1. Trang chủ
  2. » Giáo Dục - Đào Tạo

De thi HSG Toan 9 2013 2014

4 170 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 166 KB

Nội dung

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN HUYỆN TIÊN YÊN NĂM HỌC 2013-2014 ĐỀ THI MÔN: TOÁN HỌC LỚP (Thời gian làm bài: 150 phút) (Ngày thi: 10/12/2013) Câu 1(5 điểm): Cho x, y hai số khác thỏa mãn: x2 + y = y2 + x x +y +xy Tính giá trị biểu thức: P = xy-1 Câu (4 điểm): Tìm nghiệm nguyên phương trình: 9x + = y2 + y Câu (3 điểm): Trong mặt phẳng tọa độ Oxy cho ba điểm A (-2; -2), điểm B (0; 2), điểm C(2 ; 1) Chứng minh tam giác ABC tam giác vuông Câu (4 điểm): Cho đoạn thẳng AB số k không âm, chứng minh có điểm M chia hay chia đoạn AB theo tỉ số k Câu (4 điểm) Cho tứ giác ABCD có AC vuông góc với BD O Trên đoạn thẳng OA lấy điểm E cho ∠BDE=∠BAC Trên đoạn thẳng OD lấy điểm F cho ∠CAF=∠BDC Chứng minh BE//CF ====Hết==== PHÒNG GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN HUYỆN TIÊN YÊN NĂM HỌC 2013-2014 HƯỚNG DẪN CHẤM MÔN: TOÁN HỌC LỚP (Thời gian làm bài: 150 phút) (Ngày thi: 10/12/2013) Câu Hướng dẫn Cho x, y hai số khác thỏa mãn: x2 + y = y2 + x Điểm x +y2 +xy Tính giá trị biểu thức: P = xy-1 Hướng dẫn : Ta có : x2 + y = y2 + x  (x – y)(x+ y -1) = => x = y x + y = 2đ x +x +x.x 3x + Với x = y => P = = (Giá trị P phụ thuộc giá trị 1,5đ x.x-1 x -1 x) + Với x + y = x +y + xy x +y +2xy - xy (x+y) - xy 1- xy = = = = −1 => P = xy -1 xy -1 xy -1 xy -1 Tìm nghiệm nguyên phương trình: 9x + = y2 + y 1,5đ Hướng dẫn : Viết lại phương trình thành : 9x + = y(y + 1) (1) Ta thấy vế trái (1) 9x + số chia cho dư nên y(y + 1) 1đ chia cho dư Nếu y chia hết cho y chia cho dư y(y + 1) chia 1đ hết cho 3, trái với kết luận Do y chia cho dư Đặt y = 3k + (k ∈ Z) y +1 = 3k + 1đ Khi ta có : 9x + = (3k + 1)(3k + 2) => 9x = 9k(k + 1) => x = k(k + 1) 0,5đ Thử lại x = k(k + 1) y = 3k + thoả mãn phương trình cho Vậy nghiệm nguyên phương trình (1) x = k(k + 1) y = 0,5đ 3k + (k ∈ Z) 3 Trong mặt phẳng tọa độ Oxy cho ba điểm A (-2; -2), điểm B (0; 2), điểm C(2 ; 1) Chứng minh tam giác ABC tam giác vuông Hướng dẫn: Áp dụng định lý pitago cho tam giác vuông ABF, BCD ACE ta tính được: 3đ AB = 20 ; BC = ; AC = Ta thấy : AC2 = AB2 + BC2 => tam giác ABC vuông B Cho đoạn thẳng AB số k không âm, chứng minh có điểm M chia hay chia đoạn AB theo tỉ số k Hướng dẫn: + Trường hợp 1: điểm M chia đoạn thẳng AB theo tỉ số k 2đ Nói khác M thuộc AM => AB = MA + MB Theo ra, điểm M chia AB thành hai phần theo tỉ số k; giả sử: MA/MB = k  MA = k.MB = k (AB – MA) => MA(k +1) = k.AB  MA = k.AB/(k+1) Vì AB k cố định cho trước nên k.AB/(k+1) cố định => điểm M cố định Hay M điểm chia đoạn AB theo tỉ số k + Trường hợp 2: M điểm chia đoạn AB theo tỉ số k Khi ta có MA/MB = k ; M không thuộc đoạn AB điểm M, A, B thẳng hàng Giả sử: MB = MA + AB ( M nằm phía A) Tương tự trường hợp ta có: MA = k.AB/(1-k)  Hay M điểm chia đoạn AB theo tỉ số k Cho tứ giác ABCD có AC vuông góc với BD O Trên đoạn thẳng OA lấy điểm E cho ∠BDE=∠BAC Trên đoạn thẳng OD lấy điểm F cho ∠CAF=∠BDC Chứng minh BE//CF 2đ Hướng dẫn: Kéo dài DE cắt AB M Có ∠MAO=MDO (gt) 1đ =>tứ giác AMOD nội tiếp Có ∠AOD= 900=> ∠AMD= 900 => DM⊥AB 1đ => E trực tâm tam giác ABD => BE⊥AD (1) 1đ Tương tự chứng minh CF⊥AD (2) 0.5đ Từ (1) (2) => BE//CF Học sinh giải theo cách khác cho điểm tối đa 0.5đ ...HUYỆN TIÊN YÊN NĂM HỌC 2013- 2014 HƯỚNG DẪN CHẤM MÔN: TOÁN HỌC LỚP (Thời gian làm bài: 150 phút) (Ngày thi: 10/12 /2013) Câu Hướng dẫn Cho x, y hai số khác thỏa mãn:... điểm E cho ∠BDE=∠BAC Trên đoạn thẳng OD lấy điểm F cho ∠CAF=∠BDC Chứng minh BE//CF 2đ Hướng dẫn: Kéo dài DE cắt AB M Có ∠MAO=MDO (gt) 1đ =>tứ giác AMOD nội tiếp Có ∠AOD= 90 0=> ∠AMD= 90 0 => DM⊥AB... trái với kết luận Do y chia cho dư Đặt y = 3k + (k ∈ Z) y +1 = 3k + 1đ Khi ta có : 9x + = (3k + 1)(3k + 2) => 9x = 9k(k + 1) => x = k(k + 1) 0,5đ Thử lại x = k(k + 1) y = 3k + thoả mãn phương trình

Ngày đăng: 24/08/2017, 18:03

TỪ KHÓA LIÊN QUAN

w