Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 31 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
31
Dung lượng
387,49 KB
Nội dung
Ma trn (toỏn hc) MC LC i Mc lc nh ngha 1.1 ln L s Ký hiu Cỏc phộp toỏn c bn 4.1 Phộp cng, nhõn mt s vi ma trn, v ma trn chuyn v 4.2 Nhõn ma trn 4.3 Phộp toỏn hng 4.4 Ma trn Phng trỡnh tuyn tớnh Bin i tuyn tớnh 7 Ma trn vuụng 7.1 Cỏc loi thng gp 7.1.1 Ma trn chộo v ma trn tam giỏc 7.1.2 Ma trn n v 7.1.3 Ma trn i xng hoc i xng lch 7.1.4 Ma trn kh nghch v nghch o ca nú 7.1.5 Ma trn xỏc nh 7.1.6 Ma trn trc giao 10 Cỏc tớnh toỏn ch yu 10 7.2.1 Vt 10 7.2.2 nh thc 10 7.2.3 Ma trn nghch o 12 7.2.4 Vect riờng v tr riờng 12 7.2 Khớa cnh tớnh toỏn 12 Phõn tớ ma trn 13 10 Khớa cnh i s tru tng v tng quỏt húa 14 10.1 Ma trn vi cỏc phn t m rng 14 10.2 Mi liờn h vi ỏnh x tuyn tớnh 15 10.3 Nhúm ma trn 15 10.4 Ma trn rng 16 11 ng dng 16 11.1 Lý thuyt th 16 11.2 Gii tớch v hỡnh hc 17 ii MC LC 11.3 Lý thuyt xỏc sut v thng kờ 18 11.4 i xng v cỏc bin i vt lý hc 19 11.5 T hp tuyn tớnh ca cỏc trng thỏi lng t 19 11.6 Dao ng riờng 20 11.7 ang hỡnh hc 20 11.8 in t hc 20 12 am kho 20 13 am kho 24 13.1 am kho v vt lý 26 13.2 am kho v lch s 26 14 Liờn kt ngoi 26 15 Ngun, ngi úng gúp, v giy phộp o bn v hỡnh nh 28 15.1 Vn bn 28 15.2 Hỡnh nh 28 15.3 Giy phộp ni dung 28 MC LC m-by-n matrix a2,1 a2,2 a2,3 a3,1 a3,2 a3,3 a1,3 a1,2 i c h a n g e s a1,1 m rows j changes n columns ai,j Mi phn t ca mt ma trn thng c ký hiu bng mt bin vi hai ch s di Vớ d, a2,1 biu din phn t hng th hai v ct th nht ca ma trn A Trong toỏn hc, ma trn l mt mng ch nht[1] cỏc s, ký hiu, hoc biu thc, sp xp theo hng v ct [2][3] m mi ma trn tuõn theo nhng quy tc nh trc Tng ụ ma trn c gi l cỏc phn t hoc mc Vớ d mt ma trn cú hng v ct [ 20 ] 13 Khi cỏc ma trn cú cựng kớch thc (chỳng cú cựng s hng v cựng s ct), thỡ cú th thc hin phộp cng hoc tr hai ma trn trờn cỏc phn t tng ng ca chỳng Tuy vy, quy tc ỏp dng cho phộp nhõn ma trn ch cú th thc hin c ma trn th nht cú s ct bng s hng ca ma trn th hai ng dng chớnh ca ma trn ú l phộp biu din cỏc bin i tuyn tớnh, tc l s tng quỏt húa hm tuyn tớnh nh f (x) = 4x Vớ d, phộp quay cỏc vect khụng gian ba chiu l mt phộp bin i tuyn tớnh m cú th biu din bng mt ma trn quay R: nu v l vect ct (ma trn ch cú mt ct) miờu t v trớ ca mt im khụng gian, tớch ca Rv l mt vec t ct miờu t v trớ ca im ú sau phộp quay ny Tớch ca hai ma trn bin i l mt ma trn biu din hp ca hai phộp bin i tuyn tớnh Mt ng dng khỏc ca ma trn ú l tỡm nghim ca cỏc h phng trỡnh tuyn tớnh Nu l ma trn vuụng, cú th thu c mt s tớnh cht ca nú bng cỏch tớnh nh thc ca nú Vớ d, ma trn vuụng l ma trn kh nghch nu v ch nu nh thc ca nú khỏc khụng an nim hỡnh hc ca mt phộp bin i tuyn tớnh l nhn c (cựng vi nhng thụng tin khỏc) t tr riờng v vec t riờng ca ma trn Cú th thy ng dng ca lý thuyt ma trn hu ht cỏc lnh vc khoa hc Trong mi nhỏnh ca vt lý hc, bao gm c hc c in, quang hc, in t hc, c hc lng t, v in ng lc hc lng t, chỳng c s dng nghiờn cu cỏc hin tng vt lý, nh chuyn ng ca vt rn Trong mỏy tớnh, ma trn c s dng chiu mt nh chiu lờn mn hỡnh chiu Trong lý thuyt xỏc sut v thng kờ, cỏc ma trn ngu 2 LCH S nhiờn c s dng miờu t hp cỏc xỏc sut; vớ d, chỳng dựng thut toỏn PageRank xp hng cỏc trang lnh tỡm kim ca Google.[4] Phộp tớnh ma trn tng quỏt húa cỏc khỏi nim gii tớch nh o hm v hm m i vi s chiu ln hn Mt nhỏnh chớnh ca gii tớch s dnh phỏt trin cỏc thut toỏn hu hiu cho cỏc tớnh toỏn ma trn, mt ch ó hng trm nm tui v l mt lnh vc nghiờn cu rng ngy Phng phỏp khai trin ma trn lm n gin húa cỏc tớnh toỏn c v mt lý thuyt ln thc hnh Nhng thut toỏn da trờn nhng cu trỳc ca cỏc ma trn c bit, nh ma trn tha (sparse) v ma trn gn chộo, giỳp gii quyt nhng tớnh toỏn phng phỏp phn t hu hn v nhng tớnh toỏn khỏc Ma trn vụ hn xut hin c hc thiờn th v lý thuyt nguyờn t Mt vớ d n gin v ma trn vụ hn l ma trn biu din cỏc toỏn t o hm, m tỏc dng n chui Taylor ca mt hm s nh ngha Ma trn l mt mng ch nht cha cỏc s hoc nhng i tng toỏn hc khỏc, m cú th nh ngha mt s phộp toỏn nh cng hoc nhõn trờn cỏc ma trn.[5] Hay gp nht ú l ma trn trờn mt trng F l mt mng ch nht cha cỏc i lng vụ hng ca F.[6][7] Bi vit ny cp n cỏc ma trn thc v phc, tc l cỏc ma trn m cỏc phn t ca nú l nhng s thc hoc s phc Nhng loi ma trn tng quỏt hn c tho lun bờn di Vớ d, ma trn thc: 1, 0, 5, A = 20, 9, 6, Cỏc s, ký hiu hay biu thc ma trn c gi l cỏc phn t ca nú Cỏc ng theo phng ngang hoc phng dc cha cỏc phn t ma trn c gi tng ng l hng v ct 1.1 ln ln hay c ca ma trn c nh ngha bng s lng hng v ct m ma trn cú Mt ma trn m hng v n ct c gi l ma trn m ì n hoc ma trn m-nhõn-n, m v n c gi l chiu ca nú Vớ d, ma trn A trờn l ma trn ì Ma trn ch cú mt hng gi l vect hng, v nhng ma trn ch cú mt ct gi l vect ct Ma trn cú cựng s hng v s ct c gi l ma trn vuụng Ma trn cú vụ hn s hng hoc s ct (hoc c hai) c gi l ma trn vụ hn Trong mt s trng hp, nh chng trỡnh i s mỏy tớnh, s cú ớch xột mt ma trn m khụng cú hng hoc khụng cú ct, goi l ma trn rng Lch s Ma trn cú mt lch s di v ng dng gii cỏc phng trỡnh tuyn tớnh nhng chỳng c bit n l cỏc mng cho ti tn nhng nm 1800 Cun sỏch Cu chng toỏn thut vit vo khong nm 152 TCN a phng trn gii h nm phng trỡnh tuyn tớnh,[8] bao gm khỏi nim v nh thc Nm 1545 nh toỏn hc ngi í Girolamo Cardano gii thiu phng phỏp gii ny vo chõu u ụng cụng b quyn Ars Magna.[9] Nh toỏn hc Nht Bn Seki ó s dng phng phỏp mng ny gii h phng trỡnh vo nm 1683.[10] Nh toỏn hc H Lan Jan de Wi ln u tiờn biu din cỏc bin i di dng ma trn mng cun sỏch vit nm 1659 Elements of Curves (1659).[11] Gia cỏc nm 1700 v 1710 Gofried Wilhelm Leibniz cụng b phng phỏp s dng cỏc mng ghi li thụng tin hay tỡm nghim v nghiờn cu trờn 50 loi ma trn khỏc nhau.[9] Cramer a quy tc ca ụng vo nm 1750 ut ng ting Anh matrix (ting Latin l womb, dn xut t materm[12] ) James Joseph Sylvester nờu vo nm 1850,[13] ụng nhn rng ma trn l mt i tng lm xut hin mt s nh thc m ngy gi l phn ph i s, tc l nh thc ca nhng ma trn nh hn thu c t ma trn ban u bng cỏch xúa i cỏc hng v cỏc ct Trong mt bi bỏo nm 1851, Sylvester gii thớch: Tụi ó nh ngha bi bỏo trc v Ma trn l mt mng ch nht cha cỏc phn t, m nhng nh thc khỏc cú th a nh thc ca ma trn m.[14] Arthur Cayley ng mt chuyờn lun v cỏc phộp bin i hỡnh hc s dng ma trn ngoi nhng phộp bin i quay ó c kho sỏt trc ú ay vo ú, ụng nh ngha cỏc phộp toỏn nh cng, tr, nhõn v chia nhng ma trn ny v chng t cỏc quy tc kt hp v phõn phi c tha Cayley ó nghiờn cu v minh chng tớnh cht khụng giao hoỏn ca phộp nhõn ma trn cng nh tớnh giao hoỏn ca phộp cng ma trn.[9] Lý thuyt ma trn s khai b gii hn cỏch s dng cỏc mng v tớnh nh thc v cỏc phộp toỏn ma trn tru tng ca Arthur Cayley ó lm nờn cuc cỏch mng cho lý thuyt ny ễng ỏp dng khỏi nim ma trn cho h phng trỡnh tuyn tớnh c lp Nm 1858 Cayley cụng b Hi ký v lý thuyt ma trn[15][16] ú ụng nờu v chng minh nh lý Cayley-Hamilton.[9] Nh toỏn hc ngi Anh Cullis l ngi u tiờn s dng ký hiu ngoc hin i cho ma trn vo nm 1913 v ụng cng vit ký hiu quan trng A = [a,] biu din mt ma trn vi a, l phn t hng th i v ct th j.[9] ỏ trỡnh nghiờn cu nh thc xut phỏt t mt s ngun khỏc nhau.[17] Cỏc bi toỏn s hc dn Gauss i ti liờn h cỏc h s ca dng ton phng, nhng a thc cú dng x + xy 2y , v ỏnh x tuyn tớnh khụng gian ba chiu vi ma trn Eisenstein ó phỏt trin xa hn cỏc khỏi nim ny, vi nhn xột theo cỏch phỏt biu hin i rng tớch ma trn l khụng giao hoỏn Cauchy l ngi u tiờn chng minh nhng mnh tng quỏt v nh thc, ụng s dng nh ngha nh sau v nh thc ca ma trn A = [a,]: thay th ly tha ak bng a a thc a1 a2 ã ã ã an (aj ) i m, v nu hng ca ma trn Jacobi t giỏ tr ln nht bng m, f l hm kh nghch ti im ú theo nh nh lý hm n.[94] 18 11 Ti im yờn nga (x = 0, y = 0) () ca hm f(x,y) = x2 y2 , ma trn Hess [ NG DNG ] l khụng xỏc nh Cỏc nh toỏn hc cú th phõn loi phng trỡnh o hm riờng bng cỏch xột ma trn cỏc h s ca nhng toỏn t vi phõn bc cao nht ca phng trỡnh i vi phng trỡnh o hm riờng eliptic ma trn ny xỏc nh dng v cú nh hng quyt nh n hp nghim kh d ca bi toỏn tỡm nghim phng trỡnh o hm riờng.[95] Phng phỏp phn t hu hn l mt phng phỏp s quan trng gii phng trỡnh o hm riờng, c ng dng rng rói vic mụ phng cỏc h thng thc phc hp Phng phỏp ny ỏnh giỏ xp x nghim ca phng trỡnh bng cỏch phõn chia phng trỡnh thnh cỏc hm tuyn tớnh, m nhng hm ny c chn li to mn, m t ú cú th vit phng trỡnh di dng phng trỡnh ma trn.[96] 11.3 Lý thuyt xỏc sut v thng kờ Ma trn quỏ trỡnh ngu nhiờn l nhng ma trn vuụng m cỏc hng ca nú l cỏc vect xỏc sut, tc l vect cú cỏc thnh phn khụng õm v tng ca chỳng bng Ma trn ngu nhiờn c s dng tỡm xớch Markov vi nhng trng thỏi hu hn.[97] Mt hng ca ma trn ngu nhiờn cho phõn b xỏc sut ca v trớ tip theo ca mt s ht trng thỏi tng ng vi hng ú Cỏc tớnh cht ca xớch Markov ging nh im hp dn (aractor), nhng im trng thỏi m cỏc ht cui cựng t ti, cú th c suy t nhng vect riờng ca ma trn chuyn tip.[98] Lý thuyt thng kờ cng ỏp dng ma trn nhiu dng khỏc nhau.[99] ng kờ mụ t cp ti hp d liu c mụ t, m chỳng c biu din bng cỏc ma trn d liu, sau ú cỏc nh thng kờ s dng nhng k thut thu gim s bin (dimensionality reduction kho sỏt cỏc ma trn ny Ma trn hip phng sai mó húa phng sai tng h ca cỏc bin ngu nhiờn.[100] Cỏc k thut khỏc s dng ma trn l bỡnh phng ti thiu, mt phng phỏp xp x hp hu hn nhng cp im (x , y ), (x , y ),, (xN , yN ), bng mt hm s tuyn tớnh y ax + b, i = 1,, N chỳng cú th c thit lp da trờn ngụn ng ca lý thuyt ma trn, 11.4 i xng v cỏc bin i vt lý hc 19 Hai xớch Markov khỏc [th th hin ] s ht[(trong tng ] s 1000) trng thỏi C hai giỏ tr gii hn c xỏc nh t 7 ma trn chuyn tip, ln lt l () v (en) .3 vi liờn h n k thut phõn tớch thnh tớch cỏc ma trn giỏ tr riờng c bit (singular value decomposition).[101] Ma trn ngu nhiờn l ma trn vi phn t l nhng s ngu nhiờn, phự hp cho nghiờn cu tớnh cht phõn b xỏc sut, nh l ma trn phõn b chun Ngoi lý thuyt xỏc sut, chỳng cũn c ỏp dng phm vi t lý thuyt s ti vt lý hc.[102][103] 11.4 i xng v cỏc bin i vt lý hc Cỏc bin i tuyn tớnh v nhng i xng i kốm úng vai trũ quan trng vt lý hin i Vớ d, cỏc ht c bn lý thuyt trng lng t c phõn loi nh nhng biu din ca nhúm Lorentz thuyt tng i hp v, c th hn, bi ng x ca chỳng di nhúm spin Nhng biu din tng minh bao gm ma trn Pauli v ma trn gamma tng quỏt hn l phn tớch phõn ca miờu t vt lý i vi fermion, m hot ng nh l spinor.[104] i vi ba loi quark nh nht, cú th biu din chỳng bng nhúm unita c bit SU(3); v cỏc nh vt lý s dng ma trn biu din thun tin gi l ma trn Gell-Mann tớnh toỏn liờn quan, ma trn ny cng c s dng cho nhúm chun SU(3) m nú tr thnh c s cho lý thuyt miờu t v tng tỏc mnh, sc ng lc hc lng t Ma trn CabibboKobayashiMaskawa, biu din trng thỏi c bn cỏc quark tham gia vo tng tỏc yu, nú khụng ging nh ma trn Gell-Mann, nhng cú liờn h tuyn tớnh vi trng thỏi c bn cỏc quark xỏc nh lờn ht t hp vi tớnh cht v lng c th.[105] 11.5 T hp tuyn tớnh ca cỏc trng thỏi lng t Mụ hỡnh u tiờn v c hc lng t (Heisenberg, 1925) biu din cỏc toỏn t ca lý thuyt bng cỏc ma trn vụ hn chiu tỏc dng lờn cỏc trng thỏi lng t.[106] Lý thuyt ny cũn c gi l c hc ma trn Mt vớ d c 20 12 THAM KHO th ú l ma trn mt c trng cho trng thỏi trn ca mt h lng t nh l t hp tuyn tớnh ca cỏc trng thỏi riờng thun tuý v c bn.[107] Vớ d khỏc v ma trn tr thnh cụng c quan trng cho miờu t cỏc thớ nghim tỏn x l hot ng trung tõm ca vt lý ht thc nghim: Nhng phn ng va chm xy cỏc mỏy gia tc, ni cỏc ht c cho va chm i u vo mt va chm nh, vi kt qu sau va chm sinh nhng ht mi, cú th c miờu t bng tớch vụ hng ca trng thỏi nhng ht hỡnh thnh vi t hp tuyn tớnh ca cỏc ht tham gia vo va chm T hp tuyn tớnh ny cho bi ma trn gi l ma trn S, nú cha mi thụng tin v cỏc tng tỏc kh d gia nhng ht tham gia vo va chm.[108] 11.6 Dao ng riờng ng dng ph bin ca ma trn vt lý hc l dựng miờu t h dao ng iu hũa tuyn tớnh Phng trỡnh chuyn ng ca nhng h ny cú th miờu t theo dng ma trn, vi ma trn lng nhõn vi mt vect ta s cho s hng ng hc, ma trn lc nhõn vi vect chuyn di v trớ s cho c trng ca tng tỏc Cỏch tt nht thu c nghim ca h phng trỡnh ú l xỏc nh cỏc vect riờng ca h, hay cỏc dao ng riờng, bng cỏch chộo húa phng trỡnh ma trn Cỏc k thut nh th ny l quan trng nghiờn nghiờn cu ni ng lc phõn t: cỏc dao ng bờn ca h cha cỏc nguyờn t thnh phn liờn kt vi nhau.[109] Chỳng cng cn thit miờu t dao ng c hc, dao ng mch in.[110] 11.7 Quang hỡnh hc ang hỡnh hc s dng cỏc ng dng ca ma trn nhiu hn Trong lý thuyt xp x ny, bn cht súng ca ỏnh sỏng c b qua Mụ hỡnh kt qu ú tia sỏng tr thnh tia hỡnh hc Nu s lch ca tia sỏng bi cỏc quang c l nh, tỏc dng ca mt thu kớnh hoc dng c phn x lờn mt tia sỏng cú th c biu din bng tớch ca mt vect hai thnh phn vi ma trn 2x2 gi l ma trn chuyn tip tia (ray transfer matrix): cỏc thnh phn ca vec t l dc ca tia sỏng v khong cỏch ca nú ti quang trc, ma trn mó húa cỏc tớnh cht ca quang c c s cú hai kiu ma trn, ú ma trn khỳc x miờu t s khỳc x ti b mt thu kớnh, v ma trn tnh tin miờu t s tnh tin ca mt phng tham chiu ti mt phng khỳc x k cn, ni mt ma trn khỳc x khỏc c ỏp dng ang h, bao gm t hp cỏc thu kớnh v cỏc dng c phn x, c miờu t n gin bng ma trn t tớch cỏc ma trn thnh phn.[111] 11.8 in t hc Phng phỏp phõn tớch dũng in vũng (mesh analysis) truyn thng in t hc dn ti vic tỡm nghim ca mt h phng trỡnh tuyn tớnh m cú th miờu t bng ma trn Hot ng ca nhiu linh kin in t c miờu t bng ma trn Nu A l mt vec t chiu vi cỏc thnh phn ca nú l in ỏp vo v v dũng vo i1 , gi B l mt vec t chiu vi cỏc thnh phn ca nú l in ỏp v v dũng i2 ỡ hot ng ca linh kin in t c miờu t bng phng trỡnh B = H A, vi H l ma trn x cha mt phn t tr khỏng (h12 ), v mt phn t dn (admitance) (h21 ) v hai i lng khụng th nguyờn (h11 v h22 ) Vic tớnh toỏn mch in thu v vic nhõn cỏc ma trn 12 Tham kho [1] hoc tng ng l bng [2] Anton (1987, tr 23) [3] Beauregard & Fraleigh (1973, tr 56) [4] K Bryan and T Leise e $25,000,000,000 eigenvector: e linear algebra behind Google SIAM Review, 48(3):569581, 2006 [5] Lang 2002 [6] Fraleigh (1976, tr 209) [7] Nering (1970, tr 37) 21 [8] Shen, Crossley & Lun 1999 cited by Bretscher 2005, p [9] Discrete Mathematics 4th Ed Dossey, Oo, Spense, Vanden Eynden, Published by Addison Wesley, ngy 10 thỏng 10 nm 2001 ISBN 978-0321079121 | p.564-565 [10] Needham, Joseph; Wang Ling (1959) Science and Civilisation in China III Cambridge: Cambridge University Press tr 117 ISBN 9780521058018 [11] Discrete Mathematics 4th Ed Dossey, Oo, Spense, Vanden Eynden, Published by Addison Wesley, ngy 10 thỏng 10 nm 2001 ISBN 978-0321079121 | p.564 [12] MerriamWebster dictionary, MerriamWebster, truy cp ngy 20 thỏng nm 2009 [13] Mc dự nhiu ngun cho rng J J Sylvester a thut ng matrix vo nm 1848, nhng Sylvester khụng cụng b ti liu no vo nm 1848 (V dn chng cho Sylvester khụng cụng b gỡ vo nm 1848, xem: J J Sylvester v H F Baker, ed., e Collected Mathematical Papers of James Joseph Sylvester (Cambridge, England: Cambridge University Press, 1904), vol 1.) Nm u tiờn m ụng s dng matrix xut hin vo nm 1850: J J Sylvester (1850) Additions to the articles in the September number of this journal, On a new class of theorems, and on Pascals theorem, e London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 37: 363-370 From page 369: For this purpose we must commence, not with a square, but with an oblong arrangement of terms consisting, suppose, of m lines and n columns is will not in itself represent a determinant, but is, as it were, a Matrix out of which we may form various systems of determinants " [14] e Collected Mathematical Papers of James Joseph Sylvester: 18371853, Paper 37, p 247 [15] Phil.Trans 1858, vol.148, pp.17-37 Math Papers II 475-496 [16] Dieudonnộ, ed 1978, Vol 1, Ch III, p 96 [17] Knobloch 1994 [18] Hawkins 1975 [19] Kronecker 1897 [20] Weierstrass 1915, pp 271286 [21] Bụcher 2004 [22] Mehra & Rechenberg 1987 [23] Oualline 2003, Ch [24] How to organize, add and multiply matrices - Bill Shillito TED ED Truy cp ngy thỏng nm 2015 [25] Brown 1991, Denition I.2.1 (addition), Denition I.2.4 (scalar multiplication), and Denition I.2.33 (transpose) [26] Brown 1991, eorem I.2.6 [27] Brown 1991, Denition I.2.20 [28] Brown 1991, eorem I.2.24 [29] Horn & Johnson 1985, Ch and [30] Bronson (1970, tr 16) [31] Kreyszig (1972, tr 220) [32] Proer & Morrey (1970, tr 869) [33] Kreyszig (1972, tr 241,244) [34] Schneider, Hans; Barker, George Phillip (2012), Matrices and Linear Algebra, Dover Books on Mathematics, Courier Dover Corporation, tr 251, ISBN 9780486139302 [35] Perlis, Sam (1991), eory of Matrices, Dover books on advanced mathematics, Courier Dover Corporation, tr 103, ISBN 9780486668109 [36] Anton, Howard (414), Elementary Linear Algebra (n bn 10), John Wiley & Sons, ISBN 9780470458211 22 12 THAM KHO [37] Horn, Roger A.; Johnson, Charles R (2012), Matrix Analysis (n bn 2), Cambridge University Press, tr 17, ISBN 9780521839402 [38] Brown 1991, I.2.21 and 22 [39] Greub 1975, Section III.2 [40] Brown 1991, Denition II.3.3 [41] Greub 1975, Section III.1 [42] Brown 1991, eorem II.3.22 [43] Horn & Johnson 1985, eorem 2.5.6 [44] Brown 1991, Denition I.2.28 [45] Brown 1991, Denition I.5.13 [46] Horn & Johnson 1985, Chapter [47] Horn & Johnson 1985, eorem 7.2.1 [48] Horn & Johnson 1985, Example 4.0.6, p 169 [49] Brown 1991, Denition III.2.1 [50] Brown 1991, eorem III.2.12 [51] Brown 1991, Corollary III.2.16 [52] Mirsky 1990, eorem 1.4.1 [53] Brown 1991, eorem III.3.18 [54] Brown 1991, Denition III.4.1 [55] Brown 1991, Denition III.4.9 [56] Brown 1991, Corollary III.4.10 [57] Householder 1975, Ch [58] Bau III & Trefethen 1997 [59] Golub & Van Loan 1996, Algorithm 1.3.1 [60] Golub & Van Loan 1996, Chapters and 10, esp section 10.2 [61] Golub & Van Loan 1996, Chapter 2.3 [62] Vớ d, Mathematica, xem Wolfram 2003, Ch 3.7 [63] Press, Flannery & Teukolsky 1992 [64] Stoer & Bulirsch 2002, Section 4.1 [65] Horn & Johnson 1985, eorem 2.5.4 [66] Horn & Johnson 1985, Ch 3.1, 3.2 [67] Arnold & Cooke 1992, Sections 14.5, 7, [68] Bronson 1989, Ch 15 [69] Coburn 1955, Ch V [70] Lang 2002, Chapter XIII [71] Lang 2002, XVII.1, p 643 [72] Lang 2002, Proposition XIII.4.16 [73] Reichl 2004, Section L.2 23 [74] Greub 1975, Section III.3 [75] Greub 1975, Section III.3.13 [76] Xem cỏc giỏo trỡnh c s v lý thuyt nhúm [77] Baker 2003, Def 1.30 [78] Baker 2003, eorem 1.2 [79] Artin 1991, Chapter 4.5 [80] Rowen 2008, Example 19.2, p 198 [81] Xem cỏc giỏo trỡnh v lý thuyt biu din hoc biu din nhúm [82] Empty Matrix: A matrix is empty if either its row or column dimension is zero, Glossary, O-Matrix v6 User Guide [83] A matrix having at least one dimension equal to zero is called an empty matrix, MATLAB Data Structures [84] Fudenberg & Tirole 1983, Section 1.1.1 [85] Manning 1999, Section 15.3.4 [86] Ward 1997, Ch 2.8 [87] Stinson 2005, Ch 1.1.5 and 1.2.4 [88] Association for Computing Machinery 1979, Ch [89] Godsil & Royle 2004, Ch 8.1 [90] Punnen 2002 [91] Lang 1987a, Ch XVI.6 [92] Nocedal 2006, Ch 16 [93] Lang 1987a, Ch XVI.1 [94] Lang 1987a, Ch XVI.5 Xem bi vit chi tit, v nhng phỏt biu tng quỏt xem Lang 1969, Ch VI.2 [95] Gilbarg & Trudinger 2001 [96] olin 2005, Ch 2.5 [97] Latouche & Ramaswami 1999 [98] Mehata & Srinivasan 1978, Ch 2.8 [99] Healy, Michael (1986), Matrices for Statistics, Oxford University Press, ISBN 978-0-19-850702-4 [100] Krzanowski 1988, Ch 2.2., p 60 [101] Krzanowski 1988, Ch 4.1 [102] Conrey 2007 [103] Zabrodin, Brezin & Kazakov et al 2006 [104] Itzykson & Zuber 1980, Ch [105] see Burgess & Moore 2007, section 1.6.3 (SU(3)), section 2.4.3.2 (KobayashiMaskawa matrix) [106] Schi 1968, Ch [107] Bohm 2001, sections II.4 and II.8 [108] Weinberg 1995, Ch [109] Wherre 1987, part II [110] Riley, Hobson & Bence 1997, 7.17 [111] Guenther 1990, Ch [1] Eigen cú ngha l riờng ting c v ting H Lan [2] Ngoi ra, nhúm ũi hi hp v phộp toỏn phi úng i vi nhúm tuyn tớnh tng quỏt 24 13 13 THAM KHO Tham kho Anton, Howard (1987), Elementary Linear Algebra (n bn 5), New York: John Wiley & Sons, ISBN 0-47184819-0 Arnold, Vladimir I.; Cooke, Roger (1992), Ordinary dierential equations, Berlin, DE; New York, NY: SpringerVerlag, ISBN 978-3-540-54813-3 Artin, Michael (1991), Algebra, Prentice Hall, ISBN 978-0-89871-510-1 Association for Computing Machinery (1979), Computer Graphics, Tata McGrawHill, ISBN 978-0-07059376-3 Baker, Andrew J (2003), Matrix Groups: An Introduction to Lie Group eory, Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-1-85233-470-3 Bau III, David; Trefethen, Lloyd N (1997), Numerical linear algebra, Philadelphia, PA: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-361-9 Beauregard, Raymond A.; Fraleigh, John B (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Miin Co., ISBN 0-395-14017-X Bretscher, Oo (2005), Linear Algebra with Applications (n bn 3), Prentice Hall Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490 Bronson, Richard (1989), Schaums outline of theory and problems of matrix operations, New York: McGraw Hill, ISBN 978-0-07-007978-6 Brown, William C (1991), Matrices and vector spaces, New York, NY: Marcel Dekker, ISBN 978-0-82478419-5 Coburn, Nathaniel (1955), Vector and tensor analysis, New York, NY: Macmillan, OCLC 1029828 Conrey, J Brian (2007), Ranks of elliptic curves and random matrix theory, Cambridge University Press, ISBN 978-0-521-69964-8 Fraleigh, John B (1976), A First Course In Abstract Algebra (n bn 2), Reading: Addison-Wesley, ISBN 0-201-01984-1 Fudenberg, Drew; Tirole, Jean (1983), Game eory, MIT Press Gilbarg, David; Trudinger, Neil S (2001), Elliptic partial dierential equations of second order (n bn 2), Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-3-540-41160-4 Godsil, Chris; Royle, Gordon (2004), Algebraic Graph eory, Graduate Texts in Mathematics 207, Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-95220-8 Golub, Gene H.; Van Loan, Charles F (1996), Matrix Computations (n bn 3), Johns Hopkins, ISBN 978-08018-5414-9 Greub, Werner Hildbert (1975), Linear algebra, Graduate Texts in Mathematics, Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-90110-7 Halmos, Paul Richard (1982), A Hilbert space problem book, Graduate Texts in Mathematics 19 (n bn 2), Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-90685-0, MR 675952 Horn, Roger A.; Johnson, Charles R (1985), Matrix Analysis, Cambridge University Press, ISBN 978-0-52138632-6 Householder, Alston S (1975), e theory of matrices in numerical analysis, New York, NY: Dover Publications, MR 0378371 Kreyszig, Erwin (1972), Advanced Engineering Mathematics (n bn 3), New York: John Wiley & Sons, ISBN 0-471-50728-8 25 Krzanowski, Wojtek J (1988), Principles of multivariate analysis, Oxford Statistical Science Series 3, e Clarendon Press Oxford University Press, ISBN 978-0-19-852211-9, MR 969370 Itừ, Kiyosi biờn (1987), Encyclopedic dictionary of mathematics Vol I-IV (n bn 2), MIT Press, ISBN 978-0-262-09026-1, MR 901762 Lang, Serge (1969), Analysis II, Addison-Wesley Lang, Serge (28 thỏng nm 1987), Calculus of several variables (n bn 3), Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-96405-8 Lang, Serge (28 thỏng nm 1987), Linear algebra, Berlin, DE; New York, NY: Springer-Verlag, ISBN 9780-387-96412-6 * Lang, Serge (2002), Algebra, Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-95385-4 Latouche, Guy; Ramaswami, Vaidyanathan (1999), Introduction to matrix analytic methods in stochastic modeling (n bn 1), Philadelphia, PA: Society for Industrial and Applied Mathematics, ISBN 978-0-89871425-8 Manning, Christopher D.; Schỹtze, Hinrich (1999), Foundations of statistical natural language processing, MIT Press, ISBN 978-0-262-13360-9 Mehata, K M.; Srinivasan, S K (1978), Stochastic processes, New York, NY: McGrawHill, ISBN 978-0-07096612-3 Mirsky, Leonid (1990), An Introduction to Linear Algebra, Courier Dover Publications, ISBN 978-0-48666434-7 Nering, Evar D (1970), Linear Algebra and Matrix eory (n bn 2), New York: John Wiley & Sons, LCCN 76-91646 Nocedal, Jorge; Wright, Stephen J (2006), Numerical Optimization (n bn 2), Berlin, DE; New York, NY: Springer-Verlag, tr 449, ISBN 978-0-387-30303-1 Oualline, Steve (2003), Practical C++ programming, O'Reilly Media, ISBN 978-0-596-00419-4 Press, William H.; Flannery, Brian P.; Teukolsky, Saul A.; Veerling, William T (1992), LU Decomposition and Its Applications, Numerical Recipes in FORTRAN: e Art of Scientic Computing (PDF) (n bn 2), Cambridge University Press, tr 3442 Proer, Murray H.; Morrey, Jr., Charles B (1970), College Calculus with Analytic Geometry (n bn 2), Reading: Addison-Wesley, LCCN 76087042 Punnen, Abraham P.; Gutin, Gregory (2002), e traveling salesman problem and its variations, Boston, MA: Kluwer Academic Publishers, ISBN 978-1-4020-0664-7 Reichl, Linda E (2004), e transition to chaos: conservative classical systems and quantum manifestations, Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-98788-0 Rowen, Louis Halle (2008), Graduate Algebra: noncommutative view, Providence, RI: American Mathematical Society, ISBN 978-0-8218-4153-2 olin, Pavel (2005), Partial Dierential Equations and the Finite Element Method, Wiley-Interscience, ISBN 978-0-471-76409-0 Stinson, Douglas R (2005), Cryptography, Discrete Mathematics and its Applications, Chapman & Hall/CRC, ISBN 978-1-58488-508-5 Stoer, Josef; Bulirsch, Roland (2002), Introduction to Numerical Analysis (n bn 3), Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-95452-3 Ward, J P (1997), aternions and Cayley numbers, Mathematics and its Applications 403, Dordrecht, NL: Kluwer Academic Publishers Group, ISBN 978-0-7923-4513-8, MR 1458894 Wolfram, Stephen (2003), e Mathematica Book (n bn 5), Champaign, IL: Wolfram Media, ISBN 978-157955-022-6 26 14 LIấN KT NGOI 13.1 Tham kho v vt lý Bohm, Arno (2001), antum Mechanics: Foundations and Applications, Springer, ISBN 0-387-95330-2 Burgess, Cli; Moore, Guy (2007), e Standard Model A Primer, Cambridge University Press, ISBN 0-52186036-9 Guenther, Robert D (1990), Modern Optics, John Wiley, ISBN 0-471-60538-7 Itzykson, Claude; Zuber, Jean-Bernard (1980), antum Field eory, McGrawHill, ISBN 0-07-032071-3 Riley, Kenneth F.; Hobson, Michael P.; Bence, Stephen J (1997), Mathematical methods for physics and engineering, Cambridge University Press, ISBN 0-521-55506-X Schi, Leonard I (1968), antum Mechanics (n bn 3), McGrawHill Weinberg, Steven (1995), e antum eory of Fields Volume I: Foundations, Cambridge University Press, ISBN 0-521-55001-7 Wherre, Brian S (1987), Group eory for Atoms, Molecules and Solids, PrenticeHall International, ISBN 0-13-365461-3 Zabrodin, Anton; Brezin, ẫdouard; Kazakov, Vladimir; Serban, Didina; Wiegmann, Paul (2006), Applications of Random Matrices in Physics (NATO Science Series II: Mathematics, Physics and Chemistry), Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-1-4020-4530-1 13.2 Tham kho v lch s A Cayley A memoir on the theory of matrices Phil Trans 148 1858 17-37; Math Papers II 475-496 Bụcher, Maxime (2004), Introduction to higher algebra, New York, NY: Dover Publications, ISBN 978-0-48649570-5, reprint of the 1907 original edition Cayley, Arthur (1889), e collected mathematical papers of Arthur Cayley, I (18411853), Cambridge University Press, tr 123126 Dieudonnộ, Jean biờn (1978), Abrộgộ d'histoire des mathộmatiques 1700-1900, Paris, FR: Hermann Hawkins, omas (1975), Cauchy and the spectral theory of matrices, Historia Mathematica 2: 129, ISSN 0315-0860, MR 0469635, doi:10.1016/0315-0860(75)90032-4 Knobloch, Eberhard (1994), From Gauss to Weierstrass: determinant theory and its historical evaluations, e intersection of history and mathematics, Science Networks Historical Studies 15, Basel, Boston, Berlin: Birkhọuser, tr 5166, MR 1308079 Kronecker, Leopold (1897), Hensel, Kurt, biờn tp, Leopold Kroneckers Werke, Teubner Mehra, Jagdish; Rechenberg, Helmut (1987), e Historical Development of antum eory (n bn 1), Berlin, DE; New York, NY: Springer-Verlag, ISBN 978-0-387-96284-9 Shen, Kangshen; Crossley, John N.; Lun, Anthony Wah-Cheung (1999), Nine Chapters of the Mathematical Art, Companion and Commentary (n bn 2), Oxford University Press, ISBN 978-0-19-853936-0 Weierstrass, Karl (1915), Collected works 14 Liờn kt ngoi Bỏch khoa ton th Hazewinkel, Michiel biờn (2001), Matrix, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608010-4 27 Lch s MacTutor: Matrices and determinants Matrices and Linear Algebra on the Earliest Uses Pages Earliest Uses of Symbols for Matrices and Vectors Sỏch trc tuyn Kaw, Autar K., Introduction to Matrix Algebra, ISBN 978-0-615-25126-4 e Matrix Cookbook (PDF), truy cp ngy 24 thỏng nm 2014 Brookes, Mike (2005), e Matrix Reference Manual, London: Imperial College, truy cp ngy 10 thỏng 12 nm 2008 Phn mm tớnh ma trn trc tuyn SimplyMath (Matrix Calculator) Matrix Calculator (DotNumerics) Xiao, Gang, Matrix calculator, truy cp ngy 10 thỏng 12 nm 2008 Online matrix calculator, truy cp ngy 10 thỏng 12 nm 2008 Online matrix calculator (ZK framework), truy cp ngy 26 thỏng 11 nm 2009 Oehlert, Gary W.; Bingham, Christopher, MacAnova, University of Minnesota, School of Statistics, truy cp ngy 10 thỏng 12 nm 2008, a freeware package for matrix algebra and statistics Online matrix calculator, truy cp ngy 14 thỏng 12 nm 2009 Operation with matrices in R (determinant, track, inverse, adjoint, transpose) 28 15 NGUN, NGI ểNG GểP, V GIY PHẫP CHO VN BN V HèNH NH 15 Ngun, ngi úng gúp, v giy phộp cho bn v hỡnh nh 15.1 Vn bn Ma trn (toỏn hc) Ngun: https://vi.wikipedia.org/wiki/Ma_tr%E1%BA%ADn_(to%C3%A1n_h%E1%BB%8Dc)?oldid=25950522 Ngi úng gúp: Mxn, Mekong Bluesman, Vng Ngõn H, Trung, Chobot, YurikBot, Casablanca1911, Newone, DHN-bot, Ctmt, Viethavvh, JAnDbot, ijs!bot, Hong Cm, Haonhien, VolkovBot, TXiKiBoT, AlleborgoBot, SieBot, TVT-bot, Loveless, DragonBot, Tiepdinhvan, Qbot, BodhisavaBot, Nallimbot, Luckas-bot, Eternal Dragon, ArthurBot, Xqbot, Almabot, TobeBot, D'ohBot, Earthandmoon, Tnt1984, Namnguyenvn, TuHan-Bot, EmausBot, SweetLoveFC, RedBot, WikitanvirBot, Ripchip Bot, Movses-bot, Cheers!-bot, MerlIwBot, TuanUt, Alphama, AlphamaBot, Addbot, OctraBot, Aokiji, Khatrungan, itxongkhoiAWB, Tuanminh01, TuanminhBot, ẫn bc AWB, Knight167, Xixaxixup v 40 ngi vụ danh 15.2 Hỡnh nh Tp_tin:Area_parallellogram_as_determinant.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/a/ad/Area_parallellogram_ as_determinant.svg Giy phộp: Public domain Ngi úng gúp: Own work, created with Inkscape Ngh s u tiờn: Jitse Niesen Tp_tin:Commons-logo.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/4/4a/Commons-logo.svg Giy phộp: Public domain Ngi úng gúp: is version created by Pumbaa, using a proper partial circle and SVG geometry features (Former versions used to be slightly warped.) Ngh s u tiờn: SVG version was created by User:Grunt and cleaned up by 3247, based on the earlier PNG version, created by Reidab Tp_tin:Determinant_example.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/a/a7/Determinant_example.svg Giy phộp: CC BY-SA 3.0 Ngi úng gúp: Tỏc phm chớnh ngi ti lờn to Ngh s u tiờn: Krishnavedala Tp_tin:Ellipse_in_coordinate_system_with_semi-axes_labelled.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/8/ 8e/Ellipse_in_coordinate_system_with_semi-axes_labelled.svg Giy phộp: CC BY-SA 3.0 Ngi úng gúp: Tỏc phm chớnh ngi ti lờn to Ngh s u tiờn: Jakob.scholbach Tp_tin:Flip_map.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/3/3f/Flip_map.svg Giy phộp: CC BY-SA 3.0 Ngi úng gúp: derived from File:Rotation_by_pi_over_6.svg Ngh s u tiờn: Jakob.scholbach Tp_tin:Hyperbola2_SVG.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/d/d9/Hyperbola2_SVG.svg Giy phộp: CC BY-SA 3.0 Ngi úng gúp: Tỏc phm chớnh ngi ti lờn to Ngh s u tiờn: IkamusumeFan Tp_tin:Jordan_blocks.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/4/4f/Jordan_blocks.svg Giy phộp: CC BY-SA 3.0 Ngi úng gúp: Tỏc phm chớnh ngi ti lờn to Ngh s u tiờn: Jakob.scholbach Tp_tin:Labelled_undirected_graph.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/a/a5/Labelled_undirected_graph svg Giy phộp: CC BY-SA 3.0 Ngi úng gúp: derived from http://en.wikipedia.org/wiki/File:6n-graph2.svg Ngh s u tiờn: Jakob.scholbach Tp_tin:Markov_chain_SVG.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/2/29/Markov_chain_SVG.svg Giy phộp: CC BY-SA 3.0 Ngi úng gúp: Tỏc phm chớnh ngi ti lờn to Ngh s u tiờn: IkamusumeFan Tp_tin:Matrix.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/b/bb/Matrix.svg Giy phộp: GFDL Ngi úng gúp: Tỏc phm chớnh ngi ti lờn to Ngh s u tiờn: Lakeworks Tp_tin:Matrix_multiplication_diagram_2.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/e/eb/Matrix_multiplication_ diagram_2.svg Giy phộp: CC-BY-SA-3.0 Ngi úng gúp: L nh phỏi sinh t: Matrix multiplication diagram.svg Ngh s u tiờn: File:Matrix multiplication diagram.svg:User:Bilou Tp_tin:Nuvola_apps_kaboodle.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/1/1b/Nuvola_apps_kaboodle.svg Giy phộp: LGPL Ngi úng gúp: http://ftp.gnome.org/pub/GNOME/sources/gnome-themes-extras/0.9/gnome-themes-extras-0.9.0.tar.gz Ngh s u tiờn: David Vignoni / ICON KING Tp_tin:Rotation_by_pi_over_6.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/8/8e/Rotation_by_pi_over_6.svg Giy phộp: Public domain Ngi úng gúp: Own work using Inkscape Ngh s u tiờn: RobHar Tp_tin:Saddle_Point_SVG.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/0/0d/Saddle_Point_SVG.svg Giy phộp: CC BY-SA 3.0 Ngi úng gúp: Tỏc phm chớnh ngi ti lờn to Ngh s u tiờn: IkamusumeFan Tp_tin:Scaling_by_1.5.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/c/c7/Scaling_by_1.5.svg Giy phộp: Public domain Ngi úng gúp: Own work using Inkscape Ngh s u tiờn: RobHar Tp_tin:Squeeze_r=1.5.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/6/67/Squeeze_r%3D1.5.svg Giy phộp: Public domain Ngi úng gúp: Tỏc phm chớnh ngi ti lờn to Ngh s u tiờn: RobHar Tp_tin:VerticalShear_m=1.25.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/9/92/VerticalShear_m%3D1.25.svg Giy phộp: Public domain Ngi úng gúp: Own work using Inkscape Ngh s u tiờn: RobHar 15.3 Giy phộp ni dung Creative Commons Aribution-Share Alike 3.0 ... tớch ma trn AB ca hai ma trn A v B Phộp nhõn hai ma trn c xỏc nh v ch s ct ca ma trn bờn trỏi bng s hng ca ma trn bờn phi Nu A l mt ma trn m-x-n v B l mt ma trn n-x-p, thỡ ma trn tớch AB l ma trn... ln hay c ca ma trn c nh ngha bng s lng hng v ct m ma trn cú Mt ma trn m hng v n ct c gi l ma trn m ì n hoc ma trn m-nhõn-n, m v n c gi l chiu ca nú Vớ d, ma trn A trờn l ma trn ì Ma trn ch cú... hp c bit ca ma trn chộo Nú l ma trn n v bi vỡ thc hin nhõn mt ma trn vi nú thỡ thu c ma trn ú: AI = IA = A vi ma trn A bt k mxn 7.1.3 Ma trn i xng hoc i xng lch Ma trn vuụng A bng vi ma trn chuyn