Câu 1. Cho hàm so y x3 3x 6ong bien trên các khoáng nào sau 6ây ? A. ; 1 và 1; B. ; 1 1; C. 1; D. 1;1 Câu 2. Tìm nguyên hàm cúa hàm so f x e4x 4 x A. e4xdx e4x1 C B. e4 xdx e C 4 C. e4xdx e4x C D. e4xdx 2e4x C Câu 3. Goi A, B là giao 6iem cúa hai 6o th% hàm so y x 3 x 1 và y 1 x . Ю dài 6oan thang AB bang A. AB 4 B. AB 8 C. AB 6 D. AB 3 Câu 4. Vói các so thnc a 0,b 0 bat kì. M¾nh 6e nào sau 6ây là 6úng ? 3 2 3 2 A. log 2 a 1 2 log a 1 log b B. log 2 a 1 2 log a 1 log b 2 b2 3 2 2 2 2 b2 3 2 2 2 3 2 3 2 C. log 2 a 1 2 log a 2 log b D. log 2 a 1 2 log a 2 log b 2 b2 3 2 2 2 b2 3 2 2 x 2 Câu 5. Trong không gian vói h¾ toa 6® Oxyz, cho 6nòng thang d : y 1 3t t z 5 t . Vecto nào dnói 6ây là vecto chí phnong cúa d ? A. u 0; 3; 1 B. u 0; 3; 1 C. u 2; 3; 1 D. u 2; 1; 5 Câu 6. M¾nh 6e nào sau 6ây là sai ? 1 1 3 1 1 1 A. 2 8 B. 3 8 2 C. 62 .243 72 D. 644 4 Câu 7. Cho hình phang D giói han bói 6o th% hàm so y f x , trnc Oz và hai 6nòng thang x a , x b a b, f x 0; x a; b . Công thúc tính the tích v¾t the tròn xoay nh¾n 6noc khi hình phang D quay quanh trnc Ox là b A. V f x2 dx a b B. V f x2 dx a b C. V f 2 x dx a b D. V f 2 x dx a Câu 8. Cho hình chóp S.ABC có SA, SB, SC 6ôi m®t vuông góc vói nhau và SA the tích khoi chóp S.ABC , SB 2, SC 3 . Tính
4 Câu Cho 1 , tính I f x dx f x dx 0 A I Câu B I C I D I Cho hàm s y ax4 bx2 c có thị hình vẽ bên Mệnh ề ây úng? A a 0, b 0, c B a 0, b 0, c C a 0, b 0, c D a 0, b 0, c Câu Kh i lập phương ABCD A B C D có ường chéo AC 3cm tích A 0.8 lít B 0,008 lít C 0, 08 lít D lít Câu Tính khoảng cách hai iểm cực tiểu thị hàm s y A Câu B x4 3x D C Cho s thực a, b, c khác Đồ thị hàm s y log a x , y hình vẽ bên Mệnh ề ây úng? A b a c logb x , y logc x ược cho B a b c C a c b D c a b Câu Tìm tất giá trị tham s m ể hàm s y x m x mx có cực ại, cực tiểu xCD xCT A m Câu Cho hàm s A f Câu f B f D m 6;0 0; x 2 x Mệnh ề ây úng? x2 2x f x C m f C f 2f D f f Cho hình trụ có bán kính áy R , ộ dài ường cao h Đường kính MN áy vuông góc với ường kính PQ áy Thể tích kh i tứ diện MNPQ A Câu B m 2 Rh B Rh C Rh D 2R h Cho hình chóp S ABC có áy tam giác vuông A , cạnh huyền BC 6cm ,các cạnh bên tạo với áy góc 600 Diện tích mặt cầu ngoại tiếp hình chóp S ABC A 48 cm2 B 12 cm2 C 16 cm2 D 24cm2 Câu Trong không gian với hệ tọa ộ Oxyz , cho hai iểm A th a mãn MA.MA 4MB.MB có tọa ộ A M ;0; B M 7; 4;1 3 1; 2;3 B 3; 1; Điểm M C M 1; ; D M ; ; 3 Câu 11: Tìm tập hợp tất giá trị tham s thực m ể phương trình sau có nghiệm thuộc oạn 0;1 : x3 x2 x A m m x2 B m C m Câu 12: Tìm tất iểm cực ại hàm s A x x4 2x2 y B x D m C x D x Câu 13: Trên mặt phẳng tọa ộ Oxy , xét tam giác vuông AOB với A chạy trục hoành có hoành ộ dương; B chạy trục tung có tung ộ âm cho OA OB H i thể tích lớn vật thể tạo thành quay tam giác AOB quanh trục Oy bao nhiêu? A 81 B 15 27 C x t Câu 14: Tập hợp nghiệm bất phương trình t A Câu 15: B ;0 ; dt 17 (ẩn x ) là: C D \ ; D 0; ng nghiệm hình trụ có bán kính áy R 1cm chiều cao h 10cm chứa ược lượng máu t i a(làm tròn ến chữ s thập phân) A 10cc B 20cc C 31, 4cc D 10, 5cc Câu 16: Cho hình chóp S ABCD có áy hình vuông cạnh 3cm , mặt bên SAB SAD vuông góc với mặt phẳng áy , góc SC mặt áy 600 Thể tích kh i chóp S ABCD : A 6cm3 Câu 17: Cho hàm s A Hàm s B.Hàm s B 6cm3 y ln C 3cm3 D 6cm3 Mệnh ề ây ĐÚNG ? x2 ồng biến khoảng ; ồng biến khoảng 0; C.Hàm s nghịch biến khoảng ; D.Hàm s ồng biến khoảng ;0 Câu 18: Trong kg với hệ tọa ộ Oxyz , mặt phẳng P i qua hình chiểu iểm A 1; 2;3 trục tọa ộ : A x y 3z B x y z C x y z D x y 3z Câu 19: Tìm tập hợp tất giá trị tham s thực m ể hàm s khoảng A x mx ồng biến y ; ;1 B 1; 1;1 C ; D Câu 20: Tìm tập hợp tất giá trị tham s thực m ể phương trình sau có nghiệm thực phân biệt : 91 x m 31 x A m B m Câu 21: Cho hai mặt phẳng phẳng R C m D m Q : 3x y 12 z Phương trình mặt P : x y z 0, i qua g c tọa ộ O vuông góc với hai mặt phẳng nói A 3x y z B x y z C x y 3z Câu 22: Khoảng cách iểm cực ại iểm cực tiểu thị hàm s A B C Câu 23: Tìm tất giá trị tham s thực m cực ại, cực tiểu xCÑ A m xCT B m x1 Câu 26: Tìm nghiệm phương trình x A x B x x3 3x y x m x mx có D m 0; 6; z 2 x y z theo ường tròn C 0; 2; Câu 25: Tìm tất giá trị nguyên tham s thực m ại x1 , iểm cực tiểu x2 A m B m D ể thị hàm s y2 y C m Câu 24: Mặt phẳng Oyz cắt mặt cầu S : x2 có tọa ộ tâm A 1; 0; B 0; 1; D x y z , x2 ể hàm s D 0;1; y x mx có iểm cực 2 C m D m C x D x 17 eln81 Câu 27: Cho kh i nón có thiết diện qua trục tam giác vuông cân ường sinh có ộ dài a Thể tích kh i nón a3 a3 a3 a3 A B C D 12 12 Câu 28: Khoảng cách iểm cực ại cực tiểu thị hàm s y A B C x3 3x D Câu 29: Hình nón có thiết diện qua trục tam giác cân có góc ỉnh 120o có cạnh bên a Diện tích xung quanh hình nón a2 a2 a2 A a B C D 2 Câu 30: Biết F x nguyên hàm f x x x F Tính F A ln B ln 2 C x2 Câu 31: Tính đạo hàm hàm số: y ln x x A y ' x 1 B y ' x x D ln 2 x C y ' x x D y ' x Câu 32: Thể tích tứ diện ABCD có mặt ABC BCD tam giác cạnh a a là: AD A 3a 3 16 B a3 16 C 3a 3 D a3 x Mệnh đề đúng? x ; A Hàm số nghịch biến khoảng Câu 33: Cho hàm số y B Hàm số đồng biến khoảng ;1 1; C Hàm số đồng biến khoảng ;1 nghịch biến khoảng 1; D Hàm số đồng biến khoảng ; Câu 34: Một xưởng sản xuất thùng kẽm hình hộp chữ nhật nắp có kích thước x, y , z dm Biết tỉ số hai cạnh đáy x : y 1: 3, thể tích hộp 18 lít Để tốn vật liệu kích thước thùng là: A x 2; y 6; z ;y C x ;z B x 1; y 3; z Câu 35: Tìm nguyên hàm hàm số: f x A f x dx C f x dx ;y D x ; z 24 sin 2x cos 2x C cos x C B f x dx D f x dx 2cos 2x C 2cos x C Câu 36: Tìm tất iểm thuộc trục hoành cách ều hai iểm cực trị thị hàm s y x3 3x 2 A M 1;0 B M 1; ,O 0; C M 2;0 D M 1;0 Câu 37: Trong mệnh ề sau, mệnh ề úng? 13 14 B e ln ln e e 3 15 C e ln ln e e D e ln ln e e Câu 38: Cho lăng trụ ứng ABC.A B C có cạnh a Thể tích kh i tứ diện ABA C là: A e ln ln e e A a3 B a3 C a3 Câu 39: Tìm tất giá trị nguyên tham s thực m ể hàm s ại x1 , iểm cực tiểu x2 x1 A m B m 1; x2 D y x a3 12 mx có iểm cực 2 C m D m Câu 40: Các giá trị thực tham s khoảng A m ể phương trình 12x m m 3x m có nghiệm thuộc 1; là: 17 ; 16 B m C m 2; ;6 D m 1; Câu 41: Tìm tất các iểm cực ại hàm s y x4 x A x B x C x D x 1 Câu 42: Trong không gian với hệ tọa ộ Oxyz , cho iểm A 1; 1;0 , B 0; 2;0 , C 2;1;3 Tọa ộ iểm M th a mãn MA MB MC A 3; 2; B 3; 2;3 C 3; 2; D 3; 2;3 ộ Oxyz cho A 2;0;2 , B 0;4;0 , C 0;0;6 , D 2;4;6 Câu 43: Trong không gian với hệ tọa Khoảng cách từ D ến mặt phẳng ABC A 24 B 16 C D 12 a Thể Câu 44: Cho tứ diện ABCD có mặt ABC, BCD tam giác ều cạnh a , AD tích tứ diện ABCD 3a 3 3a 3 a3 a3 A B C D 16 16 Câu 45: Trong không gian với hệ tọa ộ Oxyz, mặt phẳng P i qua iểm hình chiếu A 1;2;3 trục tọa ộ A x y 3z Câu 46: Cho biểu thức P A P x x B x x2 x x3 14 15 B P x y với x B x Câu 48: Cho hai mặt phẳng: phẳng R x C P x x 3x là: x2 C x y D x y 3z , Mệnh ề sau ây úng? 11 15 Câu 47: Tiệm cận ứng thị hàm s : y A y C x P : x y z 0, 13 15 D P x D x 16 15 Q : 3x y 12 z Phương trình mặt i qua g c tọa ộ O vuông góc với hai mặt phẳng nói A x y 3z B x y z C x y z Câu 49: Tìm tất tiệm cận ứng thị hàm s : y D 3x y z x2 x x3 1 A Đồ thị hàm s tiệm cận ứng B x C x D x Câu 50: Trong không gian với hệ tọa ộ Oxyz, cho hai iểm A 1;2;3 B 3;2;1 Phương trình mặt phẳng trung trực oạn thẳng AB là: A x y z B y z C z x D x y ĐÁP ÁN 10 B B B D C D A A A B 11 12 13 14 15 16 17 18 19 20 D A A C C B D C D C 21 22 23 24 25 26 27 28 29 30 B D C D B A B C D B 31 32 33 34 35 36 37 38 39 40 D B B A C D A D D A 41 42 43 44 45 46 47 48 49 50 A B A B C A C C A C HƯỚNG DẪN GIẢI Câu Đáp án B x t dt 4 t Đặt t x 4x I Câu f t dt 40 dx f x dx 40 Đáp án B hàm s giảm a x b Hàm s có cực trị Đồ thị cắt trục tung iểm có tung ộ âm Câu Đáp án B Đặt cạnh kh i lập phương a 3a AC V a3 8cm3 0,008 Đã sửa ề áp án Câu Đáp án D a c 4 x y ' x3 3x y x y ; A B 0;1 4 x 3 ; AB Câu Đáp án C Nhận xét Khi x 16 AB : y log a x giảm a y logb x, y logc x tăng Câu 64 Đáp án D Ta có y ' x b, c logb x log c x m x m Hàm s có hai cực trị y ' m 5 xCT Câu xCT m m xCD xCT m 25 m Đáp án A x2 2x Ta có f x f 4 f 5 Vậy f Câu m x m có hai nghiệm phân biệt m , xCD xCT xCT xCD m 6m x2 4m (luôn úng) Theo ịnh lí Viet ta có xCD Mà xCD b c f x2 2x 4 4 3,93368 3,804226 Đáp án A Dựng hình hộp chữ nhật BMAN.QEPF hình vẽ 4m 25 Ta có BM Khi ó VMNPQ BN R VBMAN QEPF VP AMN VN FQP VM QEP VQ.BMN 2R2h 2R2h 2R2h 2R2h 2R h 3 3 2 Câu 2 R h Đáp án A Do cạnh bên tạo với áy góc nên chân ường cao H hạ từ ỉnh S trùng với tâm ường tròn ngoại tiếp ABC Mà ABC vuông A nên trung iểm BC Trong mặt phẳng SAH dựng ường trung trực SA cắt SH I Khi ó I tâm mặt cầu ngoại tiếp hình chóp S ABC bán kính R SI Ta có AH BC Góc cạnh bên SA mặt áy ABC SAH Trong SAH có SH Ta có MSI AH tan600 3 SA 600 AH cos600 SA.MS HS Diện tích mặt cầu ngoại tiếp hình chóp S ABC S R2 HSA nên SI SA MS HS SI SI 48 Câu 10 Đáp án B Ta có MA.MA 4MB.MB MA 4MB MB Khi ó MA; MB phương MA Mà MA.MA 4MB.MB MA.MA 4MB.MB MA4 2MB MA 2MB Do MA 2MB MA; MB phương nên MA 2MB Gọi M x; y; z Ta có x MA 2MB x y z 2 z x y M 7; 4;1 y z Câu 11 Đáp án D x3 x x m x 2 x3 x x m x2 Pt nhận x nghiệm m 1 x x x x Với x 0;1 PT Xét f t m t t2 PT có nghiệm ; 2; m t t t2 t f t t3 có f t PT có nghiệm t 2; m Câu 12 Đáp án A +)TXD D , y 4x3 4x ; y x 0 x +) Lập BBT –∞ + – +∞ 0 + Vậy iểm cực ại hàm s xCD Câu 13 Đáp án A – t Khi quay tam giác AOB quanh trục Oy ta ược kh i nón tròn xoay có bán kính áy R OA ường cao h OB OA Thể tích kh i nón: V h.Sday 1 OA OA2 2.OA OA OA 3 81 ;0 ; B 0; 3 Dấu ạt A Câu 14 Đáp án C x t I t dt t2 Đặt u x2 du u I udu tdt Đổi cận: t ln u x2 u 1; t x2 1 x x u x2 ln x2 ln x2 BPT ã cho Câu 15 Đáp án C Thể tích ng nghiệm; V h R2 10 31,4cm3 Câu 16 Đáp án B Vì SAB SAD vuông góc với mặt phẳng áy nên : SA Góc SC mặt áy 600 ,nghĩa : SCA 600 AC.tan 600 Có : SA 32 S ABCD Vậy : VABCD 3 9.3 cm3 Câu 17 Đáp án D 1 x2 Tập xác ịnh : D 2x Có : y ' x y' x Có : y ln ln x R Lập bảng biến thiên x y' y Câu 18 Đáp án C + 0 - ABCD Hình chiếu A lên trục tọa ộ Ox, Oy, Oz M 1;0;0 , N 0;2;0 , P 0;0;3 Viết phương trình mp theo oạn chắn qua iểm M,N,P ta ược : x y Câu 19 Đáp án D Tập xác ịnh : D x y' m x Hàm s R ồng biến x y ' 0, x R m 0, x R x2 x m ; g x , x R x2 x2 x2 Có : g ' x x x2 1 x2 x2 0, x R x + g' x g x -1 giá trị cần tìm Dựa vào bảng biến thiên : m Câu 20 Đáp án C Đặt t 31 x t Phương trình trở thành : t 2 m t (*) Phương trình có nghiệm pb phương trình (*) có nghiệm dương pb ' m m 1 S m m m P m Câu 21 Đáp án B 1; 1;1 , Q có VTPT n1 P có VTPT n1 Ta có: n1, n2 10;15; 3; 2; 12 2; 3;1 Suy R có VTPT n Câu 22 Đáp án D Ta có: y 3x x y x 0 x Tọa ộ iểm cực trị là: A 0; , B 2; Suy ra: AB Câu 23 Đáp án C y x2 m x m Hàm s có cực ại, cực tiểu y có hai nghiệm phân biệt 2; 3;1 z m2 6m 25 0, m Do hàm bậc ba có hệ s a nên 2 m2 6m 25 xCT m2 6m 25 m xCT Do ó xC Ñ m2 6m 25 m xC Ñ m m Câu 24 Đáp án D Mặt cầu S có tâm I 1;1; Tọa ộ tâm ường tròn giao tuyến mặt phẳng Oyz với mặt cầu S hình chiếu I lên Oyz Suy ra: J 0;1; Câu 25 Đáp án B y x mx x 0 y x m Vậy không tồn m th a yêu cầu toán Câu 26 Đáp án A x x Phương trình tương ương với x 92 Câu 27 Đáp án B Thiết diện qua trục tam giác SAB vuông cân SS, cạnh SA a SA2 AB Khi ó: r SB a ; h 2 AB a a3 12 r h Thể tích kh i nón là: V SO a Câu 28 Đáp án C 3x2 x; y ;y D A x x Tọa ộ hai iểm cực trị A 0;0 , B 2; Suy ộ dài AB 20 S Câu 29 Đáp án D Thiết diện qua trục tam giác SAB cân S ; ASB 120o ; cạnh SA a r SA.sin ASO AO a sin 60o a Diện tích xung quanh hình nón: S xq a rl a2 a a O A Câu 30 Đáp án B Ta có f x dx F x 1 F F 0 F 1 f x dx F 0 Bấm máy tính, ta ược F 1,3466 Câu 31 Đáp án D x x 1 x x2 x y B O x x2 x2 x2 x x2 x x2 1 x2 x x dx B Câu 32 Đáp án B D Kẻ DH DH AM H BC Do BC BC Suy DH Do AM MD DH S VABCD nên ABC a nên AD a 3 2 DAM ều Suy DAM A C H 3a ABC DH M B a 3a 4 a3 16 Câu 33 Đáp án B \ ; y D x 0, D x ồng biến khoảng Suy hàm s ;1 1; Câu 34 Đáp án A xy xz yz ,với iều Diện tích mặt hình hộp chữ nhật (5 mặt, b nắp) S kiện x y xyz 18 x, y, z Từ iều kiện suy y 3x Khi ó, S 3x z 18 3x xyz xz xz 3x 8xz xz x 48 x 3x z x y x + S'(x) + S(x) 36 x3 48 x ; S x x2 Từ bảng biến thiên, suy Smin x S x Với x 6x 48 x2 2, ta ược y 6, z Cách khác: Cả b n áp án ều th a iều kiện * Thay áp án vào biểu thức S , ta ược Smin x Câu 35 Đáp án C 2, y 6, z cos x C sin xdx f x dx Câu 36: Đáp án A 3x x; y +, y x 0 x y ổi dấu x i qua nghiệm nên thị hàm s có hai iểm cực trị có tọa ộ là: A 0; , B 2; +, Gọi M m;0 thuộc trục Ox Do M cách ều A, B nên MA2 MB2 m Vậy M 1;0 Đáp án D Câu 37: Đáp án A Ta có e ln 2 ln e e e ln ln e 13 Sử dụng máy tính ược Câu 38: Đáp án D Ta có VC ABC CC S VB A B C BB S VABA C VABC A B C ABC VABC A B C A C VABC A B C ABC VC ABC VB A B C VABC A B C B a3 12 A' C' B' Câu 39: Đáp án D Ta có y x mx; y x x m Như hàm s có cực trị iểm cực trị th a mãn Vậy m Câu 40: Đáp án A Pt 12 x 4.3x 3x Xét hàm s Ta có f ' x Vậy hàm s x1 m 12 x 4.3x 3x 0, x f x ồng biến 1;0 Suy ể PT có nghiệm m Câu 41 Đáp án A f ; f Hay m 17 ; 16 1;1 x2 0 x 4x Ta có : y 4x x 1 x Kẻ bảng biến thiên Câu 42 Đáp án B MA MB MC iểm cực ại hàm s x xM xA xB xC yM yA yB yC zM zA zB zC Câu 43 Đáp án A Sử dụng phương trình chắn tọa ộ Ta có x y z ABC : x y z 12 6.2 3.4 2.6 12 24 d D, ABC 62 32 22 Câu 44 Đáp án B Gọi H trung iểm BC Có AH VABCD DH BC AH BC DH BC ADH a AD VB AHD VC AHD BH S AHD CH S AHD a 3a 16 CH S AHD Câu 45 Đáp án C Hình chiếu A lên trục D 1;0;0 , E 0;2;0 , F 0;0;3 Dùng phương trình chắn trục tọa ộ P : x y z Câu 46 Đáp án A Ta có P x2 x x3 3 x x x x2 x x 2x 14 x 15 a3 16 Câu 47 Đáp án C x 3x x2 y ( x 1)( x 2) ( x 1)( x 1) x x Câu 48 Đáp án C Véc tơ pháp tuyến mặt phẳng P là: n P 1; 1;1 Véc tơ pháp tuyến mặt phẳng Q là: n P 3; 2; 12 Vì R n P ,n Q n Q nên R có véctơ pháp tuyến là: P R 10;15;5 Phương trình mặt phẳng R Câu 49 Đáp án A x x (x (x x 1)(1 x x 1) x x 1) Câu 50 Đáp án C Gọi I trung iểm AB 1)(1 x lim x lim ( x2 x Mặt khác: lim y i qua g c tọa ộ O cần tìm : x y z Dế thấy lim y 0; lim y x 2;3;1 x 1) x( x 1) lim x ( x 1)( x x 1)(1 x2 x 1) I 2;2;2 Mặt phẳng trung trực oạn AB i qua iểm I nhận vectơ AB 2;0; vectơ pháp tuyến Phương trình mặt phẳng là: x 2 z x z ... D C D A A A B 11 12 13 14 15 16 17 18 19 20 D A A C C B D C D C 21 22 23 24 25 26 27 28 29 30 B D C D B A B C D B 31 32 33 34 35 36 37 38 39 40 D B B A C D A D D A 41 42 43 44 45 46 47 48 49 50... diện ABCD 3a 3 3a 3 a3 a3 A B C D 16 16 Câu 45: Trong không gian với hệ tọa ộ Oxyz, mặt phẳng P i qua iểm hình chiếu A 1;2 ;3 trục tọa ộ A x y 3z Câu 46: Cho biểu thức P A P x x B x x2 x x3 14 15... tứ diện ABCD có mặt ABC BCD tam giác cạnh a a là: AD A 3a 3 16 B a3 16 C 3a 3 D a3 x Mệnh đề đúng? x ; A Hàm số nghịch biến khoảng Câu 33 : Cho hàm số y B Hàm số đồng biến khoảng ;1 1; C Hàm số