‐48 E31 28 E32 ‐49 MIN MAX ‐94 308 Project : Subject : Co Co Bridge Tied Beam Design Tied Beam Properties Ag = 1.12 Ix‐x = 0.1829 Iy‐y = 0.0597 Ct = 0.700 Cb = 0.700 b = 0.80 d = 1.40 Calculate Prestress Losses Tendon no Tension Side no. of strands = diameter = Total area, As = Esp = L = Fpu = Jacking Force, Pj = = k = Wedge draw in = Total Angular Change, = Anchorage Loss = Final Jacking Force, Pjf = m2 m4 m4 m m m m (at Midspan) Ag = Ix‐x = Iy‐y = Ct = Cb = b = d = 1.35 0.2050 0.1125 0.675 0.675 1.00 1.35 m2 m4 m4 m m m m (at End) T1 ‐ T4 Both 60 (4 Tendons) 15.2 mm 0.0084 m 1.97E+08 86.65 260 75 11,700 0.20 0.00066 0.006 0.0000 11,349 kN/m2 m kN / strand % Fpu kN per rad per m m % Pj kN Calculate Total Loss of Prestress for Post Tension Members fPT = fPF + fPA + fPES + fPSR + fPCR + fPR2 (5.9.5.1‐2) Friction Loss = kL = P(L) = = fPF = = 0.000 0.057189 10,718 94.4% 631 75.10 p = w = Wedge Loss = P(W) = = 7.28 36.93 537.71 10,811 95.3% kN Pjf kN MPa Line of Symmetry Wedge Loss Shrinkage Loss For post‐tensioned member fPSR = (93 ‐ 0.85H) H = 80 fPSR = 25 = 210 kN/m m kN kN Pjf MPa % MPa kN (5.9.5.4.2‐2) Project : Subject : Co Co Bridge Tied Beam Design Creep Loss fPCR = 12.0 fcgp ‐ 7.0 fcdp (5.9.5.4.3‐1) fcgp = Concrete stress at cg of prestressing steel at transfer = 10.13 MPa fcdp = 0.00 MPa Change in concrete stress at cg of prestressing steel due to permanent loads except the loads acting at prestressing transfer fPCR = 121.60 MPa = 1,021 kN Steel Relaxation Loss fPR2 = Losses due to relaxation after transfer = 0.3 [138 ‐ 0.3fPF ‐ 0.4fPES ‐ 0.2(fPSR + fPCR)] = 25.85 MPa 30% of (5.9.5.4.4c‐2) Total Long Term Loss fPT = = 247.54 MPa 2079.34 kN 18.32 % Pjf Stress Check Allowable Stress : at Transfer (MPa) Location P/A @ End Midspan 6.52 8.04 Top Pec/I 0.00 0.00 at Service Stage (MPa) Location P/A 5.38 6.49 Pec/I 0.00 0.00 Pec/I 0.00 0.00 Sum Bot Status 3.71 8.97 9.33 7.10 O.K O.K 50 MPa ‐3.54 MPa 22.5 MPa Bot Mc/I ‐7.07 4.39 (0.25sqrt(f'ci) Table 5.9.4.1.2‐1) (0.6f'ci Table 5.9.4.1.1) Sum Top Mc/I 2.81 ‐0.94 f'c = Tens. ≥ Comp. ≤ Top Pec/I 0.00 0.00 40 MPa ‐1.58 MPa 24 MPa Bot Mc/I ‐2.81 0.94 Allowable Stress : @ End Midspan f'ci = Tens. ≥ Comp. ≤ Mc/I 7.07 ‐4.39 (0.5sqrt(f'c) Table 5.9.4.2.2‐1) (0.45f'c Table 5.9.4.2.1‐1) Sum Top Sum Bot Status ‐1.69 10.88 12.46 2.10 O.K O.K Check Ultimate Flexural Resistance Design Standard Material Properties Conrete fc' = 1 = fr = Prestressing Steel fpu = fpy = Reinforcing Steel fsy = 22‐TCN‐272‐05 50 MPa 0.69 4.45 MPa 1,860 MPa 1,674 MPa 400 MPa (5.7.2.2) (5.4.2.6) (90% of fpu) (ASTM A416M) (Table 5.4.4.1‐1) Project : Subject : Co Co Bridge Tied Beam Design Design Formula for Rectangular Section f py k 21.04 f pu = c where (5.7.3.1.1‐2) 0.28 A ps f pu As f y As ' f y ' f pu 0.85 f c' 1b kAps dp (5.7.3.1.2‐4) c = distance between the neutral axis and the compressive face hf = depth of compression flange dp = distance frpm extreme compression fiber to the centroid of prestressing steel c f ps f pu 1 k dp (5.7.3.1.1‐1) a hf a a Mr Aps f ps d p As f y ds 0.85 f c' b bw 1h f 2 2 2 = 0.90 Flexural Capacity b (mm) @ End 1,000 Midspan 800 Aps (mm2) dps (mm) c (mm) a (mm) fps (MPa) c/dp Mult (Ton‐m) Mr (Ton‐m) 1.2 Mr (Ton‐m) Mr (Ton‐m) Status 4,200 1,100 249 172 1,742 0.23 295 138 166 681 O.K 4,200 1,150 307 213 1,721 0.27 201 119 142 692 O.K Remark ( O.K.) (> Mult , 1.2 Mcr ==> O.K.) (5.7.3.2.2‐1) Project : Subject : Co Co Bridge Tied Beam Design Check Tied Beam in case of replacing 1 cable This cable is supposed to be replaced and inactive Check at Ultimate State M+u = Mr = 435 Ton‐m 692 Ton‐m O.K Detailed Design of The Co Co Bridge 11 Abutment Wall Design Project : Subject : Co Co Bridge Abutment Design Forces in Abutment Wall at Base of Arch Rib (Per 4.4m) Service State LoadCase P V2 V3 Ton Ton Ton S101 ‐1,439 ‐653 ‐164 S102 ‐1,405 ‐663 ‐117 S103 ‐1,313 ‐601 ‐125 S104 ‐1,290 ‐617 ‐76 S105 ‐1,439 ‐653 ‐165 S106 ‐1,405 ‐663 ‐117 S107 ‐1,324 ‐607 ‐124 S108 ‐1,290 ‐617 ‐76 S109 ‐1,417 ‐624 ‐166 S110 ‐1,383 ‐634 ‐118 S111 ‐1,301 ‐577 ‐125 S112 ‐1,267 ‐587 ‐78 ‐166 S113 ‐1,417 ‐624 S114 ‐1,383 ‐634 ‐118 S115 ‐1,301 ‐577 ‐125 S116 ‐1,267 ‐587 ‐78 S117 ‐1,362 ‐637 ‐141 S118 ‐1,328 ‐647 ‐94 S119 ‐1,362 ‐637 ‐141 S120 ‐1,328 ‐647 ‐94 S121 ‐1,340 ‐608 ‐143 S122 ‐1,306 ‐618 ‐95 S123 ‐1,340 ‐608 ‐143 S124 ‐1,306 ‐618 ‐95 MIN MAX T Ton‐m 54 54 53 54 54 54 54 54 52 52 52 53 52 52 52 53 57 57 57 57 56 56 55 56 M2 Ton‐m 358 237 328 212 358 237 332 212 347 226 321 201 347 227 322 201 414 293 414 293 403 282 403 282 M3 Ton‐m 1,943 2,117 1,857 2,047 1,944 2,118 1,873 2,047 2,001 2,175 1,931 2,105 2,002 2,176 1,931 2,106 2,479 2,653 2,480 2,654 2,537 2,711 2,538 2,712 ‐1,439 ‐1,267 ‐663 ‐577 ‐166 ‐76 52 57 201 414 1,857 2,712 Strength Limit State LoadCase P Ton U101 ‐1,908 U102 ‐1,890 U103 ‐1,768 U104 ‐1,750 U105 ‐1,759 U106 ‐1,741 U201 ‐1,685 U202 ‐1,667 U203 ‐1,708 U204 ‐1,690 U205 ‐1,748 U206 ‐1,730 U207 ‐1,644 U208 ‐1,626 U301 ‐1,856 U302 ‐1,748 U303 ‐1,838 U304 ‐1,730 U305 ‐1,864 U306 ‐1,756 U307 ‐1,846 U308 ‐1,738 U309 ‐1,741 V2 Ton ‐870 ‐875 ‐841 ‐846 ‐755 ‐760 ‐730 ‐735 ‐839 ‐844 ‐814 ‐819 ‐720 ‐761 ‐829 ‐806 ‐834 ‐812 ‐872 ‐850 ‐878 ‐855 ‐740 V3 Ton ‐220 ‐195 ‐177 ‐152 ‐172 ‐147 ‐137 ‐112 ‐153 ‐128 ‐139 ‐114 ‐143 ‐125 ‐200 ‐167 ‐175 ‐142 ‐205 ‐173 ‐180 ‐148 ‐163 T Ton‐m 68 68 69 69 74 75 69 69 68 68 73 73 62 65 68 69 68 69 68 69 68 69 73 M2 Ton‐m 419 355 432 368 509 446 354 291 389 326 392 329 334 288 402 412 339 349 414 424 351 361 472 M3 Ton‐m 2,628 2,719 2,703 2,794 3,910 4,002 2,823 2,914 2,174 2,266 2,572 2,664 2,309 2,516 2,713 2,771 2,804 2,862 2,484 2,541 2,575 2,633 3,702 Project : Subject : Co Co Bridge Abutment Design U310 U311 U312 U313 U314 U315 U316 U317 U318 U319 U320 U321 U322 U323 U324 ‐1,723 ‐1,749 ‐1,731 ‐1,884 ‐1,776 ‐1,866 ‐1,758 ‐1,835 ‐1,728 ‐1,818 ‐1,710 ‐1,769 ‐1,751 ‐1,721 ‐1,703 ‐745 ‐784 ‐789 ‐866 ‐843 ‐871 ‐849 ‐835 ‐813 ‐841 ‐818 ‐777 ‐782 ‐747 ‐752 ‐138 ‐168 ‐143 ‐199 ‐166 ‐174 ‐141 ‐207 ‐174 ‐182 ‐149 ‐162 ‐137 ‐170 ‐145 73 73 73 70 71 70 71 66 67 66 67 75 75 71 71 408 484 420 416 426 353 363 400 410 336 346 486 423 469 406 3,794 3,473 3,564 2,634 2,692 2,725 2,783 2,563 2,620 2,654 2,712 3,623 3,715 3,552 3,643 MIN MAX ‐1,908 ‐1,626 ‐878 ‐720 ‐220 ‐112 62 75 288 509 2,174 4,002 V2 Ton ‐578 ‐621 ‐578 ‐621 ‐546 ‐590 ‐546 ‐590 ‐908 ‐720 ‐908 ‐720 ‐876 ‐689 ‐876 ‐689 ‐639 ‐826 ‐639 ‐826 ‐608 ‐795 ‐608 ‐795 ‐925 ‐925 ‐969 ‐925 ‐938 ‐894 ‐938 ‐894 V3 Ton ‐119 ‐113 ‐119 ‐113 ‐106 ‐100 ‐106 ‐100 ‐154 ‐124 ‐154 ‐124 ‐141 ‐111 ‐141 ‐111 ‐134 ‐165 ‐134 ‐165 ‐121 ‐152 ‐121 ‐152 ‐175 ‐175 ‐170 ‐175 ‐157 ‐162 ‐157 ‐162 T Ton‐m 75 80 75 80 76 81 76 81 64 76 64 76 65 78 65 78 67 54 67 54 69 56 69 56 51 51 56 51 58 53 58 53 M2 Ton‐m 386 407 385 407 410 432 410 432 316 387 316 387 341 411 341 411 346 276 346 276 371 300 370 300 255 255 277 255 301 280 301 279 M3 Ton‐m 3,127 2,897 3,126 2,896 3,476 3,246 3,475 3,245 1,956 2,546 1,955 2,545 2,305 2,895 2,304 2,894 2,973 2,383 2,972 2,382 3,322 2,732 3,321 2,731 2,031 2,031 1,801 2,031 2,150 2,380 2,150 2,380 ‐969 ‐546 ‐175 ‐100 51 81 255 432 1,801 3,476 Extreme Event Limit State LoadCase P Ton E1 ‐1,573 E2 ‐1,483 E3 ‐1,573 E4 ‐1,483 E5 ‐1,532 E6 ‐1,442 E7 ‐1,532 E8 ‐1,442 E9 ‐1,652 E10 ‐1,506 E11 ‐1,652 E12 ‐1,506 E13 ‐1,612 E14 ‐1,466 E15 ‐1,612 E16 ‐1,466 E17 ‐1,674 E18 ‐1,820 E19 ‐1,674 E20 ‐1,819 E21 ‐1,633 E22 ‐1,779 E23 ‐1,633 E24 ‐1,779 E25 ‐1,843 E26 ‐1,843 E27 ‐1,753 E28 ‐1,843 E29 ‐1,713 E30 ‐1,803 E31 ‐1,713 E32 ‐1,803 MIN MAX ‐1,843 ‐1,442 Project : Subject : Co Co Bridge Abutment Design Geometry of Abutment Wall Materials Loads and Dimensions Concrete f'c = 35 MPa 1 = 0.80 Unit Weight of RC = 24.5 kN/m3 Rebar fy = 400 MPa 19 kN/m3 Unit Weight of soil backfill, s = Thickness at Base, Tb = 3.50 m Width at Base, bw = 27.80 m Thickness at Top, Tt = 1.50 m Width at Top, bt = 19.00 m Notation for Coulomb at Earth Pressure Abutment Height, H = 7.56 m Earth Pressure due to Active Pressure Coefficient (ka) ka sin sin sin (3.11.5.3‐1) and sin sin 1 sin sin (3.11.5.3‐2) when = = = ' = 30 90 30 degree degree degree degree (Coarse Sand) (Angle of fill to the horizontal) (Angle of backfill of wall to the vertical) (Effective angle of internal friction) Then = 2.91 ka = 0.297 P = kasgH = 0.043 MPa e = 0.4H = 3.02 m Ph = 0.5kasgH2 = 0.161 MN/m = 16.452 Ton/m Ph(e) = 49.758 Ton‐m/m (3.11.5.1‐1) (at Base) (Moment at Base of Abutment) Project : Subject : Co Co Bridge Abutment Design Earth Pressure due to Live Load Surcharge A live load surcharge shall be applied where vehicular load is expected to act on the surface of the backfill within a distance equal to the wall height behind the back face of the wall The increase in horizontal pressure due to live load surcharge is estimated as p = kasgheq where heq = Equivalent height of soil for the design truck (mm) (Table 3.11.6.2‐1) = 732 mm p = 0.004 e = 0.5H = 3.781 Ps = 0.031 = 3.186 Ps(e) = 12.043 Then MPa m MN/m Ton/m Ton‐m/m (pH) (Moment at Base of Abutment) Ps Ph Major Force acting at Abutment Wall Design for Reinforcement of Abutment Wall at Arch Ribs Check Moment Capacity (Cables in tied beam are inactive) Mu = 4,002 Ton‐m a 2 M n As f y d s (at Face behind Arch Ribs) (5.7.3.2.2‐1) where = a = c c 0.90 As f y 0.85 f c ' 1b (5.5.4.2.1) (Depth of equivalent stress block) (5.7.3.1.1‐4) Project : Subject : Co Co Bridge Abutment Design Provide 68 b = ds = DB32 4.40 m 3.363 m (2 Layers : Spacing = 125mm) then Check Shear Capacity As = 54,689 mm c = 208.90 mm then a = 167.12 mm Mn = 64.57 MN‐m 39.26 MN‐m Mu = Mn > Mu ===> 61% O.K Vc 0.083 f c 'bv d v (5.8.3.3‐3) = Factor indicating ability of diagonally cracked concrete to transmit tension as specified in 5.8.3.4 = 2.0 (5.8.3.4.1) bv = 4.40 m 3.363 m dv = 13.08 MN Vc = 9.65 MN (Ultimated Shear in Abutment Wall) Vu = then Vc > Vu ===> 74% O.K Check Moment Capacity (Cables in tied beam are active) Mu = 3502.00 = 34.35 Provide 68 DB32 b = 4.40 ds = 3.363 Ton‐m/m MN‐m/m (2 Layers : Spacing = 125mm) m m then (at Face behind Arch Ribs) As = 54,689 mm c = 208.90 mm then a = 167.12 mm Mn = 64.57 MN‐m 34.35 MN‐m Mu = Mn > Mu ===> 53% O.K ... Detailed Design of The Co Co Bridge Structural Design Criteria Design Criteria SUBCOMPONENT C –URBAN ROADS AND BRIDGES THE SOUTHERN LINK ROAD : BASIC DESIGN OF THE CO CO BRIDGE STRUCTURAL DESIGN... width is 15 m Concrete structure shall be designed for the main construction material of the bridge because it is located near the coastal area so the exposed condition shall be considered as... safety and a high level of comfort 2) Low probability of resonance 3) Conceptual simplicity and standardization for ease of construction, schematic quality control, fast track construction and higher