Nghiên cứu áp dụng kỹ thuật đo nhiệt lượng gián tiếp để xác định nhu cầu năng lượng ở bệnh nhân thở máy xâm nhập

111 600 6
Nghiên cứu áp dụng kỹ thuật đo nhiệt lượng gián tiếp để xác định nhu cầu năng lượng ở bệnh nhân thở máy xâm nhập

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

B GIO DC V O TO B Y T TRNG I HC Y H NI ======= V SN TNG NGHIÊN CứU áP DụNG Kỹ THUậT ĐO NHIệT Lợng gián tiếp để xác định NHU CầU lợng bệnh nhân thở máy xâm NHậP LUN VN THC S Y HC H NI 2016 B GIO DC V O TO B Y T TRNG I HC Y H NI ======= V SN TNG NGHIÊN CứU áP DụNG Kỹ THUậT ĐO NHIệT Lợng gián tiếp để xác định NHU CầU lợng bệnh nhân thở máy xâm NHậP Chuyờn ngnh Mó s : Hi sc cp cu : 60.72.01.22 LUN VN THC S Y HC Ngi hng dn khoa hc: TS NGC SN TS Lấ TH DIM TUYT H NI 2016 LI CM N Lun c hon thnh bng s c gng, n lc ca bn thõn cựng vi s giỳp ca nhiu cỏ nhõn v th Nhõn dp hon thnh lun tt nghip, vi lũng kớnh trng v bit n sõu sc, tụi xin by t li cm n ti: - ng y, Ban Giỏm hiu, Phũng o to Sau i hc, B mụn Hi sc Cp cu v cỏc B mụn ca Trng i hc Y H Ni ó to iu kin thun li cho tụi quỏ trỡnh hc tp, nghiờn cu v hon thnh lun - ng y, Ban Giỏm c, Khoa Cp cu, Khoa Húa sinh, Khoa Huyt hc Bnh vin Bch Mai ó to iu kin thun li cho tụi quỏ trỡnh hc tp, nghiờn cu v hon thnh lun - ng y, Ban Giỏm c, Khoa Cp cu bnh vin a khoa tnh Thỏi Bỡnh ó luụn ng viờn, khuyn khớch, giỳp tụi quỏ trỡnh hc v nghiờn cu khoa hc - Tụi xin c th hin lũng bit n ti TS Ngc Sn, TS Lờ Th Dim Tuyt l nhng ngi thõy ó luụn tn tỡnh ch bo, truyn t kin thc v kinh nghim quy bỏu cho tụi quỏ trỡnh hc tp, ng thi trc tip hng dõn tụi hon thnh lun tt nghip - Tụi xin trõn trng cm n PGS TS Nguyn t Anh, Trng B mụn Hi sc Cp cu Trng i hc Y H Ni, Trng khoa Cp cu Bnh vin Bch Mai ó tn tỡnh hng dõn v to mi iu kin thun li cho tụi sut quỏ trỡnh hc v nghiờn cu khoa hc - Tụi cng xin c cm n ton th Cỏn b nhõn viờn Khoa Cp cu, Khoa iu tr tớch cc, Trung tõm chng c bnh vin Bch Mai, ó to mi iu kin thun li, giỳp v ng viờn tụi sut quỏ trỡnh hc v nghiờn cu - Xin trõn trng cm n cỏc Thy, Cụ Hi ng chm lun ó cho tụi nhng y kin úng gúp quy bỏu hon thnh lun ny Cỏc y kin gúp y ca cỏc Thõy, Cụ s l bi hc b ớch cho tụi trờn ng nghiờn cu khoa hc sau ny Xin c by t lũng bit n sõu sc n: - Cỏc bnh nhõn iu tr ti Khoa Cp cu Bnh vin Bch Mai ó cho tụi cú iu kin hc tp, nghiờn cu v hon thnh lun ny - Cỏc bn bố ng nghip v ngi thõn gia ỡnh, nhng ngi ó luụn ng viờn, khớch l tụi sut quỏ trỡnh hc v nghiờn cu H Ni, ngy 10 thỏng 12 nm 2016 V Sn Tựng LI CAM OAN Tụi l Vỳ Sn Tựng, hc viờn cao hc khúa 23 Trng i Hc Y H Ni, chuyờn ngnh Hi Sc Cp Cu, xin cam oan: õy l lun bn thõn tụi trc tip thc hin di hng dõn ca Thõy TS Ngc Sn v TS Lờ Th Dim Tuyt Cụng trỡnh ny khụng trựng lp vi bt k nghiờn cu no khỏc ó c cụng b ti Vit Nam Cỏc s liu v thụng tin nghiờn cu l hon ton chớnh xỏc, trung thc v khỏch quan, ó c xỏc nhn v chp nhn ca Bnh vin Bch Mai Tụi xin hon ton chu trỏch nhim trc phỏp lut v nhng cam kt ny H Ni, ngy 10 thỏng 12 nm 2016 Ngi vit cam oan V Sn Tựng DANH MC CC CH VIT TT AEE APACHE II BEE BMI BMR COPD CVCO2 CVO2 DEE DIT FiO2 HBE HBE x SF IC ICU PEEP PS2003 REE REEm RQ Tiờu hao nng lng hot ng (Activity Energy Expenditure ) Bng im ỏnh giỏ tỡnh trng sc kho v cỏc thụng s sinh ly giai on cp phiờn bn II (Acute Physiology and Chronic Health Evaluation II) Tiờu hao nng lng iu kin c s (Basal Energy Expenditure) Ch s c th (Body Mass Index) Mc chuyn húa c s (Basic Metabolic Rate) t tin trin cp bnh phi mn tớnh tc nghn (Chronic Obtructive Pulmonary Disease) H s bin thiờn th tớch CO2 tiờu th H s bin thiờn th tớch oxy tiờu th Tiờu hao nng lng thc n (Diet Energy Expenditure) Hiu ng nhit ca thc n (Diet Induced Thermogenesis) Nng Oxy khớ th vo Phng trỡnh Harris Benedict (Harris Benedic Equation) Phng trỡnh Harris Benedict thờm h s (yu t stress) Nhit lng giỏn tip ( Indirect Calorimetry) n v hi sc tớch cc (Intensive Care Unit) p lc dng cui thỡ th (Positive End Expiratory Pressure) Phng trỡnh Penn State 2003 Tiờu hao nng lng lỳc ngh (Resting Energy Expenditure) Tiờu hao nng lng lỳc ngh o Thng s hụ hp (Respiratory quotient) SIRS SpO2 TEE VCO2 VO2 WHO Hi chng ỏp ng viờm h thng (Systemic Inflammatory Response Syndrome) bóo hũa oxy mỏu ngoi vi (Saturation of peripheral oxygen) Tiờu hao nng lng tng (Total Energy Expenditure) Th tớch CO2 sn xut Th tớch Oxy tiờu th T chc y t th gii (World Health Organization) MC LC DANH MC BNG DANH MC BIU 97 Nờn tin hnh o nhit lng lng giỏn tip xỏc nh nhu cõu nng lng cho tt c cỏc bnh nhõn nng trng hp cỏc iu kin o c tha Trng hp khụng thc hin o nng lng c hoc khụng cú thit b o thỡ phng trỡnh Penn State 2003 cú th cõn nhc ỏp dng i vi cỏc bnh nhõn nng l n v/hoc cú BMI < 18,5 Mc nng lng 30 kcal/kg cng cú th cõn nhc ỏp dng vi cỏc bnh nhõn nng cú BMI < 18,5 TI LIU THAM KHO Alberda C., Snowden L., McCargar L., et al (2002) Energy requirements in critically ill patients: how close are our estimates? Nutrition in Clinical Practice, 17 (1), 38-42 McClave S A., Lowen C C., Kleber M J., et al (1998) Are patients fed appropriately according to their caloric requirements? Journal of Parenteral and Enteral Nutrition, 22 (6), 375-381 Rubinson L., Diette G B., Song X., et al (2004) Low caloric intake is associated with nosocomial bloodstream infections in patients in the medical intensive care unit Crit Care Med, 32 (2), 350-357 Heyland D K., Schroter-Noppe D., Drover J W., et al (2003) Nutrition support in the critical care setting: current practice in canadian ICUs-opportunities for improvement? JPEN J Parenter Enteral Nutr, 27 (1), 74-83 Petros S., Horbach M., Seidel F., et al (2014) Hypocaloric vs Normocaloric Nutrition in Critically Ill Patients A Prospective Randomized Pilot Trial Journal of Parenteral and Enteral Nutrition, 0148607114528980 Ekpe K., Novara A., Mainardi J.-L., et al (2014) Methicillin-resistant Staphylococcus aureus bloodstream infections are associated with a higher energy deficit than other ICU-acquired bacteremia Intensive care medicine, 40 (12), 1878-1887 Singer P., Berger M M., Van den Berghe G., et al (2009) ESPEN Guidelines on Parenteral Nutrition: intensive care Clin Nutr, 28 (4), 387400 McArthur C (2004) Metabolic measurement using indirect calorimetry during mechanical ventilation2004 revision and update Respir Care, 49 (9), 1073-1079 Haugen H A., Chan L.-N., Li F (2007) Indirect calorimetry: a practical guide for clinicians Nutrition in Clinical Practice, 22 (4), 377-388 10 Boullata J., Williams J., Cottrell F., et al (2007) Accurate determination of energy needs in hospitalized patients J Am Diet Assoc, 107 (3), 393401 11 McClave S A., Taylor B E., Martindale R G., et al (2016) Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN) Journal of Parenteral and Enteral Nutrition, 40 (2), 159-211 12 Walker R N., Heuberger R A (2009) Predictive equations for energy needs for the critically ill Respiratory care, 54 (4), 509-521 13 MacDonald A., Hildebrandt L (2003) Comparison of formulaic equations to determine energy expenditure in the critically ill patient Nutrition, 19 (3), 233-239 14 Singer P., Anbar R., Cohen J., et al (2011) The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients Intensive Care Med, 37 (4), 601-609 15 Strack van Schijndel R J., Weijs P J., Koopmans R H., et al (2009) Optimal nutrition during the period of mechanical ventilation decreases mortality in critically ill, long-term acute female patients: a prospective observational cohort study Crit Care, 13 (4), R132 16 McClave S A., McClain C J., Snider H L (2001) Should indirect calorimetry be used as part of nutritional assessment? Journal of clinical gastroenterology, 33 (1), 14-19 17 McClave S (1997) The consequences of overfeeding and underfeeding J Resp Care Pract, 10, 57-58, 60, 62-64 18 Zaloga G., Roberts P (1994) Permissive underfeeding New horizons (Baltimore, Md.), (2), 257-263 19 Solomon S., Kirby D (1990) The refeeding syndrome: a review Journal of Parenteral and Enteral Nutrition, 14 (1), 90-97 20 Kraft M D., Btaiche I F., Sacks G S (2005) Review of the refeeding syndrome Nutrition in Clinical Practice, 20 (6), 625-633 21 Marinella M A (2003) The refeeding syndrome hypophosphatemia Nutrition reviews, 61 (9), 320-323 and 22 Marik P E., Bedigian M K (1996) Refeeding hypophosphatemia in critically ill patients in an intensive care unit: a prospective study Archives of Surgery, 131 (10), 1043-1047 23 Butte N., Caballero B (2006) Energy needs: assessment and requirements Modern nutrition in health and disease, 10, 136-148 24 Oshima T., Berger M M., De Waele E., et al (2016) Indirect calorimetry in nutritional therapy A position paper by the ICALIC study group Clin Nutr, 25 Bone R C., Balk R A., Cerra F B., et al (1992) DEfinitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis the accp/sccm consensus conference committee american college of chest physicians/society of critical care medicine Chest, 101 (6), 1644-1655 26 Long C L., Schaffel N., Geiger J W., et al (1979) Metabolic response to injury and illness: estimation of energy and protein needs from indirect calorimetry and nitrogen balance Journal of Parenteral and Enteral Nutrition, (6), 452-456 27 Frankenfield D C., Smith J S., Cooney R N., et al (1997) Relative association of fever and injury with hypermetabolism in critically ill patients Injury, 28 (9), 617-621 28 Raurich J M., Ibỏủez J., Marsộ P., et al (2007) Resting energy expenditure during mechanical ventilation and its relationship with the type of lesion Journal of Parenteral and Enteral Nutrition, 31 (1), 5862 29 Scheinkestel C., Kar L., Marshall K., et al (2003) Prospective randomized trial to assess caloric and protein needs of critically Ill, anuric, ventilated patients requiring continuous renal replacement therapy Nutrition, 19 (11), 909-916 30 Pickkers P., Hoedemaekers A., Netea M., et al (2004) Hypothesis: Normalisation of cytokine dysbalance explains the favourable effects of strict glucose regulation in the critically ill The Netherlands journal of medicine, 62 (5), 143-150 31 Roubenoff R., Grinspoon S., Skolnik P R., et al (2002) Role of cytokines and testosterone in regulating lean body mass and resting energy expenditure in HIV-infected men American Journal of Physiology-Endocrinology and Metabolism, 283 (1), E138-E145 32 Nair K (1987) Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency The Journal of clinical endocrinology and metabolism, 64 (5), 896-901 33 Cerra F B., Benitez M R., Blackburn G L., et al (1997) Applied nutrition in ICU patients: a consensus statement of the American College of Chest Physicians CHEST Journal, 111 (3), 769-778 34 Gariballa S., Forster S (2006) Energy expenditure of acutely ill hospitalised patients Nutr J, (9), 1-5 35 Wilmore D., Long J., Mason Jr A., et al (1974) Catecholamines: mediator of the hypermetabolic response to thermal injury Annals of surgery, 180 (4), 653-669 36 Kress J P., O'Connor M F., Pohlman A S., et al (1996) Sedation of critically ill patients during mechanical ventilation A comparison of propofol and midazolam American journal of respiratory and critical care medicine, 153 (3), 1012-1018 37 Weissman C., Kemper M., Damask M., et al (1984) Effect of routine intensive care interactions on metabolic rate CHEST Journal, 86 (6), 815-818 38 Frankenfield D C., Wiles III C E., Bagley S., et al (1994) Relationships between resting and total energy expenditure in injured and septic patients Critical care medicine, 22 (11), 1796-1804 39 Badjatia N., Strongilis E., Gordon E., et al (2008) Metabolic Impact of Shivering During Therapeutic Temperature Modulation The Bedside Shivering Assessment Scale Stroke, 39 (12), 3242-3247 40 Garrel D R., de Jonge L (1994) Intragastric vs oral feeding: effect on the thermogenic response to feeding in lean and obese subjects The American journal of clinical nutrition, 59 (5), 971-974 41 Heymsfield S B., Hill J O., Evert M., et al (1987) Energy expenditure during continuous intragastric infusion of fuel The American journal of clinical nutrition, 45 (3), 526-533 42 Frankenfield D C., Ashcraft C M (2012) Description and prediction of resting metabolic rate after stroke and traumatic brain injury Nutrition, 28 (9), 906-911 43 Jeevanandam M., Young D H., Schiller W R (1991) Obesity and the metabolic response to severe multiple trauma in man Journal of Clinical Investigation, 87 (1), 262 44 Mỹller M., BosyWestphal A., Kutzner D., et al (2002) Metabolically active components of fatfree mass and resting energy expenditure in humans: recent lessons from imaging technologies Obesity reviews, (2), 113-122 45 Javed F., He Q., Davidson L E., et al (2010) Brain and high metabolic rate organ mass: contributions to resting energy expenditure beyond fatfree mass The American journal of clinical nutrition, 91 (4), 907-912 46 Hoffer L J (2003) Protein and energy provision in critical illness The American journal of clinical nutrition, 78 (5), 906-911 47 Frankenfield D., Smith J S., Cooney R N (2004) Validation of approaches to predicting resting metabolic rate in critically ill patients Journal of Parenteral and Enteral Nutrition, 28 (4), 259-264 48 Starling R., Pochlman E (2000) Assessment of energy requirements in elderly populations European journal of clinical nutrition Supplement, 54 (3), S104-S111 49 Wang Z., Heshka S., Heymsfield S B., et al (2005) A cellular-level approach to predicting resting energy expenditure across the adult years The American journal of clinical nutrition, 81 (4), 799-806 50 Harris J A., Benedict F G (1918) A biometric study of human basal metabolism Proceedings of the National Academy of Sciences of the United States of America, (12), 370 51 Ireton-Jones C., Jones J D (2002) Improved equations for predicting energy expenditure in patients: the Ireton-Jones equations Nutrition in Clinical Practice, 17 (1), 29-31 52 Frankenfield D C., Smith J S., Cooney R N (1997) Accelerated nitrogen loss after traumatic injury is not attenuated by achievement of energy balance JPEN, Journal of Parenteral and Enteral Nutrition, 21 (6), 324 53 Trnh Bnh Dy (2006) Sinh ly hc I Chuyn húa nng lng, Nh xut bn y hc, H Ni, 77-91 54 Weir J d V (1949) New methods for calculating metabolic rate with special reference to protein metabolism The Journal of physiology, 109 (1-2), 1-9 55 Bursztein S., Saphar P., Singer P., et al (1989) A mathematical analysis of indirect calorimetry measurements in acutely ill patients The American journal of clinical nutrition, 50 (2), 227-230 56 Ferrannini E (1988) The theoretical bases of indirect calorimetry: a review Metabolism, 37 (3), 287-301 57 Wooley J A (2006) Indirect calorimetry: applications in practice Respir Care Clin N Am, 12 (4), 619-633 58 Schlein K M., Coulter S P (2014) Best practices for determining resting energy expenditure in critically ill adults Nutrition in Clinical Practice, 29 (1), 44-55 59 Kross E K., Sena M., Schmidt K., et al (2012) A comparison of predictive equations of energy expenditure and measured energy expenditure in critically ill patients Journal of critical care, 27 (3), 321 e325-321 e312 60 Segadilha N L., Rocha E E., Tanaka L M., et al (2016) Energy Expenditure in Critically Ill Elderly Patients Indirect Calorimetry vs Predictive Equations Journal of Parenteral and Enteral Nutrition, 0148607115625609 61 Ireton-Jones C S., Turner Jr W W., Liepa G U., et al (1992) Equations for the estimation of energy expenditures in patients with burns with special reference to ventilatory status Journal of Burn Care & Research, 13 (3), 330-333 62 Cheng C.-H., Chen C.-H., Wong Y., et al (2002) Measured versus estimated energy expenditure in mechanically ventilated critically iII patients Clinical nutrition, 21 (2), 165-172 63 Levy M M., Fink M P., Marshall J C., et al (2003) 2001 sccm/esicm/accp/ats/sis international sepsis definitions conference Intensive care medicine, 29 (4), 530-538 64 WHO E C (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies Lancet, 363 (9403), 157 65 Hume R (1966) Prediction of lean body mass from height and weight Journal of clinical pathology, 19 (4), 389-391 66 Mark S Siobal, Baltz J E (2013) Determining Nutritional Requirement A Guide to the Nutritional Assessment and Treatment of the Critically Ill Patient, American Association for Respiratory Care, 3036 67 De Gúes C., Berbel-Bufarah M., Sanches A., et al (2016) Poor Agreement between Predictive Equations of Energy Expenditure and Measured Energy Expenditure in Critically Ill Acute Kidney Injury Patients Annals of Nutrition and Metabolism, 68 (4), 276-284 68 Reid C L (2007) Poor agreement between continuous measurements of energy expenditure and routinely used prediction equations in intensive care unit patients Clinical nutrition, 26 (5), 649-657 69 De Waele E., Opsomer T., Honore P M., et al (2015) Measured versus calculated resting energy expenditure in critically ill adult patients Do mathematics match the gold standard? Minerva Anestesiol, 81 (3), 272282 70 Zijlstra N., ten Dam S M., Hulshof P J., et al (2007) 24-hour indirect calorimetry in mechanically ventilated critically ill patients Nutr Clin Pract, 22 (2), 250-255 71 Gottschlich M M., Jenkins M., Mayes T., et al (1997) Lack of effect of sleep on energy expenditure and physiologic measures in critically ill burn patients J Am Diet Assoc, 97 (2), 131-139 72 Haugen H A., Melanson E L., Tran Z V., et al (2003) Variability of measured resting metabolic rate Am J Clin Nutr, 78 (6), 1141-1145 73 Klausen B., Toubro S., Astrup A (1997) Age and sex effects on energy expenditure The American journal of clinical nutrition, 65 (4), 895-907 74 Poblete B., Romand J., Pichard C., et al (1997) Metabolic effects of iv propacetamol, metamizol or external cooling in critically ill febrile sedated patients British journal of anaesthesia, 78 (2), 123-127 75 Bardutzky J., Georgiadis D., Kollmar R., et al (2004) Energy expenditure in ischemic stroke patients treated with moderate hypothermia Intensive care medicine, 30 (1), 151-154 76 Cresci G A (2015) Energy Expenditure in the Critically Ill Patient Nutrition for the Critically Ill Patient A Guide to Practice, second, Taylor & Francis Group, 93-107 77 Moriyama S., Okamoto K., Tabira Y., et al (1999) Evaluation of oxygen consumption and resting energy expenditure in critically ill patients with systemic inflammatory response syndrome Critical care medicine, 27 (10), 2133-2136 78 Botran M., Lopez-Herce J., Mencia S., et al (2011) Relationship between energy expenditure, nutritional status and clinical severity before starting enteral nutrition in critically ill children Br J Nutr, 105 (5), 731-737 79 Rao Z.-Y., Wu X.-T., Wang M.-Y., et al (2012) Comparison between measured and predicted resting energy expenditure in mechanically ventilated patients with COPD Asia Pacific journal of clinical nutrition, 21 (3), 338-346 80 Pirat A., Tucker A M., Taylor K A., et al (2009) Comparison of measured versus predicted energy requirements in critically ill cancer patients Respiratory care, 54 (4), 487-494 81 Campbell C G., Zander E., Thorland W (2005) Predicted vs measured energy expenditure in critically ill, underweight patients Nutrition in Clinical Practice, 20 (2), 276-280 82 Miles J M (2006) Energy expenditure in hospitalized patients: implications for nutritional support Mayo Clin Proc, 81 (6), 809-816 83 Frankenfield D C., Coleman A., Alam S., et al (2009) Analysis of estimation methods for resting metabolic rate in critically ill adults Journal of Parenteral and Enteral Nutrition, 33 (1), 27-36 PH LC NH GI TèNH TRNG NNG BNG BNG IM APACHE II 39 - 40,9 T nhit 41 HA trb TS tim TS th A-a PO2 160 180 50 500 130 -159 140 -179 35- 49 350 - 499 110 -129 110 -139 PaO2 pH M Na+ K+ Creatinin Ht (%) Bch cu Glasgow Tui Bnhlý cp hay mn tớnh 7,7 7,6 -7,69 180 310 160 -179 -6,9 176 -299 60 40 38,5 -38,9 25 -34 200 - 349 7,5 -7,59 155 -159 150 -154 5,5 -5,9 132 -167 50 -59,9 20 -39,9 36 -38,4 70 -109 70 -109 12 - 24 < 200 > 70 7,3 -7,59 130 -149 3,5-5,4 52,8 -123 46 - 49,9 15 -19,9 30 - 45,9 3-14,9 13 -15 < 44: 45-54: 55-64: Bnh ly mn tớnh nng: Cng thờm im Bnh cp cu hay m cp cu: Cng thờm im 34 -35,9 32 -33,9 10 -11 50 -69 55 -69 -9 61-70 7,25 -7,32 -3,4 120 -129 2,5 -2,9 < 52,8 20 -29,9 1-2,9 10 -12 7-9 65-74: 30 -31,9 29,9 40 -54 49 39 55 -60 7,15 -7,24 < 55 < 7,15 111 -119 110 < 2,5 4-6 >75: < 20

Ngày đăng: 21/06/2017, 08:24

Từ khóa liên quan

Mục lục

  • ĐẶT VẤN ĐỀ

  • Chương 1

  • TỔNG QUAN

    • 1.2.2.1. Đáp ứng viêm ở bệnh nhân nặng

    • 1.2.2.2. Liên quan giữa bệnh và đáp ứng viêm với mức độ chuyển hóa ở các bệnh nhân nặng

    • 1.2.2.3. Vai trò của các Cytokines

    • 1.2.2.4. Tác động của hoạt động thể chất và một số loại thuốc đến mức độ chuyển hóa lúc nghỉ

    • 1.2.2.5. Tác động của hiệu ứng nhiệt của thức ăn lên chuyển hóa lúc nghỉ

    • 1.2.2.6. Ảnh hưởng của kích thước và thành phần cơ thể lên chuyển hóa lúc nghỉ

    • 1.2.2.7. Ảnh hưởng của yếu tố tuổi đến mức độ chuyển hóa lúc nghỉ

    • 1.2.2.8. Mối liên hệ giữa tăng chuyển hóa và tăng dị hóa

    • 1.3.2.1. Nguyên lý của phương pháp

    • 1.3.2.2. Thương số hô hấp (RQ)

    • 1.3.2.3. Các phương pháp đo nhiệt lượng gián tiếp kinh điển

    • 1.3.2.4. Các thiết bị đo nhiệt lượng gián tiếp

    • Cho đến hiện tại, có khoảng trên 200 phương trình và công thức ước tính đã được công bố trong y văn [11], hầu hết các phương trình này đều có quần thể tham chiếu là những người tình nguyện khỏe mạnh tiêu biểu là phương trình Harris – Benedict, phương trình Mifflin St Jeor,… Một số ít phương trình được xây dựng dựa trên quần thể tham chiếu là các bệnh nhân nặng thở máy như phương trình Penn State 1998 – 2003 – 2010, phương trình Iton – Jones,…

    • Các hiệp hội lâm sàng cũng đưa ra khuyến cáo tính nhu cầu năng lượng cho bệnh nhân theo cách đơn giản hơn khi chỉ số hóa số calo dự tính theo cân nặng, tiêu biểu là Trường môn các thầy thuốc lồng ngực Mỹ (ACCP), hiệp hội dinh dưỡng lâm sàng châu âu (ESPEN), hiệp hội dinh dưỡng lâm sàng Mỹ (ASPEN),…Dưới đây là một số phương trình ước tính tiêu biểu

    • Tiêu biểu nhất là hướng dẫn của 2 hiệp hội dinh dưỡng lâm sàng lớn: Hiệp hội dinh dưỡng lâm sàng châu âu (ESPEN), Hiệp hội dinh dưỡng lâm sàng Mỹ (ASPEN).

    • ESPEN đưa ra khuyến cáo: nếu không thể thực hiện được phép đo nhiệt lượng gián tiếp tổng số calo cần cung cấp cho các bệnh nhân hồi sức nên đạt mức 25 kcal/kg [7].

    • ASPEN đưa ra khuyến cáo: khi không thực hiện được đo nhiệt lượng gián tiếp thì có thể sử dụng một phương trình ước tính phù hợp hoặc sử dụng công thức 25 – 30 kcal/kg để tính nhu cầu năng lượng cho các bệnh nhân nặng [11].

    • Một số nghiên cứu đã thực hiện đánh giá độ chính xác khi ước tính tiêu hao năng lượng lúc nghỉ bằng cách áp dụng các mức năng lượng theo khuyến cáo từ 20 kcal đến 35 kcal đã cho thấy, các giá trị REE khi áp dụng theo cách tính này thường có chênh lệch khá nhiều so với REE đo, không có công thức tính năng lượng theo cân nặng nào có độ chính xác cao kể cả khi áp dụng theo cân nặng thực tế, cân nặng điều chỉnh hay cân nặng lý tưởng [13], [59], [60].

Tài liệu cùng người dùng

Tài liệu liên quan