GIẢI TOÁN BẰNG MÁY TÍNH CẦM TAY CASIO Cách làm nhanh trắc nghiệm môn Toán kỳ thi THPT Quốc Gia 2017 Design by: Lê Nam Nhóm: Học Toán Cùng Thầy Nam Link Facepage: https://www.facebook.com/hoctoancungthaynam/ Link Facepage: https://www.facebook.com/lenammath Kênh YouTube: Lê Nam PHẦN 9: XÉTSỰĐỒNGBIẾN & NGHỊCHBIẾNCỦAHÀMSỐBẰNGCASIO A: Lý thuyết cần nhớ Định lý Chúng ta sử dụng Định Lý sau: Định lý 1: *Nếu f ( x) 0, x D ( dấu “=” xảy hữu hạn điểm) hàm f ( x) đồngbiến D * Nếu f ( x) 0, x D ( dấu “=” xảy hữu hạn điểm) hàm f ( x) nghịchbiến D * Nếu f ( x) 0, x D hàm f ( x) hàm D * Nh n x t + C c hàm s đa th c, ph n th c hàm s ch a c n mà ta x t th ng ch hữu hạn điểm nên ta ch quan t m đến dấu c a đạo hàm ch yếu + C c hàm s l ng gi c tu n hoàn nên ch c n x t dấu đạo hàm m t chu ì Định lý 2: * Nếu hàm f ( x) đồngbiến ( nghịch biến) D f ( x) 0,( f ( x) 0)x D Nh v y từ định lý để x t tính đồng biến, nghịchbiến c a hàm s ta th c a f ( x) D ng x t dấu (Đây lý thuyết để làm sở nha) Đôi với casio ta làm nào? Đ i với dạng dùng kết h p ch c n ng c a CASIO CALC Chức tính đạo hàmhàmsố giá trị x0 (Cái học chương cuối Lớp 11 nha) Vậy để xétđồngbiến & nghịchbiếnhàmsố với chức đó? Để x t đ c đồngbiếnnghịchbiến c a hàm s CASIO ta làm nh sau B1: Vào chế đ tính đạo hàmcasio (bằng cách: Shift + Phím tích phân) B2: Nh p hàm s c n xét f(x,m vào máy tính) Chú ý: Biến x gán X, m gán Y(hoặc A, B, C, …); lại gán m casio nên thay m tham s Cái giá trị d ới dấu đạo hàm (tức x0) ta nh p x0=X B3: Ấn CALC nh p X= giá trị nằm khoảng c n x t đồngbiến hay nghịch biến, Y = giá trị nằm khoảng hay đoạn c a m mà đề cho Sau ấn “=” B4: So sánh kết vừa tính đ c với Nếu < hs nghịch biến, > hàm s đồngbiến (Thế ok nha trò) B: Ví dụ áp dụng a Hàm s y x3 mx m đồngbiến (1;2) m thu c t p sau đ y Chọn c u trả l i 3 3 A 3; B ; C ; D ; 2 2 Hướng dẫn: Làm theo nh c c TRÒ B1: Vào chế đ tính đạo hàm (bằng cách: Shift + Phím tích phân) B2: Nh p hàm s x3 mx2 m vào m y tính (làm theo th y nha); g n x=X B3: Ấn CALC nh p X = 1.5 [nh p giá trị thu c khoảng (1;2) ], Y = giá trị thu c khoảng theo đ p n nha Ví dụ với đáp án ta nhập Y= từ trở lên Sau ấn “=” B4: So sánh kết vừa tính đ c với Nếu hàm s đồngbiến Đ p n XONG Verry Good (Quá nhanh nguy hiểm 9) m b Hàm s y x3 m 1 x 3 m x đồngbiến 2; m thu c t p sau đ y 3 Chọn c u trả l i 2 2 2 A m ; B m ; D m ; 1 C m ; 3 3 c Trong c c hàm s sau, hàm s đồngbiến hoảng 1; Chọn c u trả l i A y x3 x 3x B y ln x C y e x 2 x D y x x3 3 d Hàm s y x x 3x đồngbiến Chọn c u trả l i A 2; B 1; 3 C ;1 3; D 1; 3x e Cho hàm s f ( x) Trong c c mệnh đề sau, tìm mệnh đề x Chọn c u trả l i A f ( x) t ng ;1 1; B f ( x) giảm ;1 1; C f ( x) đồngbiến R D f ( x) liên tục f Hàm s y x ln x nghịchbiến Chọn c u trả l i A e; B (0; 4) C 4; D ;e g Trong c c hàm s sau, hàm s nghịchbiến Chọn c u trả l i A y cos x B y x3 x2 10 x : C y x x 17 x D y x2 x3 ... án ta nhập Y= từ trở lên Sau ấn “=” B4: So sánh kết vừa tính đ c với Nếu hàm s đồng biến Đ p n XONG Verry Good (Quá nhanh nguy hiểm 9) m b Hàm s y x3 m 1 x 3... n x t đồng biến hay nghịch biến, Y = giá trị nằm khoảng hay đoạn c a m mà đề cho Sau ấn “=” B4: So sánh kết vừa tính đ c với Nếu < hs nghịch biến, > hàm s đồng biến (Thế ok nha trò) B: Ví dụ áp