1. Trang chủ
  2. » Giáo án - Bài giảng

Giao tuyến của ba mặt phẳng

11 14,1K 52
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 798 KB

Nội dung

GIAO TUYẾN CỦA BA MẶT PHẲNG Định lý Nếu ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song với nhau. Hệ quả Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó Hình 2 32 Hình 2 33 Hình 2 34 a Hình 2 34 b Ví dụ 1: Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Xác định giao tuyến của các mặt phẳng (SAB) và (SDC). ∈ ∈ A B C D S d * AB // DC (do ABCD là h. bình hành) * mp(SAB) chứa AB * mp(SDC) chứa DC * S thuộc giao tuyến của hai mặt phẳng (SAB) và (SDC).  Giao tuyến của mp(SAB) và mp(SDC) là đường thẳng đi qua S và song song với AB và CD Ví dụ 2: Cho tứ diện ABCD. Gọi I và J lần lượt là trung điểm BC và BD. (P) là mặt phẳng qua IJ và cắt AC, AD lần lượt tại M, N. Chứng minh rằng tứ giác IJMN là hình thang. Nếu M là trung điểm của AC thì tứ giác IJMN là hình gì ? A B N M J I D C P Giải Ba mặt phẳng (ACD), (BCD) (P) đôi một cắt nhau theo các giao tuyến CD, IJ, MN. Vì IJ // CD nên theo định lý 2 ta có IJ // MN. Vậy tứ giác IJMN là hình thang. Nếu M là trung điểm của AC thì N là trung điểm cạnh AD. Khi đó tứ giác IJNM có một cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành. . GIAO TUYẾN CỦA BA MẶT PHẲNG Định lý Nếu ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng. giao tuyến của các mặt phẳng (SAB) và (SDC). ∈ ∈ A B C D S d * AB // DC (do ABCD là h. bình hành) * mp(SAB) chứa AB * mp(SDC) chứa DC * S thuộc giao tuyến

Ngày đăng: 07/07/2013, 01:27

TỪ KHÓA LIÊN QUAN

w