1. Trang chủ
  2. » Giáo Dục - Đào Tạo

công thuc toan hoc

26 888 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 218,93 KB

Nội dung

mẹo học công thức toán học

cụng thuc toan' hoc toan hoc MC LC i Mc lc 3.9 S hc 1.1 Ghi S ng thc lng giỏc nghch o 3.10 ng thc Tớch vụ hn 3.11 Tớch Phõn 3.12 S Phc i S 3.13 ng thc lng giỏc 2.1 S i s 3.13.1 ng thc lng giỏc c bn 2.2 Phộp Toỏn i S 2.3 Toỏn S Nguyờn 3.13.2 ng thc lng giỏc Tun hon, i xng v tnh tin 2.4 Toỏn Phõn S 3.13.3 ng thc Pytago 2.5 Toỏn S Phc 3.13.4 ng thc Tng v hiu ca gúc 2.6 Toỏn Ly tha 3.13.5 Cụng thc h bc 2.7 Toỏn Cn 3.13.6 Cụng thc gúc chia ụi 2.8 Toỏn Log 3.13.7 ng thc Bin tớch thnh tng 2.9 Hm s 3.13.8 ng thc lng giỏc nghch o 3.13.9 ng thc Dng s phc 10 Lng Giỏc 3.13.10 ng thc Tớch vụ hn 10 3.1 Gúc 3.13.11 ng thc Gii tớch 10 3.2 Cỏc hm s lng giỏc c bn 3.13.12 ng thc ng Dựng 10 3.3 Phộp Toỏn Lng Giỏc 3.13.13 ng thc gúc bi 11 3.3.1 ng thc lng giỏc c bn 3.13.14 Cỏc Hm lng giỏc nghch o 11 3.3.2 ng thc lng giỏc Tun hon, i xng v tnh tin Gii Tớ 11 3.3.3 ng thc Pytago 4.1 Phộp Toỏn Gii Tớch 11 3.3.4 ng thc Tng v hiu ca gúc 4.2 Toỏn o hm 11 Cụng thc h bc 4.2.1 Cụng c Toỏn o Hm 11 3.4.1 ng thc Bin tớch thnh tng 4.2.2 Hoỏn Chuyn o Hm 12 3.4.2 ng thc lng giỏc nghch o 3.4.3 ng thc Tớch vụ hn 3.4.4 ng thc Gii tớch 3.4.5 o Hm Lng Giỏc C Bn 3.4.6 Tng Hai Gúc 3.4.7 Hiu Hai Gúc 3.4.8 Tng Hai Hm 3.4.9 Hiu Hai Hm 3.4.10 ng thc gúc bi Cỏc Hm lng giỏc nghch o 3.5.1 Chui S 3.5.2 Tớch Phõn 3.5.3 S Phc 3.6 Cụng thc h bc 3.7 Cụng thc gúc chia ụi 3.8 ng thc Bin tớch thnh tng 3.4 3.5 Phộp Toỏn Tớ Phõn 5.0.3 Cụng thc tớch phõn 12 12 Ngun, ngi úng gúp, v giy phộp o bn v hỡnh nh 25 6.1 Vn bn 25 6.2 Hỡnh nh 25 6.3 Giy phộp ni dung 25 2.4 Toỏn Phõn S S hc 1.1 Ghi S S hc l mụn hc v s v cỏc phộp tớnh v s S l cỏch thc ngi ghi li s lng cỏc i tng nh cụng c sn xut, sỳc vt chn nuụi Cỏc dõn tc khỏc cú cỏch kớ hiu khỏc , mi kớ hiu thng c gi l mt ch s, hay mt s, ngy thng c gi l ký s Ngi ta ghộp cỏc ch s khỏc vo theo nhng quy c nht nh to thnh cỏc s Ngy cũn li ph bin l cỏch ghi s ca: Ngi Arp gi l S Rp (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), 2.4 Toỏn Phõn S 1/ ab = b a a b +c= a+bc b a b c= abc b a b ìc= ac b a b /c ab c = c + a b = a+bc b c a b = abc b c ì a b = ac b c/ ab = bc a Ngi La-mó c gi l S La Mó (I, V, X, L, C, D, M), 10 a b + c d = ad+bc bd V nhiu cỏch ghi s khỏc 11 a b c d = adbc bd 12 a b ì c d = ac bd 13 a c b /d i S 2.1 S i s = ad bc 2.5 Toỏn S Phc (a + ib) + (c + id) = (a + c) + i(b + d) 2.2 Phộp Toỏn i S (a + ib) (c + id) = (a + c) i(b + d) (a + ib)x(c + id) = (ac bd) + i(ad + bc) 2.3 Toỏn S Nguyờn (a+ib) (c+id) = (a+ib)(c+id) (c+id)(c+id) = (acbd)+i(ad+bc) (c+id2 ) |Z1 |1 + |Z2 |2 = a + = a |Z1 |1 |Z2 |2 = a = a |Z1 |1 ì |Z2 |2 = Z1 ì Z2 (1 + ) a ì = |Z1 |1 /|Z2 |2 = a/0 = 00 (a + ib) + (a ib) = 2a Z1 Z2 (1 ) a + (a) = 10 (a + ib) (a ib) = i2b a (a) = 2a 11 (a + ib) ì (a ib) = a2 b2 a ì (a) = a2 a/(a) = a + a = 2a 12 (a+ib) (aib) = (a2 b2 ) (aib)2 j + j = 2j 10 a a = j + (j) = 11 a ì a = a2 j j = 12 a/a = j j = 2j 13 a + b = b + a j ì j = j 14 a + b + c = (a + b) + c = (a + b) + c j ì (j) = j 2 I S j j j j 2.7 Toỏn Cn =1 = 1 j = 10 j = 0=0 1=1 = j 10 a = aẵ a a = a2 ì a = a3 an = a a( n 2) m ( an )m = a n m n a = mn a ab = a b a a b = b a0 = 11 n a a1 = a 12 j = 11 j = i 12 j = 13 j n = n = 2m 14 j n = j n = 2m + 2.6 Toỏn Ly tha a1 = a an = an b = n a n b 13 j = 1 = 14 j = 1 = j 15 j = 1 1 = (an )m = am n (a)n = an Vi n = 2m 2.8 Toỏn Log (a)n = an Vi n = 2m + Nu b > with b , Vy cho mi s thc y,a,c am /an = amn logb (y a ) = a logb (y) (am )n = amn logb (ba ) = a 10 am + an = am (1 + an m) 11 a a = a (1 a m m n m logb (ac) = logb (a) + logb (c) logb (a/c) = logb (a) logb (c) n logb (a) = 12 a ì a = a m n m+n ( a )m b = for any d > 0, d 2.9 Hm s 13 (ab)m = am ì bm 14 logd (a) logd (b) am bm 15 (a + b)n = (a + b) ì (a + b) ã ã ã ì (a + b) Hm s i s l mt biu thc i s dựng mụ t tng quan gia hai i lng Hm s i s cú ký hiu toỏn n 16 (a b)n = (a b) ì (a b) ã ã ã ì (a b) n f (x) = x Vi a2 b2 = (a b)(a + b) a2 + b2 = a2 + 2ab + b2 = (a + b)2 2ab x a2 + b2 = a2 2ab + b2 = (a b)2 + 2ab f (x) 3.4 Cụng thc h bc Loi hm s Hm s c bit 3.3.3 ng thc Pytago Cỏc ng thc sau cú th d thy trờn vũng trũn n v: ng thc sau cng ụi hu ớch: a sin x + b cos x = 3.1 Lng Giỏc a2 + b2 ã sin(x + ) vi { Gúc = arctan(b/a), + arctan(b/a), neu a 0; neu a < Hai ng thng ct ti mt im to mt Gúc gia hai ng thng Ký hiu Gúc l A Gúc o bng n v o Cho thớ d A = 300 3.3.4 ng thc Tng v hiu ca gúc Cỏch chng minh nhanh cỏc cụng thc ny l dựng cụng thc Euler 3.2 Cỏc hm s lng giỏc c bn Cho bit tng quan gia Cnh v Gúc tam giỏc sin(x y) = sin(x) cos(y) cos(x) sin(y) vuụng cos(x y) = cos(x) cos(y) sin(x) sin(y) tan(x) tan(y) tan(x y) = tan(x) tan(y) cs(x + y) = cs(x) cs(y) 3.3 Phộp Toỏn Lng Giỏc cs(x) cs(x y) = cs(y) 3.3.1 ng thc lng giỏc c bn vi Cos(x) Sin(x) Sec(x) = cos(x) CoSec(x) = sin(x) sin(x) T an(x) = cos(x) cos(x) Cotan(x) = sin(x) 3.3.2 cs(x) = ex = cos(x) + sin(x) v = 3.4 Cụng thc h bc Gii cỏc phng trỡnh cụng thc bi cho cos2 (x) v sin2 (x), thu c: ng thc lng giỏc Tun hon, i xng v tnh tin + cos(2x) Cỏc ng thc sau cú th d thy trờn vũng trũn n cos(2x) v: sin2 (x) = ng thc sau cng ụi hu ớch: cos(4x) 2 sin (x) cos 2(x) = 23 sin 2(x) sin(3x) a sin x + b cos x = a2 + b2 ã sin(x + ) sin3 (x) = vi 32 cos(x) + cos(3x) cos (x) = { Cos(3x) = 4cos^3(x) - 3cos(x) Sin(3x) = 4sin^3(x) + eu a 0; arctan(b/a), n = 3sin(x) eu a < + arctan(b/a), n cos2 (x) = 3.4.1 ng thc Bin tớch thnh tng Dựng cụng thc tng v hiu gúc bờn trờn cú th suy cos (x) cos (y) = cos (x + y) + cos (x y) cos (x y) cos (x + y) sin (x y) + sin (x + y) sin (x) cos (y) = sin (x) sin (y) = cosh x = n=1 ) (x) sin x = cos n x n=1 ng thc s 3.4.4 ng thc Gii tớch Cỏc cụng thc gii tớch sau dựng gúc o bng radian lim x0 ng thc lng giỏc nghch o x2 1+ (n 21 )2 ng thc Bin tng thnh tớch 3.4.2 ( LNG GIC sin(x) = 1, x cos(x) = 0, x0 x d sin(x) = cos(x) dx lim arcsin(x) + arccos(x) = /2 arctan(x) + arccot(x) = /2 { eu x > /2, n arctan(x) + arctan(1/x) = eu x < /2, n ( ) x+y arctan(x) + arctan(y) = arctan xy ( ) xy arctan(x) arctan(y) = arctan + xy sin(arccos(x)) = x2 cos(arcsin(x)) = x2 x sin(arctan(x)) = + x2 3.4.5 o Hm Lng Giỏc C Bn Cỏc ng thc sau cú th suy t trờn v cỏc quy tc ca o hm: d cos(x) = sin(x) dx d tan(x) = sec2 (x) dx d cot(x) = csc2 (x) dx d sec(x) = sec(x) tan(x) cos(arctan(x)) = dx + x2 d csc(x) = csc(x) cot(x) x dx tan(arcsin(x)) = 1x d arcsin(x) = dx x2 x2 tan(arccos(x)) = x d arctan(x) = dx + x2 3.4.3 ng thc Tớch vụ hn Cỏc biu thc v tớnh tớch phõn cú th tỡm ti danh sỏch tớch phõn vi hm lng giỏc v danh sỏch tớch phõn Trong cỏc ng dng vi hm c bit, cỏc tớch vụ hn vi hm lng giỏc ngc sau cú ớch: sin x = x ( n=1 sinh x = x ( 1+ n=1 cos x = ( n=1 x2 n2 3.4.6 Tng Hai Gúc ) x2 n2 sin (x + y) = sin x cos y + cos x sin y cos (x + y) = cos x cos y sin x sin y ) x2 (n 12 )2 3.4.7 Hiu Hai Gúc ) sin (x y) = sin x cos y cos x sin y cos (x y) = cos x cos y + sin x sin y 3.5 Cỏc Hm lng giỏc nghch o 3.4.8 Tng Hai Hm ( sin x + sin y = sin Tng quỏt x+y ( cos x + cos y = cos ) ( cos x+y ) xy ( cos Nu T l a thc Chebyshev bc n thỡ ) cos(nx) = Tn (cos(x)) xy ) cụng thc de Moivre: cos(nx) + i sin(nx) = (cos(x) + i sin(x))n tan x + tan y = sin (x + y) cos x cos y cot x + cot y = sin (x + y) sin x sin y 3.4.9 Hm ht nhõn Dirilet D(x) s xut hin cỏc cụng thc sau: + cos(x) + cos(2x) + cos(3x) + ã ã ã + cos(nx) (( ) ) sin n + 21 x = sin(x/2) Hiu Hai Hm tan x tan y = sin (x y) cos x cos y Hay theo cụng thc hi quy: cot x cot y = sin (x y) sin x sin y sin(nx) = sin((n 1)x) cos(x) sin((n 2)x) ( sin x sin y = cos x+y ( cos x cos y = sin 3.4.10 cos(nx) = cos((n 1)x) cos(x) cos((n 2)x) ) x+y ( sin xy ) ( sin ng thc gúc bi ) xy 3.5 Cỏc Hm lng giỏc nghch o ) 3.5.1 Chui S Cỏc hm nghch o cú th c ký hiu l sin1 hay cos1 thay cho arcsin v arccos Vic dựng ký hiu m cú th gõy nhm ln vi hm m ca hm lng giỏc Cỏc hm lng giỏc nghch o cng cú th c nh Bi hai Cỏc cụng thc sau cú th suy t cỏc cụng ngha bng chui vụ hn: thc trờn Cng cú th dựng cụng thc de Moivre vi n = ( ) ( ) z5 ( 1ã3ã5 ) z7 arcsin z = z + 12 z3 + (1ã3 +) 2ã4ã6 + ããã 2ã4 (2n)! z 2n+1 = n=0 22n (n!)2 (2n+1) sin(2x) = sin(x) cos(x) arccos z cos(2x) = cos2 (x)sin2 (x) = cos2 (x)1 = 12 sin2 (x) tan(2x) = tan(x) tan2 (x) arctan z Cụng thc gớc kộp cú th dựng tỡm b ba Pytago arccsc z Nu (a, b, c) l b ba Pytago thỡ (a2 b2 , 2ab, c ) cng vy Bi ba Vớ d ca trng hp n = 3: sin(3x) = sin(x) sin3 (x) cos(3x) = cos3 (x) cos(x) arcsec z arccot z = = (z = z ( arcsin ) ( ) z7 1ã3 z + + (2ã4 +) 1ã3ã5 2ã4ã6 (2n)! z 2n+1 n=0 22n (n!)2 (2n+1) = z z3 + = n=0 ( ) z3 z5 z7 + n 72n+1 (1) z 2n+1 ããã |z| < + ããã) |z| < |z| < ( ) = arcsin z ( ) ( ) z5 ( 1ã3ã5 ) z7 = z + 21 z +( 1ã3 |z| > 2ã4 )+ 2ã4ã6 + ããã (2n)! z (2n+1) = n=0 22n (n!)2 2n+1 ( ) = arccos z ( ) ( ) z5 ( 1ã3ã5 ) z7 = (z + 21 z + ( 1ã3 2ã4 )+ 2ã4ã6 + ããã) (2n)! z (2n+1) = n=0 22n (n!)2 (2n+1) = = = z arctan (z z3 + z5 z7 + ã ã ã ) n 2n+1 (1) z n=0 2n+1 |z| < 3.5.2 LNG GIC 3.7 Cụng thc gúc chia ụi Tớch Phõn Chỳng cng cú th c nh ngha thụng qua cỏc biu ay x/2 cho x cụng thc trờn, ri gii phng thc sau, da vo tớnh cht chỳng l o hm ca cỏc trỡnh cho cos(x/2) v sin(x/2) thu c: hm khỏc x arcsin (x) = dz, z2 1 dz, z2 arccos (x) = x x arctan (x) = dz, + z2 arccot (x) = x arcsec (x) = x |x| < x sin = (x) = cos(x) x R dz, z2 + z>0 x>1 dz, |z| z tan (x) sin(x/2) = = cos(x/2) cos x + cos x (1) Nhõn vi mu s v t s + cos x, ri dựng nh lý Pytago n gin húa: ( ) tan x2 = 1cos x (1+cos x)2 x>1 (1cos x)(1+cos x) (1+cos x)(1+cos x) = S Phc = Cụng thc trờn cho phộp m rng hm lng giỏc nghch o cho cỏc bin s phc|phc: ( ( )) arcsin(z) = i log i z + z ( arccos(z) = i log z + arctan(z) = i log ( iz + iz ( ) tan x2 = (1cos x)2 (1cos2 x) ) z2 ) Cụng thc h bc Gii cỏc phng trỡnh cụng thc bi cho cos2 (x) v sin2 (x), thu c: + cos(2x) sin2 (x) = cos(2x) cos(4x) sin (x) cos 2(x) = cos3 (x) = 32 cos(x) + cos(3x) (1cos x)(1cos x) (1+cos x)(1cos x) = cos x sin x (x) = sin(x) cos(x) = + cos(x) sin(x) Nu t = tan 23 sin 2(x) sin(3x) sin3 (x) = Suy ra: tan cos2 (x) = sin x + cos x Tng t, li nhõn vi mu s v t s ca phng trỡnh (1) bi cos x, ri n gin húa: = 3.6 + cos(x) Dn n: dz, |z| z arccsc (x) = 3.5.3 |x| < cos (x) (x) , thỡ: Phng phỏp dựng t thay th nh trờn hu ớch [[gii tớch chuyn cỏc t l thc cha sin(x) v cos(x) thnh [[hm ca t Cỏch ny giỳp tớnh [[o hm ca biu thc d dng 3.11 Tớch Phõn 3.8 ng thc Bin tớch thnh tng Dựng cụng thc tng v hiu gúc bờn trờn cú th suy cos (x) cos (y) = cos (x + y) + cos (x y) cos (x y) cos (x + y) sin (x y) + sin (x + y) sin (x) cos (y) = sin (x) sin (y) = cosh x = ( n=1 x2 1+ (n 21 )2 (x) sin x = cos n x n=1 3.11 Tớch Phõn Chỳng cng cú th c nh ngha thụng qua cỏc biu thc sau, da vo tớnh cht chỳng l o hm ca cỏc hm khỏc [[ng thc Bin tng thnh tớch x arcsin (x) = 3.9 ng thc lng giỏc nghch o dz, z2 |x| < 1 dz, z2 |x| < 1 arccos (x) = arcsin(x) + arccos(x) = /2 x arctan(x) + arccot(x) = /2 { eu x > /2, n arctan(x) + arctan(1/x) = eu x < /2, n ( ) x+y arctan(x) + arctan(y) = arctan xy ( ) xy arctan(x) arctan(y) = arctan + xy sin(arccos(x)) = x2 cos(arcsin(x)) = x2 x sin(arctan(x)) = + x2 cos(arctan(x)) = + x2 x tan(arcsin(x)) = x2 x2 tan(arccos(x)) = x 3.10 ng thc Tớch vụ hn x arctan (x) = dz, + z2 arccot (x) = x arcsec (x) = x sin x = x ( n=1 sinh x = x ( n=1 cos x = n=1 x n2 ( ) x2 (n 12 )2 z>0 arccsc (x) = x x>1 dz, |z| z x>1 3.12 S Phc Cụng thc trờn cho phộp m rng hm lng giỏc nghch o cho cỏc bin [[s phc: ( ( )) arcsin(z) = i log i z + z ( ) arccos(z) = i log z + z ( iz + iz ) 3.13 ng thc lng giỏc ) x2 1+ 2 n dz, z2 + x R dz, |z| z i arctan(z) = log Trong cỏc ng dng vi [[hm c bit, cỏc [[tớch vụ hn sau cú ớch: ) ) Trong [[toỏn hc, cỏc ng thc lng giỏc l cỏc [[phng trỡnh cha cỏc [[hm lng giỏc, ỳng vi mt di ln cỏc giỏ tr ca bin s Cỏc [[ng thc ny hu ớch cho vic rỳt gn cỏc biu thc cha hm lng giỏc Vớ d vic [[tớnh tớch phõn vi cỏc hm khụng phi l lng giỏc: cú th thay chỳng bng cỏc hm lng giỏc v dựng cỏc ng thc lng giỏc n gin húa phộp tớnh 3.13.1 ng thc lng giỏc c bn tan(x) = sin(x) cos(x) cotg(x) = cos(x) = sin(x) tan(x) ]] tanx.cosx = 3.13.2 LNG GIC vi cs(x) = ex = cos(x) + sin(x) v ng thc lng giỏc Tun hon, i xng v tnh tin = Cỏc ng thc sau cú th d thy trờn vũng trũn n v]]: 3.13.5 Cụng thc h bc ng thc sau cng ụi hu ớch: a sin x + b cos x = a2 + b2 ã sin(x + ) vi { arctan(b/a), + arctan(b/a), = eu a 0; n eu a < n Gii cỏc phng trỡnh cụng thc bi cho cos2 (x) v sin2 (x), thu c: cos2 (x) = + cos(2x) sin2 (x) = cos(2x) sin2 (x) cos2 2(x) = 3.13.3 ng thc Pytago sin3 (x) = cos(4x) 23 sin 2(x) sin(3x) Cỏc ng thc sau cú th d thy trờn [[vũng trũn n 32 cos(x) + cos(3x) v: cos3 (x) = ng thc sau cng ụi hu ớch: a sin x + b cos x = a2 + b2 ã sin(x + ) vi { arctan(b/a), + arctan(b/a), = 3.13.4 eu a 0; n eu a < n ng thc Tng v hiu ca gúc Xem thờm [[nh lý Ptolemaios 3.13.6 Cụng thc gúc chia ụi ay x/2 cho x cụng thc trờn, ri gii phng trỡnh cho cos(x/2) v sin(x/2) thu c: cos sin (x) = (x) = + cos(x) cos(x) Dn n: Cỏch chng minh nhanh cỏc cụng thc ny l dựng (x) sin(x/2) cos x tan = = [[cụng thc Euler cos(x/2) + cos x sin(x y) = sin(x) cos(y) cos(x) sin(y) cos(x y) = cos(x) cos(y) sin(x) sin(y) tan(x) tan(y) tan(x y) = tan(x) tan(y) Nhõn vi mu s v t s + cos x, ri dựng nh lý Pytago n gin húa: ( ) tan x2 = 1cos x (1+cos x)2 (1cos x)(1+cos x) (1+cos x)(1+cos x) cs(x + y) = cs(x) cs(y) cs(x y) = cs(x) cs(y) (1) = sin x + cos x = 10 d sin(x) = cos(x) dx 3.13.13 ng thc gúc bi Bi hai Cỏc ng thc sau cú th suy t trờn v cỏc quy tc ca [[o hm: d cos(x) = sin(x) dx LNG GIC Cỏc cụng thc sau cú th suy t cỏc cụng thc trờn Cng cú th dựng cụng thc de Moivre]] vi n = d tan(x) = sec2 (x) dx sin(2x) = sin(x) cos(x) d cot(x) = csc2 (x) dx cos(2x) = cos2 (x)sin2 (x) = cos2 (x)1 = 12 sin2 (x) d sec(x) = sec(x) tan(x) dx tan(2x) = d csc(x) = csc(x) cot(x) dx Cụng thc gớc kộp cú th dựng tỡm b ba Pytago]] Nu (a, b, c) l b ba Pytago thỡ (a2 b2 , 2ab, c ) cng vy d arcsin(x) = dx x2 tan(x) tan2 (x) Bi ba d arctan(x) = dx + x2 Cỏc biu thc v tớnh tớch phõn cú th tỡm ti danh sỏch Vớ d ca trng hp n = 3: tớch phõn vi hm lng giỏc]] v danh sỏch tớch phõn vi hm lng giỏc ngc]] sin(3x) = sin(x) sin3 (x) 3.13.12 ng thc Thng Dựng cos(3x) = cos3 (x) cos(x) sin (x + y) = sin x cos y + cos x sin y Tng quỏt sin (x y) = sin x cos y cos x sin y cos (x + y) = cos x cos y sin x sin y cos (x y) = cos x cos y + sin x sin y ( ) ( ) x+y xy sin x + sin y = sin cos 2 ( ) ( ) x+y xy sin x sin y = cos sin 2 ) ( ) ( xy x+y cos cos x + cos y = cos 2 ( ) ( ) x+y xy cos x cos y = sin sin 2 Nu T l a thc Chebyshev]] bc n thỡ cos(nx) = Tn (cos(x)) [[cụng thc de Moivre: :\cos(nx)+i\sin(nx)=(\cos(x)+i\sin(x))^n \, Hm '''ht nhõn Dirichlet]] Dn(x) s xut hin cỏc cụng thc sau: + cos(x) + cos(2x) + cos(3x) + ã ã ã + cos(nx) (( ) ) n + 21 x sin(x/2) tan x + tan y = sin (x + y) cos x cos y = tan x tan y = sin (x y) cos x cos y Hay theo cụng thc hi quy: cot x + cot y = sin (x + y) sin x sin y sin(nx) = sin((n 1)x) cos(x) sin((n 2)x) cot x cot y = sin (x y) sin x sin y cos(nx) = cos((n 1)x) cos(x) cos((n 2)x) sin 11 3.13.14 Cỏc Hm lng giỏc nghch o 4.2.2 Hoỏn Chuyn o Hm Chui S Cỏc hm nghch o cú th c ký hiu l Hoỏn Chuyn Laplace sin1 hay cos1 thay cho arcsin v arccos Vic dựng ký df hiu m cú th gõy nhm ln vi [[hm m ca hm s = dt lng giỏc Cỏc hm lng giỏc nghch o cng cú th c nh = df s dt ngha bng chui vụ hn: arcsin z = z+ = arccos z = = (z = arctan z arccsc z arcsec z arccot z 4.1 Hoỏn Chuyn Fourier ( 1ã3 ) z5 ( 1ã3ã5 ) z7 + ( 2ã4 +) 2ã4ã6 + ããã df (2n)! z 2n+1 j|z|=< n=0 22n (n!)2 (2n+1) dt ( ) z3 z ( arcsin ) ( ) z7 1ã3 z + + (2ã4 +) 1ã3ã5 2ã4ã6 (2n)! z 2n+1 n=0 22n (n!)2 (2n+1) = z z3 + = n=0 ( ) z3 z z + (1)n z 2n+1 2n+1 ããã |z| < 1 df = j dt + ã ã ã ) |z| < Hoỏn Chuyn Z Z = 90o 1 df = = ( ) Z dt = arcsin z ) ( ) ( ) ( z 1ã3ã5 z = z + 12 z +( 1ã3 |z| > 2ã4 )+ 2ã4ã6 + ããã (2n)! Cụng thc tng quỏt z (2n+1) = n=0 22n (n!)2 2n+1 df ( ) = s = j = 90o = arccos z dt ( ) ( ) ( ) 1ã3 z 1ã3ã5 z = (z + 21 z + ( 2ã4 )+ 2ã4ã6 df + ã1ã ã ) |z| >1 (2n+1) (2n)! z = = = = n=0 22n (n!)2 (2n+1) dt s j = = = z arctan (z z3 + z5 z7 + ã ã ã ) (1)n z2n+1 n=0 2n+1 Gii Tớch Phộp Toỏn Gii Tớch |z| < Thớ d di L = sL = jL = L90o dt dv = sC = jC = 90o dt C dv 1 C = = = 90o dt sC jC C C Phộp Toỏn Tớch Phõn 4.2 4.2.1 Toỏn o hm Cụng Thc Toỏn o Hm Chỳng cng cú th c nh ngha thụng qua cỏc biu thc sau, da vo tớnh cht chỳng l o hm ca cỏc hm khỏc o Hm Ca Hm S Lng Giỏc o Hm Ca Hm S ng Cong o Hm Ca Hm S c Bit o Hm Bc N x arcsin (x) = x x arccos (x) = arctan (x) = dz, z2 dz, |x| < 1 z2 dz, x R + z2 arccot (x) = x |x| < z2 dz, +1 z>0 12 PHẫP TON TCH PHN x x + sin 2ax+C = + sin ax cos ax+C 4a 2a x ( ) x x x x2 cos2 ax dx = + sin 2ax+ cos 2ax+C arccsc (x) = dz, x > 4a 8a 4a |z| z x xn sin ax n n x cos ax dx = xn1 sin ax dx a a 5.0.3 Cụng thc tớch phõn cos ax (ax)2k (1)k dx = ln |ax| + +C x 2k ã (2k)! sin ax dx = cos ax + C k=1 a cos ax cos ax a sin ax x x dx = dx (for n = 1) n1 sin ax dx = sin 2ax+C = sin ax cos ax+Cxn (n 1)x n1 xn1 4a 2a ( ax ) dx x x tan = ln + +C x sin ax dx = sin 2ax cos 2ax + C cos ax a 4 4a 8a ( ) dx sin ax n2 dx x x x = + (for n > 1) n n1 n2 sin 2ax cos 2ax+C x2 sin2 ax dx = cos ax a(n 1) cos ax n cos ax 4a 8a 4a dx ax = tan +C sin((b1 b2 )x) sin((b1 + b2 )x) ax|b1 | = a |b2 |)2 sin b1 x sin b2 x dx = +C1 + cos (for 2(b1 b2 ) 2(b1 + b2 ) dx ax n1 = cot +C sin ax cos ax n n n2 cos ax a sin ax dx = + sin axdx (for n > 0) na n x dx x ax ax = tan + ln cos +C dx ax + cos ax a a = ln tan +C sin ax a x dx x ax ax = cot + ln sin +C n2 dx cos ax dx cos ax a a + (for n > 1) = sinn ax a(1 n) sinn1 ax n sinn2 ax cos ax dx ax = x tan +C + cos ax a sin ax x cos ax x sin ax dx = +C a2 a ax cos ax dx = x cot +C n cos ax a x n n n1 x sin ax dx = cos ax+ x cos ax dx (for n > 0) a a sin(a1 a2 )x sin(a1 + a2 )x cos a1 x cos a2 x dx = + +C (for |a1 | a2 2 2(a1 a2 ) 2(a1 + a2 ) a (n 6) nx x sin dx = (for n = 2, 4, ) a 1 a 24n2 2 tan ax dx = ln | cos ax|+C = ln | sec ax|+C a a sin ax (ax)2n+1 dx = (1)n +C n n1 tan ax dx = tan ax tann2 ax dx (for n = 1) x (2n + 1) ã (2n + 1)! n=0 a(n 1) sin ax a cos ax sin ax dx q dx = + dx = (px+ ln |q sin ax+p cos ax|)+C (for p2 + xn (n 1)xn1 n1 xn1 q tan ax + p p +q a ( ax ) dx 1 dx = tan +C = ln | sin ax| + C sin ax a tan ax a ( ax ) ( ax ) x dx x x dx = tan + ln cos +C = + ln | sin ax + cos ax| + C + sin ax a a tan ax + 2a ( ax ) ( ax ) x x dx dx x = cot + ln sin +C = + ln | sin ax cos ax| + C sin ax a a tan ax 2a ( ax ) sin ax dx tan ax dx x = x + tan +C = ln | sin ax + cos ax| + C sin ax a tan ax + 2a x tan ax dx cos ax dx = sin ax + C = + ln | sin ax cos ax| + C a tan ax 2a cosn1 ax sin ax n n n2 dxn=> 0)ln |sec ax + tan ax| + C cos ax dx = + cos ax dx sec ax (for a na n secn1 ax sin ax n cos ax x sin ax n sec ax dx = + secn2 ax dx (for n = x cos ax dx = + +C a(n 1) n1 a2 a arcsec (x) = dz, |z| z x>1 cos2 ax dx = 13 secn x dx = n2 n2 sec x dx [2] n1 secn2 x tan x n1 + sin ax cosn ax dx = cosn+1 ax+C a(n + 1) (for n = 1) sinn1 ax cosm+1 ax n sin ax cos ax dx = + sinn2 ax c dx x + + a(n m) n m = x tan + C sec x + sinn+1 ax cosm1 ax m n m sin ax cos ax dx = + sinn ax cosm a(n + m) n+m csc ax dx = ln |csc ax cot ax| + C a dx = ln |tan ax| + C sin ax cos ax a csc x dx = cot x + C dx dx = + (for n n ax n1 ax n2 ax cscn1 ax cos ax n sin ax cos a(n 1) cos sin ax cos n n2 csc ax dx = + csc ax dx (for n = 1) a(n 1) n1 dx dx = + (for n n1 n2 sin ax cos ax a(n 1) sin ax sin ax cos ax cot ax dx = ln | sin ax| + C a sin ax dx = +C (for n = 1) n ax n n1 n2 cos a(n 1) cosn1 ax cot ax dx = cot ax cot ax dx (for n = 1) a(n 1) ( ax ) 1 sin2 ax dx = sin ax+ ln tan + +C dx tan ax dx cos ax a a = + cot ax tan ax + sin2 ax dx sin ax dx = (for n = tan ax dx dx cosn ax a(n 1) cosn1 ax n cosn2 ax = cot ax tan ax sinn1 ax sinn2 ax dx sinn ax dx ( ax ) = + (for n = 1) dx = ln tan +C cos ax a(n 1) cos ax cos ax sin ax a sinn ax dx sinn+1 ax nm+2 sinn ax dx ( ) dx = ( = tan ax +C cosm ax a(m 1) cosm1 ax m1 cosm2 ax (cos ax sin ax)2 2a ( sin)n1 ax n1 sinn2 ax dx sinn ax dx dx sin x cos x dx = + ( = 2(n 2)cosm ax a(n m) cosm1 ax n m cosm ax (cos x + sin x)n n (cos x + sin x)n1 (cos x + sin x)n2 sinn ax dx sinn1 ax n1 sinn2 ax dx cos ax dx x = (for = + ln |sin ax + cos ax| + C cosm ax a(m 1) cosm1 ax m cosm2 ax cos ax + sin ax 2a cos ax dx cos ax dx x = +C (for n = 1) n = ln |sin ax cos ax| + C sin ax a(n 1) sinn1 ax cos ax sin ax 2a cos2 ax dx 1( ax ) sin ax dx x = cos ax + ln tan +C = ln |sin ax + cos ax| + C sin ax a cos ax + sin ax 2a ( ) cos2 ax dx cos ax dx sin ax dx x = + (for n = = ln |sin ax cos ax|+C sinn ax n a sinn1 ax) sinn2 ax cos ax sin ax 2a cos ax dx ax ax cosn ax dx cosn+1 ax nm2 cosn ax dx = tan2 + ln tan +C = sin ax(1 + cos ax) 4a 2a sinm ax m1 a(m 1) sinm1 ax sinm2 ax ax ax cos ax dx cosn1 ax n1 cosn ax dx cosn2 ax dx = cot2 ln tan +C = + (fo sin ax(1 + cos ax) 4a 2a sinm ax sinm ax a(n m) sinm1 ax n m ( ax ) (ax n ) sin ax dx cos cosn1 ax n1 cosn2 ax dx = cot2 + + ln tan + ax dx +C= ( cos ax(1 + sin ax) 4a 2a sinm ax a(m 1) sinm1 ax m sinm2 ax ( ax ) (ax ) sin ax dx = tan2 + ln tan + +C cos ax(1 sin ax) 4a 2a 2sin ax4 tan ax dx = a (ln | sec ax+tan ax|sin ax)+C tann ax dx sin2 ax + C sin ax cos ax dx = = tann1 (ax)+C (for n = 1) 2a a(n 1) sin ax cos(a1 + a2 )x cos(a1 a2 )x tann ax dx sin a1 x cos a2 x dx = +C (for |a=1 | = |a2 |) tann+1 ax+C (for n = 1) 2(a1 + a2 ) 2(a1 a2 ) cos ax a(n + 1) cotn ax dx n n+1 sin ax cos ax dx = sin ax+C (for n = 1)2 cotn+1 ax+C (for n = 1) = a(n + 1) a(n + 1) sin ax n m 14 PHẫP TON TCH PHN x x c (for n = 1) arccot dx = x arccot + ln(c2 + x2 ) c c c 2 x c +x x cx x arccot dx = arccot + sin x dx = c c c c c x x3 x cx2 c3 2 cos x dx = cos x dx = cos x dx = sin c x arccot c dx = arccot c + ln(c +x ) c c n+1 c x xn+1 x c x dx n x arccot dx = arccot + ( n = 1) tan x dx = c n+1 c n+1 c + x2 c a2 (ax + b)n+1 2 a (n 6) nx (ax + b)n dx = ( n = 1) 2 dx = x cos (for n = 1, 3, ) a(n + 1) 2 a a 24n dx = ln |ax + b| x x ax + b a arcsin dx = x arcsin + c2 x2 c c a(n + 1)x b ( ) x(ax+b)n dx = (ax+b)n+1 ( n {1, 2}) x x c x x 2 a (n + 1)(n + 2) x arcsin dx = arcsin + c x c c x x b dx = ln |ax + b| 2 x x x + 2c x ax + b a a 2 arcsin + c x x arcsin dx = c c x b dx = + ln |ax + b| ( n (ax + b) a (ax + b) a x sin x dx = n+1 xn+1 sin1 x a(1 n)x b x dx = ( n {1, 2}) (ax + b)n a (n 1)(n 2)(ax + b)n1 ) ( ) xn x2 nxn1 sin1 x (ax + b)2 x2 n2 + +n x sin x dx dx = 2b(ax + b) + b2 ln |ax + b| n1 ax + b a ( ) x2 b2 dx = ax + b 2b ln |ax + b| x x (ax + b)2 a3 ax + b arccos dx = x arccos c x2 c c ( ) ( ) x2 2b b2 dx = ln |ax + b| + x x c2 x x (ax + b)3 a3 ax + b 2(ax + b)2 x arccos dx = c x2 arccos c c ( x2 1 2b 2 dx = + x x x x + 2c n n3 2 (ax + b) a (n 3)(ax + b) (n 2)(a + b)n2 x arccos dx = c x arccos c c dx ax + b x x c = ln arctan dx = x arctan ln(c2 + x2 ) x(ax + b) b x c c a dx ax + b x c2 + x2 x cx = + ln x arctan dx = arctan x2 (ax + b) bx b x c c ( ) 1 dx ax + b 3 x x cx c x = a + ln arctan + ln c2 + x2 x2 arctan dx = x2 (ax + b)2 b2 (ax + b) ab2 x b3 x c c 6 n+1 x dx x xn+1 x c x dx = arctan 2 xn arctan dx = arctan ( n = 1) x +a a a c n+1 c n+1 c2 + x2 dx x ax x x x = arctanh = ln ( |x| < |a|) arcsec dx = x arcsec + ln |x x2 1| x2 a2 a a 2a a + x c c c|x| x xa dx ( ) = arccoth = ln ( |x| > |a|) 2 x arcsec x dx = x arcsec x x2 x a a a 2a x + a 2ax + b dx n arctan ( 4acb2 > 0) = 2 ax2 + bx + c x arcsec x dx = 4ac b 4ac b ( n+1 ( arcsec x n1 xn1 x2 n+1 x dx 2ax + b 2ax = artanh = ln 2 ax2 + bx + c b 4ac b 4ac b 4ac 2ax ( ))) dx +(1 n) xn1 arcsec x + (1 n) xn2 arcsec x dx = ( 4ac b2 = 0) ax + bx + c 2ax + b cotn ax dx = tan1n ax+C cos ax a(1 n) 15 x3 r2n+1 dx = x4 r dx = dxr dx a a+r = r a ln = r a arsinh ax + bx x+ c x x 3 mx + n m 2an bm r dx 2axr + b a2+ r dx = ln ax2 + bx + c + arctan = > 0) + 2a r (a4acb ln ax2 + bx + c 2a a 4ac b2 4ac b x x mx + n m 2an bm r5 dx 2axr5+ b a2 r3 2 dx = ln ax + bx + c + artanh = (+4acb 0) a + r + a4 r a |c|) xr a xr a c c x2 r dx = ln (x + r) 8 x cx c+x x x xr5 a2 xr3 a4 xr a6 ( x (0, c)) arsech dx = x arsech c arctan x r dx = ln (x + r) c c xc 24 16 16 x x x + x2 + c2 r a r arcsch dx = x arcsch +c ln ( x (0, c)) x3 r dx = c c c Chỳ ý: bi ny quy c x>0 r7 a2 r 3 x r dx = x b dx = ln ax2 + bx + c ax + bx + c 2a 2a ln cx dx = x ln cx x r2n+5 a3 r2n+3 2n + 2n + x3 r a2 xr3 a4 xr a6 + + ln (x + r) 16 16 5 (ln x)2 dx = x(ln x)2 2x ln x + 2x x r a xr a xr 3a xr 3a + + + ln (x + r) 16 64 128 128 r 2a r a r n n x5 r dx = + (ln cx) dx = x(ln cx) n (ln cx)n1 dx r9 2a2 r7 a4 r5 x5 r3 dx = + (ln x)i dx r2n+7 2a2 r2n+5 a4 r2n+3 = ln | ln x| + ln x + 2n+1 x r dx = + ln x i ã i! 2n + 2n + 2n + i=2 x4 r3 dx = 16 PHẫP TON TCH PHN ecx (cx 1) c2 dx x dx ) ( ( n = 1) = + x 2x (ln x)n (n 1)(ln x)n1 n (ln x)n1 + x2 ecx dx = ecx c c c n xn ecx dx = xn ecx xn1 ecx dx ( ) c c ln x m m+1 ( m = 1) x ln x dx = x m + (m + 1)2 ecx dx (cx)i = ln |x| + x i ã i! i=1 ( ) cx e dx ecx ecx xm+1 (ln x)n n = + c dx ( n = 1) m n m n1 x (ln x) dx = x (ln x) dx xn ( m =n 1) xn1 xn1 m+1 m+1 ecx ln x dx = ecx ln |x| Ei (cx) c n n+1 (ln x) dx (ln x) ecx = ( n = 1) ecx sin bx dx = (c sin bx b cos bx) x n+1 c + b2 ecx ecx cos bx dx = (c cos bx + b sin bx) c + b2 ln x dx ln x = ( m = 1)cx n ecx sinn1 x n(n 1) xm (m 1)xm1 (m 1)2 xm1 e sin x dx = (c sin xn cos x)+ ecx sinn c2 + n2 c + n2 ecx cosn1 x n(n 1) cx n e cos x dx = (c cos x+n sin x)+ ecx cosn + n2 c c + n n n n1 (ln x) dx (ln x) n (ln x) dx = + ( 2m = 1) xm (m 1)xm1 m xm xecx dx = ecx 2c 2 xà e(xà) /2 dx = (1 + erf ) m m+1 m x dx x m+1 x dx = + ( n = 1) n n1 n1 (ln x) (n 1)(ln x) n1 (ln x) ( ) x2 n1 e dx = ex j=0 c2j x2j+1 + (2n x2 1)c2n2 xe 2n dx (n > 0), dx = ln | ln x| ã ã ã ã ã (2j 1) 2j ! x ln x c2j = = 2j+1 j! 22j+1 i i ax2 dx (n 1) (ln x) i e dx = = ln | ln x| + (1) a xn ln x i ã i! i=1 (2n)! ( a )2n+1 2 x2n ex /a dx = n! 1 dx sinh cx dx = cosh cx = ( n = 1) n n1 c x(ln x) (n 1)(ln x) cosh cx dx = sinh cx c x x sin(ln x) dx = (sin(ln x) cos(ln x)) sinh2 cx dx = sinh 2cx 4c x cosh2 cx dx = sinh 2cx + 4c x cos(ln x) dx = (sin(ln x) + cos(ln x)) n1 n n1 sinh cx dx = sinh cx cosh cx sinhn2 cx dx (n cn n n+2 sinhn cx dx = sinhn+1 cx cosh cx sinhn+2 cx dx ecx dx = ecx c(n + 1) n+1 c cx n1 acx dx = a ( a > 0, a = 1) coshn cx dx = sinh cx coshn1 cx+ coshn2 cx dx (n c ln a cn n xecx dx = 17 coshn cx dx = n+2 sinh cx coshn+1 cx c(n + 1) n+1 dx cx = ln sinh cx c sinh(ax+b) cos(cx+d) dx = a c cosh(ax+b) cos(cx+d)+ a2 + c2 a +c cosh(ax+b) sin(cx+d) dx = a c sinh(ax+b) sin(cx+d) a2 + c2 a + c2 dx sinh cx = ln sinh cx c cosh cx + cosh(ax+b) cos(cx+d) dx = a2 a c sinh(ax+b) cos(cx+d)+ 2 +c a +c Assume (x2 > a2 ) , for (x2 < a2 ) , see next section: dx cosh cx = ln sinh cx c cosh cx + dx cosh cx n2 = n1 sinhn cx c(n 1) sinh cx n a c n+2 cosh sinh(ax+b) cx dx sin(cx+d) (n< dx0,=n =2 1)2 cosh(ax+b) sin(cx+d) a +c a + c2 dx cosh cx = ln sinh cx c sinh cx dx = arctan ecx cosh cx c xs dx = dx s s dx a ( n==s1) a arccos x x dx sinh cx n2 dx ( n = 1) dx x+s = + n = = ln n1 n2 cosh cx c(n 1) cosh cx n cosh cx s 2 a x a ( ) n n1 n2 cosh cx n1 cosh cx coshNotecx x+s x x+s that ln = sgn(x) arcosh = ln + dx = dx a( m = n) a xs , sinhm cx sinhm cx c(n m) sinhm1 cx n m x where the positive value of arcosh a is to be taken coshn+1 cx nm+2 coshn cx coshn cx dx = + dx ( m = 1) m2 sinhm cx m1 c(m 1) sinhm1 cx cx sinh x dx coshn cx n1 coshn1 cx coshn2scx = s + dx ( m = 1) dx = m2 sinhm cx c(m 1) sinhm1 cx m sinh cx x dx = sinhm cx sinhm1 cx m1 sinhm2 scx s( m = n) dx = + dx n cx coshn cx cosh c(m n) coshn1 cx m n x dx = s5cx 3s mn+2 sinhm cx sinhm+1 cx sinhm + dx ( n = 1) dx = coshn cx n1 c(n 1) coshn1 cx coshxn2 dxcx = 5s sinhm cx m1 sinhm1 cx sinhm2scx + dx ( n = 11) dx = dx coshn cx c(n 1) coshn1 cx n coshn2x cx = s2n+1 (2n 1)s2n1 1 2m2 x sinh cx dx = x cosh cx sinh cx x2m dx x2m1 2m x dx c c = + 2n+1 2n1 2n1 s 2n s 2n s 1 x cosh cx dx = x sinh cx cosh cx x dx xs a x+s c c = + ln s 2 a cx dx = ln | cosh cx| c x x+s x dx = + ln s3 s a coth cx dx = ln | sinh cx| c x3 s 3 x+s x4 dx = + a xs + a4 ln s 8 a n n1 n2 cx dx = cx+ cx dx ( n = 1) c(n 1) xs a2 x x+s x dx = + a ln s a cothn cx dx = cothn1 cx+ cothn2 cx dx s ( n = 1) c(n 1) x 1x x+s x dx = + ln 2 s bx) s( b = sc ) a sinh bx sinh cx dx = (b sinh cx cosh bxc cosh cx sinh b c2 ( ) 2m nm1 n m x2( x dx nm cosh bx cosh cx dx = (b sinh bx cosh cxc sinh cx cosh bx) = (1) ( b2 = c2a)2(nm) s2n+1 2(m + i) + i s2( b c2 i=0 1 x dx cosh bx sinh cx dx = (b sinh bx sinh cxc cosh bx cosh = cx) ( b2 = c2 ) b c s a s sinh n2 cx dx 18 [ ] dx x x3 = s5 a4 s s3 [ ] dx x x3 x5 = + s7 a s s3 s5 [ ] dx x x3 x5 x7 = + s9 a s s3 s5 s7 x dx x3 = s5 a2 3s3 [ ] x dx 1 x3 x5 = s7 a s3 s5 [ ] x dx 1x x5 x7 = + s9 a6 s3 s5 s7 ( ) x xu + a2 arcsin (|x| |a|) u dx = a xu dx = u3 (|x| |a|) x a x x2 u dx = u3 + (xu+a2 arcsin ) (|x| |a|) a u dx a+u = u a ln (|x| |a|) x x x dx = arcsin (|x| |a|) u a x dx 1( x) = xu + a2 arcsin (|x| |a|) u a 1( x ) u dx = xu sgn x arcosh (for |x| |a|) a x dx = u (|x| |a|) u Tớ phõn hm hp (Integrals involving) ax2 + bx + c R = Assume (ax + bx + c) cannot be reduced to the following expression (px + q)2 for some p and q dx = ln aR + 2ax + b R a (for a > 0) x R b dx = R a 2a PHẫP TON TCH PHN dx R x 2bx + 4c dx = R3 (4ac b2 )R x b 2n+1 2n1 R (2n 1)aR 2a ( ) dx cR + bx + 2c = ln xR x c ( ) dx bx + 2c = arsinh xR c |x| 4ac b2 Sdx = dx = dx R2n+1 2S 3a dx 2S = S a ( ) 2b arcoth Sb (for b > 0, ax > 0) ( ) dx = 2b artanh Sb (for b > 0, ax < 0) xS ( ) S arctan (for b < 0) b b ( ( )) S b arcoth (for b > 0, ax > 0) S ( b )) ( S S (for b > 0, ax < 0) dx = S b artanh b x ( ( )) S b arctan S (for b < 0) b ( n1 ) xn x n dx = x S bn dx S a(2n + 1) S ( ) n n n1 x Sdx = x S nb x Sdx a(2n + 3) ( ( ) ) 1 S dx dx = + n a xn S b(n 1) xn1 xn1 S sin ax dx = cos ax + C a sin2 ax dx = x x sin 2ax+C = sin ax cos ax+C 4a 2a sin3 ax dx = cos 3ax cos ax +C 12a 4a x2 x x sin2 ax dx = sin 2ax cos 2ax + C (for a > 0, 4acb > 0) 4a 8a ( ) x x x dx x2 sin2 ax dx = sin 2ax cos 2ax+C = ln |2ax + b| (for a > 0, 4ac b2 = 0) 4a 8a 4a R a sin((b1 b2 )x) sin((b1 + b2 )x) 2ax + b dx sin0,b1|2ax x sin b+2 xb|dx +C (for |b1 = arcsin (for a < 0, 4acb2 < < = b2 2(b4ac) 2(b1 + b2 ) b2 ) R a b 4ac 4ax + 2b dx sinn1 ax cos ax n n = sin ax dx = + sinn2 ax dx (for n > R3 (4ac b2 )R na n ( ) 4ax + 2b 8a dx ax dx = + = ln tan +C R5 3(4ac b2 )R R2 4ac b2 sin ax a ( ) cos ax n2 dx dx 2ax + b dx dx = + (for n > 1) = + 4a(n 1) n n1 n2 2n+1 2n1 2n1 sin ax n R (2n 1)(4ac b ) R R a(1 n) sin ax sin ax 2ax + b dx = arsinh R a 4ac b2 19 sin ax x cos ax cos ax dx ax + C = x tan +C a a + cos ax a 2kn 2k+1n ax cos ax dx xn2k xn n xn12k n! +ax+ C n n1 k+1 = x n!cot (1) (1)k 2+2k x sin ax dx = cos ax+ x cos ax dx = cos cos ax a 1+2k a a a (n 2k)! a (n 2k k=0 k=0 sin(a1 a2 )x sin(a1 + a2 )x a2 cos a1 x cos a2 x dx = + +C (for |a1 | nx a3 (n2 6) 2(a1 a2 ) 2(a1 + a2 ) x2 sin2 dx = (for n = 2, 4, ) 2 a a 24n 1 tan ax dx = ln | cos ax|+C = ln | sec ax|+C 2n+1 a a sin ax (ax) dx = (1)n +C x (2n + 1) ã (2n + 1)! n n1 n=0 tan ax dx = tan ax tann2 ax dx (for n = 1) a(n 1) sin ax sin ax a cos ax dx = + dx dx q xn (n 1)xn1 n1 xn1 = (for p2 + (px+ ln |q sin ax+p cos ax|)+C ( ) q tan ax + p p + q a dx ax = tan +C dx x 1 sin ax a = + ln | sin ax + cos ax| + C ( ) ( ) tan ax + 2a x dx x ax ax +C = tan + ln cos dx x 1 + sin ax a a = + ln | sin ax cos ax| + C ( ) ( ) tan ax 2a x dx x ax ax = cot + ln sin +C sin ax a a x tan ax dx = ln | sin ax + cos ax| + C ( ) tan ax + 2a sin ax dx ax = x + tan +C sin ax a tan ax dx x = + ln | sin ax cos ax| + C tan ax 2a cos ax dx = sin ax + C a sec ax dx = ln |sec ax + tan ax| + C a x x cos2 ax dx = + sin 2ax+C = + sin ax cos ax+C 4a 2a sec2 x dx = tan x + C cosn1 ax sin ax n n n2 cos ax dx = + cos ax dx (for n > 0) na n secn2 ax tan ax n n sec ax dx = + secn2 ax dx (for n = cos ax x sin ax a(n 1) n1 x cos ax dx = + +C a2 a ( ) secn2 x tan x secn x dx = + x3 x x n1 2 x cos ax dx = + sin 2ax+ cos 2ax+C n2 n2 [3] sec x dx 4a 8a 4a n1 x sin ax dx = xn sin ax n x cos ax dx = a a n xn1 sin ax dx = 2k+1n 2kn n2k1 xn2k n! dx x x n! (1)k =2+2k (1)k 1+2k cos ax+ x tan + C (n a (n 2k)! sec x + a 2k 1)! k=0 k=0 dx x = x cot + C sec x csc ax dx = ln |csc ax + cot ax| + C a (for n = 1) csc2 x dx = cot x + C cos ax (ax)2k dx = ln |ax| + (1)k +C x 2k ã (2k)! k=1 cos ax a cos ax sin ax dx = dx xn (n 1)xn1 n xn1 ( ax ) dx = ln tan + +C cos ax a cscn1 ax csc ax n cscn ax dx = + cscn2 ax dx (for n sin ax n2 dx dx a(n 1) n = + (for n > 1) n n1 n2 cos ax a(n 1) cos ax n cos ax sin x2 dx dx ax =x +C = tan +C csc x + cos x2 + sin x2 + cos ax a sin x2 dx ax dx = x+C = cot +C csc x cos x2 sin x2 cos ax a x dx x ax ax cot ax dx = ln | sin ax| + C = tan + ln cos +C a + cos ax a a x ax ax x dx n n1 cot ax dx = cot ax cotn2 ax dx (for n = 1) = cot + ln sin +C a(n 1) cos ax a a 20 PHẫP TON TCH PHN sin2 ax dx sin ax dx = (for n = cosn ax a(n 1) cosn1 ax n cosn2 ax dx tan ax dx = sinn ax dx sinn1 ax sinn2 ax dx cot ax tan ax = + (for n = 1) cos ax a(n 1) cos ax ( ) dx ax = ln tan +C sinn ax dx sinn ax dx sinn+1 ax nm+2 cos ax sin ax a = ( m m1 ( cos ax a(m 1) cos ax m1 cosm2 ax dx ) = tan ax +C (cos ax sin ax)2 2a sinn ax dx sinn1 ax n1 sinn2 ax dx ) ( = + ( m cos ax cosm ax dx dx a(n m) cosm1 ax n m sin x cos x = 2(n 2) (cos x + sin x)n n (cos x + sin x)n1 (cos x + sin x)n2n1 sin ax n1 sinn ax dx sinn2 ax dx = (for cos ax dx x cosm ax a(m 1) cosm1 ax m cosm2 ax = + ln |sin ax + cos ax| + C cos ax + sin ax 2a cos ax dx x cos ax dx = +C (for n = 1) = ln |sin ax cos ax| + C sinn ax a(n 1) sinn1 ax cos ax sin ax 2a cos2 ax dx 1( ax ) sin ax dx x = cos ax + ln tan +C = ln |sin ax + cos ax| + C sin ax a cos ax + sin ax 2a ( ) sin ax dx x cos2 ax dx cos ax dx = ln |sin ax cos ax|+C = + (for n = cos ax sin ax 2a sinn ax n a sinn1 ax) sinn2 ax cos ax dx ax ax = tan2 + ln tan +C cosn ax dx cosn+1 ax nm2 cosn ax dx sin ax(1 + cos ax) 4a 2a = m m1 sin ax m1 a(m 1) sin ax sinm2 ax cos ax dx ax ax = cot2 ln tan +C cosn ax dx cosn1 ax n1 cosn2 ax dx sin ax(1 cos ax) 4a 2a = + (fo m ( ( ax sin )ax sinm ax a(n m) sinm1 ax n m sin ax dx ) ax = cot + + ln tan + +C cos ax(1 + sin ax) 4a 2a 2cosn4ax dx cosn1 ax n1 cosn2 ax dx = ( ( ) ( m) m1 sin ax dx ax sin ax a(m 1) sin ax m sinm2 ax ax = tan + ln tan + +C cos ax(1 sin ax) 4a 2a sin ax tan ax dx = (ln | sec ax+tan ax|sin ax)+C a sin ax cos ax dx = cos ax + C 2a tann ax dx = tann1 (ax)+C (for n = 1) cos((a1 a2 )x) cos((a1 + a2 )x) sin ax (for a(n sin a1 x cos a2 x dx = +C |a1 | = 1) |a2 |) 2(a1 a2 ) 2(a1 + a2) tann ax dx 1 = tann+1 ax+C (for n = 1) n n+1 sin ax cos ax dx = sin ax+C (for n = 1) cos2 ax a(n + 1) a(n + 1) cotn ax dx 1 n n+1 = cotn+1 ax+C (for n = 1) sin ax cos ax dx = cos ax+C (for n =sin 1) a(n + 1) ax a(n + 1) n ax dx sinn1 ax cosm+1 ax n cot n2 n m = m ax dx tan1n + sin ax cos (for ax+C m, n > 0) (for n = 1) sin ax cos ax dx = ax cos a(1 n) a(n + m) n+m x m2 x sinn+1 ax cosm1 ax m n n m arcsin dx = xax arcsin n x>2 0) sin ax cos ax dx = + sin axccos dx c +(for cm, a(n + m) n+m ( ) dx x x c2 x x = ln |tan ax| + C x arcsin dx = arcsin + c x2 sin ax cos ax a c c dx dx x n = 1)x3 x x2 + 2c2 = + (for n n1 x2 arcsin dx = arcsin + c x2 sin ax cos ax a(n 1) cos ax sin ax cosn2 ax c c dx dx = + (for n = 1) ( n+1 n1 n2 sinn ax cos ax x sin x a(n 1) sin ax sin ax cos axxn sin1 x dx = n+1 dx = + cot ax tan ax dx tan ax + sin ax dx = +C (for n = 1) cosn ax a(n 1) cosn1 ax ) ( ax ) xn x2 nxn1 sin1 x n2 1 sin2 ax dx +n x sin x dx = sin ax+ ln tan + +C + n1 cos ax a a 21 x x dx cx dx = x arccos c2 x2 = ln c c sinh cx c ( ) x x c x x dx cosh cx x arccos dx = arccos c2 x2 = ln c c sinh cx c sinh cx 2 x x x + 2c x dx sinh cx x2 arccos dx = arccos c2 x2 = ln c c sinh cx c cosh cx + x x c dx cosh cx arctan dx = x arctan ln(c2 + x2 ) = ln c c sinh cx c cosh cx + x c2 + x2 x cx dx x arctan dx = arctan = arctan ecx c c cosh cx c 3 x x x cx c n2 dx cosh cx dx x2 arctan dx = arctan + ln c2 + x2 (n = 1) = n c c 6 n1 n2 sinh cx c(n 1) sinh cx n sinh cx x xn+1 x c xn+1 dx sinh cx dx n2 xn arctan dx = arctan (ndx = 1) = + (n = 1) c n+1 c n+1 c2 + x2 n n1 cosh cx c(n 1) cosh cx n coshn2 cx x x x arcsec dx = x arcsec + ln |x x2 1| coshn1 cx coshn2 cx coshn cx n1 c c c|x| dx = dx ( + sinhm cx sinhm cx c(n m) sinhm1 cx n m ) 1( x arcsec x x2 x arcsec x dx = coshn cx nm+2 coshn+1 cx coshn cx + dx dx = m m1 sinh cx m1 c(m 1) sinh cx sinhm2 cx n x arcsec x dx = ( n+1 ( n1 1 coshn cx coshn1 cx n1 coshn2 cx 21 x arcsec x x x n+1 n dx = + dx m sinh cx c(m 1) sinhm1 cx m sinhm2 cx sinhm cx sinhm1 cx sinhm2 cx m1 ( ))) + dx = dx ( n coshn cx +(1 n) xn1 arcsec x + (1 n) xn2 arcsec x dx cosh cx c(m n) coshn1 cx m n sinhm cx sinhm+1 cx mn+2 sinhm cx dx = + dx n n1 x x c cosh cx n1 c(n 1) cosh cx coshn2 cx arccot dx = x arccot + ln(c2 + x2 ) c c sinhm cx sinhm1 cx m1 sinhm2 cx 2 dx = + dx x c +x x cx n n1 cosh cx x arccot dx = arccot + c(n 1) cosh cx n coshn2 cx c c 1 3 x x x cx c x sinh cx dx = x cosh cx sinh cx x2 arccot dx = arccot + ln(c2 +x2 ) c c c c 6 n+1 1 n+1 x cosh cx dx = x sinh cx cosh cx x x x c x dx xn arccot dx = arccot + (n = 1) c c c n+1 c n+1 c2 + x2 1 cx dx = ln | cosh cx| sinh cx dx = cosh cx c c 1 coth cx dx = ln | sinh cx| cosh cx dx = sinh cx c c n n1 x cx dx = cx+ tanhn2 cx dx (n = 1) sinh2 cx dx = sinh 2cx c(n 1) 4c n n1 x coth cx dx = coth cx+ cothn2 cx dx (n = 1) cosh cx dx = sinh 2cx + c(n 1) 4c 1 n1 sinh (b sinh cx cosh bxc cosh cx sinh bx) ( sinhn cx dx = sinhn1 cx cosh cx sinhn2 cx dxbx sinh (ncx >dx 0) = b c2 cn n 1 n+2 n+2 cosh bx (b sinh bx cosh cxc sinh cx cosh bx) sinhn cx dx = sinhn+1 cx cosh cx sinh cxcosh dx cx dx (n = < 0,2 n =21) b c c(n + 1) n+1 1 n1 n n1 n2 cosh (b sinh bx sinh cxc cosh bx cosh cx) cosh cx dx = sinh cx cosh cx+ cosh cx dxbx sinh(ncx>dx 0) = b c2 cn n n+2 a c n+2 coshn cx dx = sinh cx coshn+1 cx cosh cx dx (n 0), a c cosh(ax+b) sin(cx+d) dx = sinh(ax+b) sin(cx+d) cosh(ax+b) cos(cx+d) a + c2 a + ãc3 ã ã ã ã (2j 1) (2j) ! c2j = = a c 2j+1 j! 22j+1 cosh(ax+b) cos(cx+d) dx = sinh(ax+b) cos(cx+d)+ cosh(ax+b) sin(cx+d) a + c2 a + c2 ax2 x x e dx = arsinh dx = x arsinh x + c a c c (2n)! ( a )2n+1 2 x x x2n ex /a dx = arcosh dx = x arcosh x2 c2 n! c c x c x (|x| < |c|) ln cx dx = x ln cx x artanh dx = x artanh + ln |c2 x2 | c c x x c 2 arcoth dx = x arcoth + ln |x c | (|x| > |c|) (ln x)2 dx = x(ln x)2 2x ln x + 2x c c cx n n x c+x (ln cx) dx = x(ln cx) n (ln cx)n1 dx x x (x (0, c)) arsech dx = x arsech c arctan c c xc dx (ln x)i = ln | ln x| + ln x + x x x + x2 + c ln xc)) i ã i! arcsch dx = x arcsch +c ln (x (0, i=2 c c c dx x dx = + (n = 1) n n1 n1 ecx dx = ecx (ln x) (n 1)(ln x) n (ln x) c ) ( ln x m m+1 cx cx (m = 1) x ln x dx = x a dx = a (a > 0, a = 1) m + (m + 1)2 c ln a xm+1 (ln x)n n ecx xm (ln x)n dx = xm (ln x)n1 dx (m = xecx dx = (cx 1) m+1 m+1 c ( ) (ln x)n dx (ln x)n+1 x 2x = (n = 1) x2 ecx dx = ecx + x n+1 c c c ln x dx ln x 1 n cx n n cx n1 cx = (m = 1) x e dx = x e x e dx m m1 xm1 x (m 1)x (m 1) c c (ln x)n n (ln x)n1 dx (ln x)n dx ecx dx (cx)i = + ( m = 1) = ln |x| + m m1 x (m 1)x m1 xm x i ã i! i=1 m ( ) x dx xm+1 m+1 xm dx cx e dx ecx ecx = + ( n = 1) n n1 = n1 + c dx (n = 1)(ln x) (n 1)(ln x) n1 (ln x)n1 xn n1 x xn1 dx cx = ln | ln x| cx e ln x dx = e ln |x| Ei (cx) x ln x c (n 1)i (ln x)i dx ecx cx = ln | ln x| + (1)i e sin bx dx = (c sin bx b cos bx) n x ln x i ã i! c + b2 i=1 ecx dx ecx cos bx dx = (c cos bx + b sin bx) = (n = 1) c + b2 x(ln x)n (n 1)(ln x)n1 n(n 1) ecx sinn1 x n2 x sin(ln = x dx (sin(ln x) cos(ln x)) (c sin xn cos x)+ ecxx)sindx ecx sinn x dx = c2 + n2 c + n2 x ecx cosn1 x n(n 1) cx n cos(ln x)cos dxn2 = x (sin(ln x) + cos(ln x)) e cos x dx = (c cos x+n sin x)+ ecx dx 2 2 c +n c +n (ax + b)n+1 cx2 (ax + b)n dx = (n = 1) xecx dx = e a(n + 1) 2c 2 xà dx e(xà) /2 dx = (1 + erf ) = ln |ax + b| ax + b a sinh(ax+b) cos(cx+d) dx = PHẫP TON TCH PHN 23 x(ax+b)n dx = a(n + 1)x b (ax+b)n+1 + 1)(n + 2) a2 (n (n [1] {1,http://aas.aanda.org/index.php?option=com_article& 2}) access=standard&Itemid=129&url=/articles/aas/pdf/ 1998/10/h0596.pdf x x b dx = ln |ax + b| ax + b a a [2] Stewart, James Calculus: Early Transcendentals, 6th Edition omson: 2008 x b dx = + ln |ax + b| (ax + b) a (ax + b) a [3] Stewart, James Calculus: Early Transcendentals, 6th Edition omson: 2008 x a(1 n)x b dx = (n {1, 2}) (ax + b)n a2 (n 1)(n 2)(ax + b)n1 ( ) x2 (ax + b)2 dx = 2b(ax + b) + b2 ln |ax + b| ax + b a ( ) x b2 dx = ax + b 2b ln |ax + b| (ax + b)2 a ax + b ( ) x 2b b2 dx = ln |ax + b| + (ax + b)3 a3 ax + b 2(ax + b)2 ( ) x2 1 2b b2 dx = + (n {1, 2, 3}) (ax + b)n a (n 3)(ax + b)n3 (n 2)(a + b)n2 (n 1)(ax + b)n1 dx ax + b = ln x(ax + b) b x dx a ax + b = + ln x (ax + b) bx b x ( ) 1 dx ax + b = a + ln x2 (ax + b)2 b2 (ax + b) ab2 x b3 x x dx = arctan x2 + a2 a a dx x ax = arctanh = ln (|x| < |a|) x2 a2 a a 2a a + x dx x xa = arccoth = ln (|x| > |a|) x2 a2 a a 2a x + a dx 2ax + b arctan (4acb2 > 0) = 2 ax + bx + c 4ac b 4ac b2 dx 2ax + b 2ax + b b2 4ac = artanh = ln (4acb2 < 0) ax2 + bx + c b2 4ac b2 4ac b2 4ac 2ax + b + b2 4ac dx = (4ac b2 = 0) ax + bx + c 2ax + b x b dx dx = ln ax + bx + c 2 ax + bx + c 2a 2a ax + bx + c 2ax + b m 2an bm mx + n arctan (4acb2 > 0) dx = ln ax2 + bx + c + 2 ax + bx + c 2a a 4ac b 4ac b2 2ax + b mx + n m 2an bm artanh (4acb2 < 0) dx = ln ax2 + bx + c + ax2 + bx + c 2a a b2 4ac b2 4ac mx + n m 2an bm dx = ln ax2 + bx + c (4acb2 = 0) ax2 + bx + c 2a a(2ax + b) 2ax + b (2n 3)2a dx dx = + n 2 n1 2 (ax + bx + c) (n 1)(4ac b )(ax + bx + c) (n 1)(4ac b ) (ax + bx + c)n1 bx + 2c b(2n 3) x dx dx = (ax2 + bx + c)n (n 1)(4ac b2 )(ax2 + bx + c)n1 (n 1)(4ac b2 ) (ax2 + bx + c)n1 x2 dx b dx = ln 2 x(ax + bx + c) 2c ax + bx + c 2c ax + bx + c 24 NGUN, NGI ểNG GểP, V GIY PHẫP CHO VN BN V HèNH NH Ngun, ngi úng gúp, v giy phộp cho bn v hỡnh nh 6.1 Vn bn Cụng thc toỏn hc Ngun: https://vi.wikibooks.org/wiki/C%C3%B4ng_th%E1%BB%A9c_to%C3%A1n_h%E1%BB%8Dc?oldid=148841 Ngi úng gúp: Tnt1984, Doón Hiu, RadiX, AmieKim v ngi vụ danh 6.2 Hỡnh nh Tp_tin:Angle_acute.png Ngun: https://upload.wikimedia.org/wikipedia/commons/1/1e/Angle_acute.png Giy phộp: CC-BY-SA-3.0 Ngi úng gúp: No machine-readable source provided Own work assumed (based on copyright claims) Ngh s u tiờn: No machinereadable author provided Eddideigel assumed (based on copyright claims) Tp_tin:Angle_obtuse.png Ngun: https://upload.wikimedia.org/wikipedia/commons/c/c1/Angle_obtuse.png Giy phộp: CC-BY-SA3.0 Ngi úng gúp: No machine-readable source provided Own work assumed (based on copyright claims) Ngh s u tiờn: No machine-readable author provided Eddideigel assumed (based on copyright claims) Tp_tin:Cos.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/b/b6/Cos.svg Giy phộp: Public domain Ngi úng gúp: self-made; graphed in GNUPlot edited in Illustrator Ngh s u tiờn: Self: Commons user Keytotime Tp_tin:Cot.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/7/7f/Cot.svg Giy phộp: Public domain Ngi úng gúp: No machine-readable source provided Own work assumed (based on copyright claims) Ngh s u tiờn: No machine-readable author provided Keytotime assumed (based on copyright claims) Tp_tin:Csc.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/5/5b/Csc.svg Giy phộp: Public domain Ngi úng gúp: ? Ngh s u tiờn: ? Tp_tin:Right_angle.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/6/6c/Right_angle.svg Giy phộp: CC-BY-SA-3.0 Ngi úng gúp: ? Ngh s u tiờn: ? Tp_tin:Sec.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/8/8b/Sec.svg Giy phộp: Public domain Ngi úng gúp: ? Ngh s u tiờn: ? Tp_tin:Sin.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/b/b2/Sin.svg Giy phộp: Public domain Ngi úng gúp: self-made; graphed in GNUPlot edited in Illustrator Ngh s u tiờn: Self: Commons user Keytotime Tp_tin:Tan.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/0/05/Tan.svg Giy phộp: Public domain Ngi úng gúp: Tỏc phm chớnh ngi ti lờn to Ngh s u tiờn: Original: Trung (o lun ã úng gúp) 6.3 Giy phộp ni dung Creative Commons Aribution-Share Alike 3.0

Ngày đăng: 07/07/2017, 22:11

TỪ KHÓA LIÊN QUAN

w