1. Trang chủ
  2. » Giáo án - Bài giảng

Giá trị lớn nhất, nhỏ nhất của hàm số

2 7,2K 42
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 37,5 KB

Nội dung

Mục đích yêu cầu - Học sinh nắm đợc khái niệm giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên một khoảng và trên một đoạn.. Phân biệt hai khái niệm giá trị nhỏ nhất và cực tiểu, giá

Trang 1

Tiết thứ : 25 Bài soạn : giá trị lớn nhất và giá trị nhỏ nhất

của hàm số

Ngày soạn :

I Mục đích yêu cầu

- Học sinh nắm đợc khái niệm giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên một khoảng và trên một đoạn Phân biệt hai khái niệm giá trị nhỏ nhất và cực tiểu, giá trị lớn nhất và cực đại của hàm số Qua đó hiểu kỹ hơn khi kết luận một điểm

đạt cực trị hay giá trị max - min của hàm số

- H/s nắm đợc cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng và trên một đoạn thông qua các bớc tìm nó

II Lên lớp

1 ổn định tổ chức

Ngày dạy

2 Kiểm tra kiến thức đã học

- Nêu cách tìm cực trị theo hai qui tắc áp dụng tìm cực trị y = x3 - 5x2 - 13x + 5

3 Nội dung bài giảng

1 Định nghĩa

Cho hàm số y = f(x) xác định trên D

a) Số M gọi là GTLN của hàm số trên D nếu

xD : f(x) < M và x 0D : f(x 0 ) = M

Kí hiệu :

D

M max(fx)

b) Số m gọi là GTNN của hàm số trên D nếu

xD : f(x) > m và x 0D : f(x 0 ) = m

Kí hiệu :

D

m min(fx)

2 GTLN và GTNN của hàm số trên một khoảng

Cách giải :

B1:Lập bảng biến thiên của hàm số trên khoảng (a; b)

B2: Xác định giá trị cực trị của hàm số trên khoảng

(a ; b) ;

B3: Dựa vào bảng biến thên kết luận

Ví dụ : Cho y = x - 5 + 1/x ( x > 0) tìm minf(x) và

maxf(x) trên ( 0 ; +)

Giải : Xét hàm y = x - 5 + 1/x trên khaỏng (0 ; +)

ta có

2

2

y '

x

 = 0  x2 - 1 = 0x = 1 hoặc x = -1

Bảng biến thiên

x 0 1 +

y’ - 0 +

y

-3

Vậy hàm số đạt cực tiẻu tại x = 1 và đó cũng là giá

trị nhỏ nhất của hàm số

Ví dụ 2: Tìm cạnh của hình vuông bị cất sao cho

thể tích khối hộp lớn nhất

Gọi x là cạnh của hình vuông bị cắt : điều kiện của

- Thuyết trình + Gợi mở

- GTLN và GTNN so với giá trị cực trị có gì giống và khác nhau ?

- Trên một khoảng ( hay tập xác

định D) có mất điểm cực trị ? số cực trị phụ thuộc yếu tố nào ?

- Tìm GTLN và GTNN của hàm

số trên một khoảng cần phải làm

nh thế nào ?

- Gọi h/s nêu bảng biến thiên

- Kết luận thông qua bảng biến thiên giá trị nhỏ nhất của hàm số bằng bao nhiêu ?

- Gọi cạnh của hình vuông là x có thể xây dựng công thức thể tích của hình hộp khi cắt hình vuông không ?

Trang 2

x là : 0< x < a/2

Thể tích khối hộp là :

V(x) = x(a - 2x)2 Xét hàm V(x) trên (0 ; a/2)

V’(x) = 12x2 - 8ax + a2 = 0  x = a/6, x = a/2 (loại)

Lập bảng biến thiên kết luận : x = a/6 và thể tích

lớn nhất bằng 2a3/27

3 GTLN và GTNN của hàm số trên một đoạn

Cho y = f(x) xác định trên đoạn [a ; b]

Cách giải :

B1:Lập bảng biến thiên của hàm số trên đoạn [a; b]

B2: Xác định giá trị cực trị của hàm số trên đoạn

[a ; b] ;

B3:Tính giá trị f(a) và f(b)

B4: Dựa vào bảng biến thiên và f(a) và f(b) kết

luận GTLN và GTNN của hàm số

Ví dụ 3: Tìm giá trị LN và NN của hàm số :

y = 2x3 + 3x2 - 1 trên các đoạn

a) [-2 ; -1/2] ; b) [-1/2 ; 1] c) [1 ; 3)

Giải

Ta có f’(x) = 6x(x+1) = 0  x = 0 , x = -1 Vậy

các điểm tới hạn là x = -1 và x = 0

Bảng biến thiên

x -2 -1 -1/2 0 1 3

y’ + 0 - - 0 + +

y

a) -1  [-2 ; -1/2]: f(-2) = -5; f(-1) = 0; f(-1/2) =-1/2

Vậy maxf(x) = f(-1) = 0 và minf(x) = f(-2)= -5

b) maxf(x) = f(1) = 4 và minf(x) = f(0) = -1

c) Từ [1 ; 3) hàm số luôn đồng biến vậy chỉ có giá

trị nhỏ nhất tại x = 1, f(1) = 4, không tồn tại GTLN

vì f(x) không xét tại điểm x = 3 nên không xác định

đợc giá trị lớn nhất

- Điều kiện của biến x ?

- Xác định x để V(x) max?

- Nghiệm của V’(x) thoả mãn điều kiện gì ?

- Có thể cho trớc thể tích để cắt hình vuông đợc không ? Cần có

điều kiện gì của thể tích cho trớc ?

- Khoảng (a ; b) và đoạn [a ; b] có gì giống và khác nhau ?

- Khi tìm GTLN và GTNN của hàm số trên [a ; b] có cần phải khảo sát các điểm cực trị hay không ?

- Ngoài việc tìm cực trị có cần phải xác định thêm các giá trị nào của hàm số nữa không ?

- Nhân xét trên đoạn [-2 ; -1/2] hàm số có cực trị ? GTLN của hàm

số thể hiện trên bảng ?

- GTNN của hàm số trên đoạn này

đợc xác định trên hai đầu mút ?

- Gọi h/s nêu kết luận

4 Củng cố bài giảng

- Không lập bảng biến thiên coá thể chỉ ra GTLN hay GTNN của hàm số tren một khoảng hay đoạn không ?

- Giá trị LN và NN trên một khoảng và một đoạn về cách tìm có gì giống và khác nhau?

- Nếu hàm số đơn điệu trên (a ; b) thì có thể kết luận về GTLN hay GTNN của hàm

số trên khoảng (a ; b) không ? Tơng tự với đoạn [a ; b]

5 Dặn dò

Về nhà làm các bài tập SGK< 66>

Ngày đăng: 06/07/2013, 01:27

HÌNH ẢNH LIÊN QUAN

Bảng biến thiên - Giá trị lớn nhất, nhỏ nhất của hàm số
Bảng bi ến thiên (Trang 1)

TỪ KHÓA LIÊN QUAN

w