1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

ẢNH HƯỞNG CỦA ĐỐI XỨNG PHÂN TỬ LÊN QUÁ TRÌNH PHÁT SÓNG ĐIỀU HÒA BẬC CAO

40 485 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 1,04 MB

Nội dung

Header Page of 185 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH Nguyễn Thị Ái Như ẢNH HƯỞNG CỦA ĐỐI XỨNG PHÂN TỬ LÊN QUÁ TRÌNH PHÁT SÓNG ĐIỀU HÒA BẬC CAO LUẬN VĂN THẠC SĨ VẬT LÍ Thành phố Hồ Chí Minh-2014 Footer Page of 185 Header Page of 185 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH Nguyễn Thị Ái Như ẢNH HƯỞNG CỦA ĐỐI XỨNG PHÂN TỬ LÊN QUÁ TRÌNH PHÁT SÓNG ĐIỀU HÒA BẬC CAO Chuyên ngành: Vật lí nguyên tử Mã số: 60 44 01 06 LUẬN VĂN THẠC SĨ VẬT LÍ NGƯỜI HƯỚNG DẪN KHOA HỌC: TS NGUYỄN NGỌC TY Thành phố Hồ Chí Minh-2014 Footer Page of 185 Header Page of 185 LỜI CẢM ƠN Tôi xin gửi lời tri ân đến thầy hướng dẫn TS Nguyễn Ngọc Ty Thầy ân cần hướng dẫn, bảo tận tình tạo điều kiện thuận lợi để tham gia nghiên cứu khoa học hoàn thành luận văn Xin gởi lời cảm ơn chân thành đến Th.s Lê Thị Cẩm Tú, người giúp đỡ, động viên, hỗ trợ quan tâm suốt trình thực luận văn Tôi xin cảm ơn tất thầy, cô môn Vật lý lý thuyết, Trường Đại học Sư Phạm Tp HCM truyền đạt kiến thức khoa học suốt thời gian tham gia học tập Xin cảm ơn phòng Đào tạo sau đại học – Trường Đại học Sư Phạm Tp HCM, hướng dẫn, hỗ trợ thủ tục để hoàn thành khóa học Xin cảm ơn gia đình khuyến khích an ủi để an tâm tập trung học tập Tác giả Nguyễn Thị Ái Như Footer Page of 185 Header Page of 185 MỤC LỤC Lời cảm ơn Danh mục chữ viết tắt Danh mục hình vẽ, đồ thị MỞ ĐẦU Chương TƯƠNG TÁC GIỮA LASER VỚI NGUYÊN TỬ, PHÂN TỬ 1.1 Quá trình ion hóa 1.1.1 Gần trường mạnh (MO-SFA) 1.1.2 Gần ADK cho phân tử (MO-ADK) 1.2 Lý tuyết phát xạ sóng điều hòa 11 1.2.1 Mô hình Lewenstein phát xạ sóng điều hòa 11 1.2.2 Công thức tính HHG 13 Chương KẾT QUẢ 18 2.1 Dạng đối xứng π g CO O 18 2.2 Dạng đối xứng σ g phân tử N 21 2.3 Dạng đối xứng π phân tử HCN 21 2.4 Dạng đối xứng σ phân tử HNC 22 2.5 Dạng đối xứng π phân tử OCS 23 2.6 Tốc độ ion hóa phân tử 24 2.6.1 Tốc độ ion hóa phân tử N , O CO 24 2.6.2 Tốc độ ion hóa phân tử HCN 26 2.6.3 Tốc độ ion hóa phân tử HNC 27 Footer Page of 185 Header Page of 185 2.6.4 Tốc độ ion hóa phân tử OCS 28 KẾT LUẬN 30 HƯỚNG PHÁT TRIỂN 30 TÀI LIỆU THAM KHẢO 31 Footer Page of 185 Header Page of 185 DANH MỤC CÁC CHỮ VIẾT TẮT Chữ viết tắt Chữ viết đầy đủ ADK Gần ion hóa xuyên hầm (Ammosov-Delone-Krainov) MO – ADK Lý thuyết ion hóa xuyên hầm phân tử (Molecular Orbital ADK) HHG Sóng điều hòa bậc cao (High – order Harmonic Generation) HOMO Orbital phân tử (Highest Occupied Molecular Orbital) SAE Gần điện tử (Single Active Electron) SFA Gần trường mạnh (Strong Field Approximation) MO – SFA Gần trường mạnh phân tử (Molecular Orbital SFA) Footer Page of 185 Header Page of 185 DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Hình 1.1 Phổ HHG đặc trưng nguyên tử, phân tử Hình 1.2 Minh họa cho mô hình ba bước bán cổ điển 12 Hình 2.1 HOMO O CO 18 Hình 2.2 HHG O CO 19 Hình 2.3 HHG O cường độ đỉnh laser thay đổi 19 Hình 2.4 HHG O bước sóng laser thay đổi 20 Hình 2.5 HHG O độ dài xung laser thay đổi 20 Hình 2.6 HOMO cường độ HHG N 21 Hình 2.7 HOMO cường độ HHG HCN 22 Hình 2.8 HOMO cường độ HHG HNC 22 Hình 2.9 HOMO cường độ HHG OCS 23 Hình 2.10 Tốc độ ion hóa phân tử N , O CO 25 Hình 2.11 Tốc độ ion hóa phân tử HCN 26 Hình 2.12 Tốc độ ion hóa phân tử HNC 27 Hình 2.13 Tốc độ ion hóa phân tử HNC với I=4.1014 Wcm-2 27 Hình 2.14 Tốc độ ion hóa phân tử OCS 29 Footer Page of 185 Header Page of 185 MỞ ĐẦU Năm 1917, Albert Einstein đưa giả thiết: chiếu vào nguyên tử chùm sóng điện từ, trình xạ xảy photon phát có bước sóng với photon chiếu vào Ý tưởng sở cho đời phát triển tia laser Tuy nhiên, để thực ý tưởng phải gần nửa kỷ nhà khoa học giới tạo thiết bị chứng để chứng minh giả thuyết Einstein nêu khả thi Bước đột phá laser vào năm 1960, laser thực nghiệm đời từ laser hồng ngọc thể rắn, tạo John L Hall, Theodor W Hansch Roy J Glauder làm việc phòng thí nghiệm Hughes Malibu, bang California (giải Nobel Vật Lý năm 2005) Cho đến cuối năm 80, sóng điều hòa bậc cao (High – order Harmonic Generation, viết tắt HHG) phát lần đầu tiên, tượng chiếu laser hồng ngoại có tần số ω vào nguyên tử khí từ phát tần số trải dài từ ω tới tần số sóng cực ngắn (XUV) Ban đầu thí nghiệm HHG tiến hành với mục đích tìm điều kiện quang học cần thiết cho phát xạ HHG, từ phát triển nguồn phát xạ ánh sáng xung ngắn vùng XUV vùng tia X mềm (soft X-ray) Tuy nhiên, trình tìm hiểu phổ phát xạ HHG số phân tử đơn giản, nhà nghiên cứu nhận thấy có phụ thuộc phổ HHG vào định hướng trục phân tử trường laser [15], [17] Hơn nữa, HHG xảy thời điểm electron tái kết hợp với ion mẹ, nhà nghiên cứu cho sóng HHG mang thông tin cấu trúc phân tử Từ mở hướng nghiên cứu vật lí học sử dụng HHG phát trường laser xung ngắn, cường độ mạnh tương tác với nguyên tử, phân tử để tìm hiểu thông tin cấu trúc phân tử Trong công trình [13], tác giả nghiên cứu cho thấy tầm ảnh hưởng đám mây điện tử phân tử (Highest Occupied Molecular Orbital, viết tắt HOMO) trình phát HHG Tiếp theo đó, nhiều báo khác khảo sát đưa kết luận phụ thuộc HHG vào dạng đối xứng đám mây điện tử [3], [5], Footer Page of 185 Header Page of 185 [9] Tùy vào đối tượng phân tử, phân loại theo hình dạng đám mây điện tử, mà khả ion hóa laser có khác Quá trình khảo sát tầm quan trọng HOMO phân tử tốc độ ion hóa (số electron khỏi phân tử giây) nghiên cứu nhóm Tong [9] Bên cạnh đó, thí nghiệm ban đầu cho thấy tốc độ ion hóa xuyên hầm phụ thuộc vào lượng liên kết phân tử tài liệu [13], tác giả tính toán chứng tỏ tốc độ ion hóa phụ thuộc vào đại lượng lượng Từ công trình nghiên cứu trên, ta thấy tầm quan trọng HOMO trình khảo sát cường độ HHG tốc độ ion hóa electron nguyên tử, phân tử Với mục tiêu giải thích cho khác phổ HHG dạng HOMO, thực luận văn “Ảnh hưởng đối xứng phân tử lên trình phát sóng điều hòa bậc cao” Mặc dù HHG tốc độ ion hóa nghiên cứu phụ thuộc vào dạng HOMO, chưa có giải thích cụ thể cho phụ thuộc Cho nên, với mục tiêu đề luận văn, tiến hành tính HHG cho HOMO, sau khảo sát tốc độ ion hóa phân tử, để từ tìm mối liên hệ HHG tốc độ ion hóa nhằm giải thích cho khác biệt HHG dạng đối xứng phân tử Để đạt điều đó, tính toán HHG, tốc độ ion hóa cho phân tử có cấu trúc đơn giản bao gồm HOMO có dạng đối xứng chuẩn ( σ g , π g ) dạng đối xứng không chuẩn ( σ , π ) Chúng tìm HHG đạt cực đại phân tử O , N , CO , HCN, HNC, OCS Đồng thời khảo sát HHG phân tử thay đổi thông số cường độ laser, bước sóng hay độ dài xung thay đổi Để mô HOMO phân tử sử dụng phần mềm Gasusian để thu nhận phổ HHG, dựa mô hình ba bước thiết lập chương trình tính toán phổ HHG nhóm nghiên cứu Đại học Kansas (Hoa Kỳ) Đại hoc Sư phạm Tp HCM (Việt Nam) Bên cạnh đó, việc sử dụng chương trình này, nhận tốc độ ion hóa phân tử Footer Page of 185 Header Page 10 of 185 Luận văn bao gồm phần mở đầu, kết luận hai chương Chương tổng quan ảnh hưởng đối xứng phân tử lên trình phát sóng điều hòa bậc cao dạng đối xứng HOMO tốc độ ion hóa để sử dụng cho mục đích chương Chương nêu lên đóng góp luận văn, khảo sát ảnh hưởng đối xứng phân tử lên trình phát sóng hài bậc cao giải thích kết Trong chương 1, giới thiệu cách tính tốc độ ion hóa phân tử tác dụng trường điện laser, nghĩa cho biết số phân tử bị ion đơn vị thời gian Theo cách tiếp cận lý thuyết để tính phát xạ HHG chia thành hai hướng Một giải trực tiếp phương trình Schrödinger phụ thuộc thời gian nguyên tử hay phân tử trường laser Hai thiết lập mô hình gần để đơn giản hóa toán tương tác laser cường độ cao phân tử, nguyên tử Theo hướng tiếp cận mô hình, có hai mô hình dùng rộng rãi mô hình gần MO-ADK hay gọi thuyết ion hóa xuyên hầm Ammosov, Delone Krainov đưa năm 1986 sau kế thừa phát triển nhóm nhà khoa học Đại học Kansas (Mỹ) [1] hay gần trường mạnh MO-SFA khởi xướng Keldysh, Faisal Reiss cho nguyên tử sau mở rộng cho phân tử [2], [14] giới thiệu chương Bên cạnh đó, trình bày lý thuyết phát xạ HHG dựa mô hình Lewenstein công bố năm 1994 [3], [4] Tuy mô hình bán cổ điển, với thành công đáng kể việc giải thích chế hình thành HHG đặc tính nên mô hình cộng đồng khoa học công nhận sử dụng rộng rãi thập kỷ qua Trong chương 2, tính cường độ HHG tốc độ ion hóa cho phân tử có dạng đối xứng chuẩn không chuẩn Mặt khác, so sánh HHG phân tử thay đổi thông số laser chiếu vào Ngoài HHG thu tiến hành tính tốc độ ion hóa dựa vào để giải thích cho khác biệt HHG phân tử Footer Page 10 of 185 Header Page 26 of 185 (a) (a) Góc Gócđịnh địnhphương phương(độ) (độ) Cường độ HHG CườngđộđộHHG HHG Cường 19 (b) Góc Góc định định phương phương (độ) (độ) (b) Hình 2.2 Cường độ HHG O2 (a) CO2 (b) với độ dài xung 30fs, cường độ đỉnh O , HHG đạt cực đại khoảng 40° CO khoảng 45° (Hình 2.2) Với việc tăng cường độ laser lên 3.1014 W/cm2 4.1014 W/cm2, khảo sát phổ HHG phân tử O thấy điểm cực đại khoảng 40° (Hình 2.3) Sau giữ nguyên cường độ đỉnh 2.1014 W/cm2 độ dài xung 30 fs thay đổi bước sóng 1000 nm 1200 nm Kết vị trí HHG cực đại không thay đổi (Hình 2.4) Cuối cùng, thu HHG tăng độ dài xung laser lên 45 fs 60 fs mà cố định bước sóng cường độ đỉnh laser 800 nm 2.1014 W/cm2 (Hình 2.5) Tương tự với cách làm trên, khảo sát phụ thuộc vị trí cực đại HHG phân tử CO vào thay đổi thông số laser độ dài xung, bước sóng cường độ đỉnh Kết cho thấy điểm HHG cực đại khoảng 45° phân tử CO Với thay đổi thông số laser, áp dụng cho tất phân tử lại khảo sát luận văn Footer Page 26 of 185 Header Page 27 of 185 Cường độ HHG Cường độ HHG 20 Góc định phương (độ) Góc định phương (độ) Hình 2.3 Cường độ HHG O2 Cường độ HHG Cường độ HHG thay đổi cường độ laser 3.1014 W/cm2 (a) 4.1014 W/cm2 (b) (a) (b) Góc định phương (độ) Góc định phương (độ) Hình 2.4 Cường độ HHG O2 thay đổi đổi bước sóng laser lần (a) Góc định phương (độ) Cường độ HHG Cường độ HHG lượt 1000 nm (a), 1200 nm (b) (b) Góc định phương (độ) Hình 2.5 Cường độ HHG O2 thay đổi độ dài xung laser 45 fs (a) 60 fs (b) Footer Page 27 of 185 Header Page 28 of 185 2.2 21 Dạng đối xứng σ g phân tử N2 Phân tử N có dạng đối xứng σ g (Hình 2.6a) nghĩa mật độ electron dọc theo trục liên hạt nhân lớn Do N có dạng đối xứng chuẩn nên cần khảo sát HHG khoảng từ 0° đến 90° Đối với dạng đối xứng này, HHG cực đại Cường độ HHG 0° giảm dần tới 90° (Hình 2.6b) (a) (b) Góc định phương (độ) Hình 2.6 HOMO (a) cường độ HHG (b) phân tử N2 với I= , độ dài xung 30 fs, Chúng thay đổi thông số laser HHG phân tử N có hình dạng điểm cực đại không thay đổi so với trường hợp ban đầu 2.3 Dạng đối xứng π phân tử HCN Phân tử HCN có dạng đối xứng π u (Hình 2.7a) Với dạng đối xứng này, mật độ điện tử nhỏ dọc theo trục liên hạt nhân Với cường độ laser 2.1014 W/cm2 bước sóng chu kỳ quang học 800 nm 10 fs vị trí cực đại cường độ HHG phân tử HCN 900 (Hình 2.7b) Phổ HHG không thay đổi vị trí cực đại thông số laser thay đổi dù cường độ HHG thông số khác khác Từ Hình 2.7b Phổ HHG tăng đặn từ 0° đến 90° Do tính chất đối xứng dự đoán cường độ HHG giảm dần đạt cực tiểu 180° Footer Page 28 of 185 Header Page 29 of 185 2.4 22 Dạng đối xứng σ phân tử HNC Hình 2.8a cho thấy HOMO phân tử HNC giống với phân tử N , nghĩa mật độ điện tử nằm dọc theo trục phân tử Tuy nhiên, phân tử không tâm đối Cường độ HHG xứng nên khảo sát HHG từ 0° đến 180° Khi thay đổi cường độ laser với độ (b) Góc định phương (độ) (a) Hình 2.7 HOMO (a) HHG (b) phân tử HCN ứng với , độ dài xung 30 fs, Cường Cườngđộ độHHG HHG I= (a) (b) Góc định phương (độ) Hình 2.8 HOMO (a) HHG (b) phân tử HNC ứng với với I= Footer Page 29 of 185 , độ dài xung 30 fs, Header Page 30 of 185 23 dài xung bước sóng giữ cố định 30 fs 800 nm, Hình 2.8b biểu diễn cường độ HHG phân tử HNC đạt cực đại 0° giảm dần hướng laser phân cực vuông góc với trục phân tử, 180° trục phân tử phương với laser phân cực HHG có giá trị lớn Bên cạnh đó, ta thấy HHG cực đại 0° cao 180° Bằng việc đo bậc HHG bất kỳ, dáng điệu phổ HHG không thay đổi cường độ laser thay đổi Tương tự phân tử trước đó, HHG cực đại vị trí xác định trước thay đổi thông số laser, cụ thể cường độ HHG HNC lớn 0° 180° Tuy nhiên, phân tử đối xứng chuẩn xuất hai điểm cực đại với cường độ chênh lệch Để kiểm chứng cho kết luận này, tính HHG cho phân tử OCS, mà phân tử có dạng đối xứng không chuẩn, trình bày Điều cho thấy HOMO ảnh hưởng đến phổ HHG giải thích phần sau thông qua việc tính tốc độ ion hóa phân tử 2.5 Dạng đối xứng π phân tử OCS Từ hình 2.9a cho thấy phân bố điện tích dọc theo trục phân tử OCS nhỏ nhất, đám mây electron lớn nằm hai phía trục liên kết Phân tử OCS có dạng đối xứng π tâm đối xứng nên cần phải tiến hành đo HHG từ 0° đến 180° Ở Hình 2.9b, cường độ HHG phân tử OCS đạt cực đại hai Cường độ HHG vị trí, vào khoảng 45° 135° với phổ HHG 45° lớn cường độ HHG Góc định phương (độ) Footer Page 30 of 185 Header Page 31 of 185 24 135° Kết luận không khác so với phân tử khảo sát trước đó: HHG không phụ thuộc vào thông số laser, ứng với phân tử, hay xác tùy thuộc vào dạng đối xứng HOMO HHG có hay hai cực đại xác định 2.6 Tốc độ ion hóa phân tử 2.6.1 Tốc độ ion hóa phân tử N2, O2 CO2 Trong tiểu mục này, mô tả phụ thuộc tốc độ ion hóa vào góc hướng laser phân cực trục phân tử Tất phân tử khảo sát phân tử thẳng với đối xứng chuẩn N2, O2, CO2, HCN, xét phạm vi từ 0-90° vẽ trường hợp HOMO phân tử HNC OCS trường hợp đối xứng chuẩn thực phép đo tốc độ ion hóa với góc θ đến 180° Giả sử phân tử ba nguyên tử CO , phân tử không định phương dọc theo trường điện, đối xứng bị bẻ cong trường laser Tuy nhiên, cấu trúc hình học phân tử không thay đổi đáng kể suốt trình ion hóa Do đó, giả sử thời gian phân tử trường laser đủ ngắn để xảy ion hóa Sự ion hóa xuyên hầm phụ thuộc vào mật độ electron Do đó, O trục phân tử định hướng, đám mây điện tích không xuất dọc theo trục phân tử, ion hóa gần bị triệt tiêu (vì xuất electron xác suất có mặt electron thấp) Đó cách hình dung hình học đơn giản Để củng cố thêm khẳng định trên, tiến hành tính tốc độ ion hóa N O Để đánh giá phụ thuộc vào góc ion hóa phân tử dùng xung laser có độ dài 30 fs với cường độ 2.1014 Wcm-2 bước sóng 800 nm So sánh Hình 2.10a Hình 2.10b, rõ ràng thấy tốc độ ion hóa θ = 0° phân tử N lớn có dạng đối xứng σ g O có tốc độ giảm giá trị O có HOMO dạng π g Tuy nhiên, phân tử CO dù có dạng đối xứng với phân tử O , tốc độ ion hóa lại cực đại khoảng 40° (Hình 2.10c) Sự khác biệt không đáng kể hiệu ứng đa photon mà bị bỏ qua mô hình SAE Do đó, vấn đề ion hóa phân tử vấn đề phức tạp cần tính đến hiệu ứng nhiều electron mô hình sau [15] Chi tiết Footer Page 31 of 185 Header Page 32 of 185 25 hơn, công trình [8] nghiên cứu lý giải khác điểm cực đại O CO dù chúng có dạng đối xứng HOMO Cho đến phân tử ba nguyên tử CO chưa có nghiên cứu chi tiết cấu trúc điện tử xét đến tín hiệu đa electron bao gồm mô hình MO-ADK thuyết Keldysh-Faisal-Reiss [15] Do đó, cần phải có phương pháp cho hệ phân tử đa nguyên tử khảo sát chi tiết bao gồm tín hiệu electron Từ Hình 2.10 thấy rằng: tốc độ ion hóa N giảm dần góc tăng, CO O đạt cực đại khoảng 40°-45° đạt giá trị nhỏ định O2 (b) Tốc độ ion hóa Tốc độ ion hóa N2 (a) Tốc độ ion hóa Góc định phương (độ) Góc định phương (độ) CO2 (c) Góc định phương (độ) Hình 2.10 Đồ thị thể tốc độ ion hóa N2 (a), O2 (b) CO2 (c) với cường độ laser chiếu vào 2.1014 Wcm-2 Footer Page 32 of 185 Header Page 33 of 185 26 hướng phương vuông góc với trục laser phân cực Trong trường laser cường độ cao, phân tử N , mật độ electron dọc theo trục phân tử lớn nhất, phân tử định hướng theo hướng laser phân cực, tức θ = 00 tốc độ ion hóa đạt cực đại Tương tự, mật độ điện tích CO O lớn khoảng 40°-45° so với trục phân tử phân tử định hướng theo góc này, nghĩa hướng véc-tơ điện trường qua vùng nhiều electron khả electron thoát khỏi phân tử nhiều nhất, đồng nghĩa với khả xảy ion hóa lớn Kết thực giống với kết Zhao cộng giải theo phương pháp ADK, họ dự đoán ion hóa N đạt cực đại định hướng song song với hướng điện trường Trái lại, O có xác suất ion hóa cực tiểu định hướng Trường hợp tính tốc độ ion hóa phân tử N kiểm chứng thực nghiệm Corkum [3] 2.6.2 Tốc độ ion hóa phân tử HCN Phân tử HCN có orbital đối xứng dạng π với dạng đối xứng laser chiếu vào dọc theo trục liên hạt nhân, theo hướng mật độ electron nhỏ nhất, cho kết tốc độ ion hóa không Nhưng laser trục phân tử vuông góc với nhau, nghĩa hướng véc-tơ điện trường qua vùng có mật độ electron nhiều có nhiều điện tử bị ion hóa Tốc độ ion hóa Hình 2.11 cho thấy tốc độ ion hóa phân tử HCN nhỏ 0°, sau tăng Góc định phương (độ) Hình 2.11 Đồ thị thể tốc độ ion hóa HCN với cường độ laser chiếu vào 2.1014 Wcm-2 Footer Page 33 of 185 Header Page 34 of 185 27 dần đến 90° đạt cực đại Do có dạng đối xứng chuẩn nên dự đoán khoảng 900 < θ < 1800 số điện tử bị ion hóa giảm dần không 2.6.3 Tốc độ ion hóa phân tử HNC Bên cạnh đó, dạng đối xứng không chuẩn HOMO có dạng đối xứng σ phân tử HNC Từ Hình 2.8a thấy electron phân bố dọc theo trục phân tử Tốc độ ion hóa phép tính toán cho thấy tọa độ nguyên tử xếp trục z theo thứ tự Góc định phương (độ) Hình 2.12 Đồ thị thể tốc độ ion hóa Tốc độ ion hóa HNC với cường độ laser chiếu vào 2.1014 Wcm-2 Góc định phương (độ) Hình 2.13 Đồ thị thể tốc độ ion hóa HNC với cường độ laser chiếu vào 4.1014 Wcm-2 Footer Page 34 of 185 Header Page 35 of 185 28 từ trái sang phải H, N, C Trong đó, nguyên tử Các-bon có tọa độ dương Hydro, Ni-tơ có toạ độ âm Khi trục phân tử hợp với hướng điện trường góc 0°, đồng  nghĩa E qua phân tử Các-bon vùng nhiều electron nhất, nên tốc độ ion hóa   tọa độ lớn Khi E đổi chiều, có hướng từ phải sang trái, nghĩa E qua đám mây điện tử Ni-tơ trước đến Hydro Các-bon khả electron khỏi phân tử lớn, mật độ electron thấp so với vùng nguyên tử Các-bon nên cực đại có giá trị nhỏ so với cực đại Ngược lại, hướng véc-tơ điện trường vuông góc với trục liên hạt nhân khả ion hóa điện tử thấp Điều giải thích tạo đường biểu diễn tốc độ ion hóa Hình 2.12 có hai cực đại cực đại θ = 0° lớn cực đại = θ 180° Nhằm khảo sát thay đổi thứ tự hai điểm cực đại khả ion hóa phụ thuộc vào cường độ laser, dùng laser mạnh với cường độ 4.1014 Wcm-2 để chiếu vào phân tử thấy cực đại 0° cao cực đại 180° (Hình 2.13) Điều chứng tỏ tốc độ ion hóa phụ thuộc vào hướng laser phân cực trục liên hạt nhân Ngoài ra, với cường độ lớn khả ion hóa điện tử cao Tuy nhiên, dự đoán cần phải có giới hạn cường độ laser chiếu vào, cường độ cao trình HHG không xảy Nghĩa electron khỏi phân tử không quay trở lại tái va chạm với ion phân tử mẹ 2.6.4 Tốc độ ion hóa phân tử OCS Trên Hình 2.14 so sánh vị trí hai điểm cực đại trình ion hóa trường hợp laser chiếu vào với cường độ 2.1014 Wcm-2 4.1014 Wcm-2 Ứng với góc 45° xuất điểm cực đại thứ cao so với cực đại thứ hai góc 135°, hai trường hợp Dù thay đổi cường độ laser, kết phân tử HNC, thứ tự cực đại không thay đổi Nhìn vào HOMO phân tử OCS (Hình 2.9a) ta thấy, đám mây điện tử nằm hai phía so với trục phân tử Thứ tự nguyên tử nằm trục z (từ trái sang phải) O, C S với tọa độ nguyên tử S dương, nguyên tử O C có tọa độ âm Vậy véc-tơ điện trường chùm laser chiếu vào có hướng từ trái sang phải dọc theo trục phân tử theo hướng ngược lại (tại không xuất orbital điện tử) rõ ràng có khả ion hóa điện tử Footer Page 35 of 185 Header Page 36 of 185 Tốc độ ion hóa Tốc độ ion hóa 29 Góc định phương (độ) Góc định phương (độ) Hình 2.14 Đồ thị thể tốc độ ion hóa OCS với cường độ laser chiếu vào 2.1014 Wcm-2 (a) 4.1014 Wcm-2 (b) Do đó, Hình 2.14 0° 180° tốc độ ion hóa không Nhưng laser lệch góc khoảng 45° hay 135° (so với trục z) lúc chùm laser làm nhiều electron thoát khỏi phân tử nhất, đồng nghĩa số điện tử bị ion hóa cực đại Tóm lại, phân tử có HOMO đối xứng dạng π O , CO , OCS, HCN tốc độ ion hóa theo hướng trục phân tử nhỏ có khả xuất điện tử nhất, trường hợp phân tửđối xứng dạng σ N , HNC khả ion hóa theo hướng lại lớn Điều kiện để xảy trình phát HHG phải xảy trước hết trình ion hóa xuyên hầm Trong đó, trình ion hóa đặc trưng tương tác electron phân tử chùm laser cường độ cao Càng nhiều electron thoát khỏi phân tử mẹ xác suất electron quay trở lại va chạm với ion phân tử mẹ cao Cho nên, chiếu chùm laser cường độ cao vào phân tử với góc θ cho số electron bị nhiều thời gian ngắn dẫn đến cường độ HHG đạt cực đại góc Đó lý đồ thị cho thấy đường biểu diễn tốc độ ion hóa cường độ HHG phân tử cực đại giá trị góc định phương Vị trí điểm cực đại HHG phụ thuộc vào θ định trình ion hóa phân tử, nghĩa tọa độ xác định ứng với tốc độ ion hóa cực đại HHG phát lớn vị trí Từ thấy mối liên hệ mật thiết HHG với tốc độ ion hóa phân tử Footer Page 36 of 185 Header Page 37 of 185 30 KẾT LUẬN Với đề tài “Ảnh hưởng đối xứng phân tử lên trình phát sóng điều hòa bậc cao”, khảo sát HHG tốc độ ion hóa phân tử giải vấn đề cụ thể sau đây: • Đối với phân tử khác nhau, cường độ HHG tốc độ chúng khác Tuy nhiên, đường biểu diễn HHG tốc ion hóa phân tử lại giống Cụ thể  Đối với dạng đối xứng σ HHG cực đại 0° (hay 180°) cực tiểu 90°  Đối với dạng đối xứng π HHG cực tiểu 0° • Sự khác biệt giải thích sau: mặt, trình ion hóa bước mô hình ba bước, sau xảy phát HHG Mặt khác, tốc độ ion hóa lại phụ thuộc vào góc định phương hay nói cách khác phụ thuộc vào HOMO phân tử Do đó, rõ ràng ta thấy phụ thuộc vào góc định phương HHG định trình ion hóa Cho nên, ta dựa vào trình ion hóa để giải thích cho vị trí cực đại HHG Vậy, HOMO khác tốc độ ion hóa cực đại HOMO khác dẫn tới cường độ HHG cực đại khác HƯỚNG PHÁT TRIỂN Luận văn tiếp tục nghiên cứu theo hướng sau: - Khảo sát HHG cho phân tử phức tạp hay mạch Hydrocarbon - Đối với dạng đối xứng không chuẩn, đo HHG có tính đến orbital bên Footer Page 37 of 185 Header Page 38 of 185 31 TÀI LIỆU THAM KHẢO Tiếng Việt Nguyễn Ngọc Ty (2010), Sóng hài từ ion hóa xuyên hầm laser siêu ngắn với việc nhận biết cấu trúc động phân tử, Luận án Tiến sĩ Vật lý, trường Ðại học Khoa học Tự nhiên, Tp HCM Tiếng Anh Becker A, Jaroń-Becker A and Faisal F H M (2004), “Ionization of N , O , and linear carbon clusters in a strong laser pulse”, Phys Rev A, 69, pp.0234101-0234109 Chang Z., Bing S and Shambhu G (2004), “Effect of orbital symmetry on high-order harmonic generation from molecules”, Phys Rev A, 69, pp.0214041-0214044 Dinh B K (2012), Phase-matched high order harmonic generation and applications, PhD Thesis, University of Technology Melbourne, Australia, pp.1-12 Domagoj P., Lee Kevin F., Rayner D M., Corkum P B., and Villeneuve D M (2007), “Direct measurement of the angular dependence of ionization for N , O , and CO in intense laser fields” Phys Rev Lett, 98, pp 2430011-2430014 Gibson G N and Biegert J (2008), “Influence of orbital symmetry on high-orderharmonic generation and quantum tomography”, Phys Rev A, 78, pp.033423103342310 Juan H., Chengyin W., Nan X., Qingqing L., Zhifeng W., Hong Y., and Qihuang G (2006), “Field-induced alignment of oxygen and nitrogen by intense femtosecond laser pulses”, J Phys Chem A, pp.10179-10184 Kjeldsen T K and Madsen L B (2004), “Strong-field ionization of N : length and velocity gauge strong-field approximation and tunnelling theory”, Phys Rev B, 37, pp 2033-2044 Lin C D., Tong X M., and Zhao Z X (2005), “Effects of orbital symmetries on the ionization rates of aligned molecules by short intense laser pulses”, Journal of Modern Optics, 53, pp.21-33 Footer Page 38 of 185 Header Page 39 of 185 32 10 Litvinyuk I.V., Lee Kevin F., Dooley P.W., Rayner D M., Villeneuve D M., and Corkum P B (2003), “Alignment-dependent strong field ionization of molecules”, Phys Rev Lett, 90 (23), pp.1-4 11 Madsen C B (2010), Molecules in intense laser fields: Studies of ionization, highorder harmonic generation and alignment, PhD Thesis, University of Aarhus, Denmark, pp.70 12 Madsen C B and Madsen L B, High-harmonic generation from arbitrarily oriented diatomic molecules including nuclear moion and field-free alignment, PhD Thesis, University of Aarhus, Denmark 13 Nalda R de, Heesel E., Lein M., Hay N., Velotta R., Springate E., Castillejo M., and Marangos J P (2004), “Role of orbital symmetry in high-order harmonic generation from aligned molecules”, Phys Rev A, 69, pp.0318041-0318044 14 Muray R (2011), Tunnel ionization in strong fields in atoms and molecules and its applications, PhD Thesis, University of Waterloo, Canada 15 Son S., and Chu S (2009), “Multielectron effects on the orientation dependence and photoelectron angular distribution of multiphoton ionization of CO in strong laser fields”, Phys Rev A, 80, pp.0114031-0114034 16 Tong X M., Zhao Z X., and Lin C D (2002), “Theory of molecular tunneling ionization”, Phys Rev A, 66, pp 0334021-03340211 17 Torres R., Kajumba N., Underwood J G., Robinson J S., Baker S., Tisch J W G., Nalda R de, Bryan W A., Velotta R., Altucci C., Turcu I C E., and Marangos J P (2007), “Probing orbital structure of polyatomic molecules by high-order harmonic generation”, Phys Rev Lett, 98, pp 2030071-2030074 18 Zhou X X., Tong X M., Zhao Z X., and Lin C D (2005), “Role of molecular orbitals symmetry on alignment dependence of high-order harmonic generation with molecules”, Phys Rev A, 71, pp.0618011-0618014 Footer Page 39 of 185 Header Page 40 of 185 19 Zhou X 33 X., Tong X M., Zhao Z X., and Lin C D (2005), “Alignment dependence of high-order harmonic generation from N and O molecules in intense laser fields”, Phys Rev A, 72, pp.0334121-0334127 Footer Page 40 of 185 ... sóng điều hòa bậc cao dạng đối xứng HOMO tốc độ ion hóa để sử dụng cho mục đích chương Chương nêu lên đóng góp luận văn, khảo sát ảnh hưởng đối xứng phân tử lên trình phát sóng hài bậc cao giải... độ ion hóa electron nguyên tử, phân tử Với mục tiêu giải thích cho khác phổ HHG dạng HOMO, thực luận văn Ảnh hưởng đối xứng phân tử lên trình phát sóng điều hòa bậc cao Mặc dù HHG tốc độ ion... HỌC SƯ PHẠM TP HỒ CHÍ MINH Nguyễn Thị Ái Như ẢNH HƯỞNG CỦA ĐỐI XỨNG PHÂN TỬ LÊN QUÁ TRÌNH PHÁT SÓNG ĐIỀU HÒA BẬC CAO Chuyên ngành: Vật lí nguyên tử Mã số: 60 44 01 06 LUẬN VĂN THẠC SĨ VẬT LÍ

Ngày đăng: 03/06/2017, 15:40

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. Nguy ễn Ngọc Ty (2010), Sóng hài t ừ ion hóa xuyên hầm bằng laser siêu ngắn với việc nhận biết cấu trúc động phân tử, Lu ận án Tiến sĩ Vật lý, trường Ðại học Khoa học Tự nhiên, Tp. HCM.Ti ếng Anh Sách, tạp chí
Tiêu đề: Sóng hài từ ion hóa xuyên hầm bằng laser siêu ngắn với việc nhận biết cấu trúc động phân tử
Tác giả: Nguy ễn Ngọc Ty
Năm: 2010
2. Becker A , Jaroń-Becker A and Faisal F. H. M (2004), “Ionization of N 2 , O 2 , and linear carbon clusters in a strong laser pulse”, Phys. Rev. A, 69, pp.0234101-0234109 Sách, tạp chí
Tiêu đề: Ionization of N2, O2, and linear carbon clusters in a strong laser pulse”, "Phys. Rev. A, 69
Tác giả: Becker A , Jaroń-Becker A and Faisal F. H. M
Năm: 2004
3. Chang Z., Bing S. and Shambhu G. (2004), “Effect of orbital symmetry on high-order harmonic generation from molecules”, Phys. Rev. A, 69, pp.0214041-0214044 Sách, tạp chí
Tiêu đề: Effect of orbital symmetry on high-order harmonic generation from molecules”, "Phys. Rev. A, 69
Tác giả: Chang Z., Bing S. and Shambhu G
Năm: 2004
4. Dinh B. K (2012), Phase-matched high order harmonic generation and applications, PhD Thesis, University of Technology Melbourne, Australia, pp.1-12 Sách, tạp chí
Tiêu đề: Phase-matched high order harmonic generation and applications
Tác giả: Dinh B. K
Năm: 2012
5. Domagoj P., Lee Kevin F., Rayner D. M., Corkum P. B., and Villeneuve D. M (2007), “Direct measurement of the angular dependence of ionization for N 2 , O 2 , and CO 2 in intense laser fields”. Phys. Rev. Lett, 98, pp. 2430011-2430014 Sách, tạp chí
Tiêu đề: Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields”. "Phys. Rev. Lett, 98
Tác giả: Domagoj P., Lee Kevin F., Rayner D. M., Corkum P. B., and Villeneuve D. M
Năm: 2007
6. Gibson G. N. and Biegert J. (2008), “Influence of orbital symmetry on high-order- harmonic generation and quantum tomography”, Phys. Rev. A, 78, pp.0334231- 03342310 Sách, tạp chí
Tiêu đề: Influence of orbital symmetry on high-order-harmonic generation and quantum tomography”, "Phys. Rev. A, 78
Tác giả: Gibson G. N. and Biegert J
Năm: 2008
8. Kjeldsen T. K. and Madsen L. B. (2004), “Strong-field ionization of N 2 : length and velocity gauge strong-field approximation and tunnelling theory”, Phys. Rev. B, 37, pp. 2033-2044 Sách, tạp chí
Tiêu đề: Strong-field ionization of N2: length and velocity gauge strong-field approximation and tunnelling theory”, "Phys. Rev. B
Tác giả: Kjeldsen T. K. and Madsen L. B
Năm: 2004
9. Lin C. D., Tong X. M., and Zhao Z. X (2005), “Effects of orbital symmetries on the ionization rates of aligned molecules by short intense laser pulses”, Journal of Modern Optics, 53, pp.21-33 Sách, tạp chí
Tiêu đề: Effects of orbital symmetries on the ionization rates of aligned molecules by short intense laser pulses"”, Journal of Modern Optics, 53
Tác giả: Lin C. D., Tong X. M., and Zhao Z. X
Năm: 2005
10. Litvinyuk I.V., Lee Kevin F., Dooley P.W., Rayner D. M., Villeneuve D. M., and Corkum P. B (2003), “Alignment-dependent strong field ionization of molecules”, Phys. Rev. Lett, 90 (23), pp.1-4 Sách, tạp chí
Tiêu đề: Alignment-dependent strong field ionization of molecules"”, Phys. Rev. Lett
Tác giả: Litvinyuk I.V., Lee Kevin F., Dooley P.W., Rayner D. M., Villeneuve D. M., and Corkum P. B
Năm: 2003
11. Madsen C. B (2010), Molecules in intense laser fields: Studies of ionization, high- order harmonic generation and alignment, PhD Thesis, University of Aarhus, Denmark, pp.70 Sách, tạp chí
Tiêu đề: Molecules in intense laser fields: Studies of ionization, high-order harmonic generation and alignment
Tác giả: Madsen C. B
Năm: 2010
12. Madsen C. B. and Madsen L. B, High-harmonic generation from arbitrarily oriented diatomic molecules including nuclear moion and field-free alignment, PhD Thesis, University of Aarhus, Denmark Sách, tạp chí
Tiêu đề: High-harmonic generation from arbitrarily oriented diatomic molecules including nuclear moion and field-free alignment
13. Nalda R. de, Heesel E., Lein M., Hay N., Velotta R., Springate E., Castillejo M., and Marangos J. P. (2004), “Role of orbital symmetry in high-order harmonic generation from aligned molecules”, Phys. Rev. A, 69, pp.0318041-0318044 Sách, tạp chí
Tiêu đề: Role of orbital symmetry in high-order harmonic generation from aligned molecules"”, Phys. Rev. A, 69
Tác giả: Nalda R. de, Heesel E., Lein M., Hay N., Velotta R., Springate E., Castillejo M., and Marangos J. P
Năm: 2004
14. Muray R. (2011), Tunnel ionization in strong fields in atoms and molecules and its applications, PhD Thesis, University of Waterloo, Canada Sách, tạp chí
Tiêu đề: Tunnel ionization in strong fields in atoms and molecules and its applications
Tác giả: Muray R
Năm: 2011
15. Son S., and Chu S. (2009), “Multielectron effects on the orientation dependence and photoelectron angular distribution of multiphoton ionization of CO 2 in strong laser fields”, Phys. Rev. A, 80, pp.0114031-0114034 Sách, tạp chí
Tiêu đề: Multielectron effects on the orientation dependence and photoelectron angular distribution of multiphoton ionization of CO2 in strong laser fields”, "Phys. Rev. A, 80
Tác giả: Son S., and Chu S
Năm: 2009
16. Tong X. M., Zhao Z. X., and Lin C. D (2002), “Theory of molecular tunneling ionization”, Phys. Rev. A, 66, pp. 0334021-03340211 Sách, tạp chí
Tiêu đề: Theory of molecular tunneling ionization"”, Phys. Rev. A, 66
Tác giả: Tong X. M., Zhao Z. X., and Lin C. D
Năm: 2002
17. Torres R., Kajumba N., Underwood J. G., Robinson J. S., Baker S., Tisch J. W. G., Nalda R. de, Bryan W. A., Velotta R., Altucci C., Turcu I. C. E., and Marangos J. P. (2007), “Probing orbital structure of polyatomic molecules by high-order harmonic generation”, Phys. Rev. Lett, 98, pp. 2030071-2030074 Sách, tạp chí
Tiêu đề: Probing orbital structure of polyatomic molecules by high-order harmonic generation"”, Phys. Rev. Lett, 98
Tác giả: Torres R., Kajumba N., Underwood J. G., Robinson J. S., Baker S., Tisch J. W. G., Nalda R. de, Bryan W. A., Velotta R., Altucci C., Turcu I. C. E., and Marangos J. P
Năm: 2007
18. Zhou X. X., Tong X. M., Zhao Z. X., and Lin C. D. (2005), “Role of molecular orbitals symmetry on alignment dependence of high-order harmonic generation with molecules”, Phys. Rev. A, 71, pp.0618011-0618014 Sách, tạp chí
Tiêu đề: Role of molecular orbitals symmetry on alignment dependence of high-order harmonic generation with molecules”", Phys. Rev. A, 71
Tác giả: Zhou X. X., Tong X. M., Zhao Z. X., and Lin C. D
Năm: 2005

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w