1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi khảo sát học sinh giỏi môn Toán lớp 9 trường THCS Nga Thiện, Thanh Hóa lần 1 năm học 2016 2017

8 784 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 173,42 KB

Nội dung

VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí PHÒNG GD&ĐT HUYỆN NGA SƠN KÌ THI KHẢO SÁT HỌC SINH GIỎI - LẦN TRƯỜNG THCS NGA THIỆN Năm học: 2016 - 2017 Môn thi: Toán ĐỀ CHÍNH THỨC Thời gian: 150 phút (không kể thời gian giao đề) (Đề thi gồm có 01 trang, 06 câu) Câu (4,0 điểm) 1) Chứng minh biểu thức sau không phụ thuộc vào giá trị x: A= x  ( x  6) x  3   2( x  x  3)(2  x )  x  10 x  12 x  x  Điều kiện x ≥ 0, x ≠ 4; x ≠ 9; x ≠ 2) Rút gọn biểu thức: B = 2  2  2  2 Câu 2: (3,0 điểm) Cho đường thẳng (m – 2)x + (m – 1)y = (d) a) Chứng minh đường thẳng (d) qua điểm cố định với giá trị m b) Tính giá trị m để khoảng cách từ gốc toạ độ O đến đường thẳng (d) lớn Câu 3: (4,0 điểm) a) Với  x 52  17  38  14  Tính giá trị biểu thức: B =  3x  8x2   2015 b) Tìm tất cặp số nguyên (x ; y) với x > 1, y > cho (3x+1)  y đồng thời (3y + 1)  x Câu 4: (6,0 điểm) Cho tam giác ABC có ba góc nhọn với đường cao AD, BR, CR c t H Chứng minh rằng: a) SABC = AB.BC.sinB AR.BR.CD = AB.BC.CA.cosA.cosB.cosC b) tanB.tanC = AD HD c) H giao điểm ba đường phân giác tam giác DRR VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí d) HB.HC HC.HA HA.HB    AB.AC BC.BA CA.CB Câu 5: (1,0 điểm) Cho số thực dương x, y, z thỏa mãn: x  y  y  z  z  x  2015 x2 y2 z2   Tìm giá trị nhỏ biểu thức: T  yz zx xy Câu 6: (2,0 điểm) Cho tam giác ABC, I điểm nằm tam giác Các tia AI, BI, CI c t BC, CA, AB tai M, N, K Chứng minh rằng: IA IB IC   3 IM IN IK VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí ĐÁP ÁN ĐỀ THI HỌC SINH GIỎI MÔN TOÁN LỚP Bài Câu Tóm tắt cách giải 6x  (x  6) x  A  Điểm  0,75 2(x  x  3)(2  x) 2x 10 x 12 x  x  6x  (x  6) x  A   2(2  x)( x  3)( x 1) 2( x  3)(2  x) (2  x)( x 1) Do x  0; x ≠ 1; x ≠ 4; x ≠ A= x  ( x  6) x   3( x  1)  2( x  3) 2( x  1)( x  3)(2  x ) A= 6x  x x  x   x   x  2( x  1)( x  3)(2  x ) A= (2 x  x )  2( x  3)  x( x  3)  x ( x  3) 2( x  1)( x  3)(2  x) ( x  1)( x  3)(2  x) A= 2( x  1)( x  3)(2  x) B 2 B B   2 2 42  = 0,75 0,5 => ĐPCM 2 2 42  2 3  2 3 (2  3)(3  3)  (3  3)(2  3)     (3  3)(3  3) 1  B  1,0 0,75 0,25 a Điều kiện cần đủ để đường thẳng (m – 2)x + (m – 1)y = (d) qua điểm cố định N(xo, yo) là: 0,5 (m – 2)xo + (m – 1)yo = 1, với m mxo – 2xo + myo – yo – = 0, với m (xo + yo)m – (2xo + yo + 1) = với m 0,5 VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí  xo  y o   x o  1   x  yo    yo   o 0,5 Vậy đường thẳng (d) qua điểm cố định N (-1; 1) b + Với m = 2, ta có đường thẳng y = Do khoảng cách từ O đến (d) (1) + Với m = 1, ta có đường thẳng x = -1 0,5 Do khoảng cách từ O đến (d) (2) + Với m ≠ m ≠ Gọi A giao điểm đường thẳng (d) với trục tung Ta có: x =  y = 1 , OA = m 1 m 1 0,5 Gọi B giao điểm đường thẳng (d) với trục hoành Ta có: y =  x = 1 , OB = m2 m2 Gọi h khoảng cách Từ O đến đường thẳng (d) Ta có: 1 1    (m  1)  (m  2)  2m2  6m   2(m  )   2 2 2 h OA OB Suy h2 ≤ 2, max h = m = Từ (1), (2) (3) suy Max h = Ta có x   2  52  (3  5)   (3) 2 m = 2  52 3 0,5  Từ tính B = - 1,25 0,75 b Dễ thấy x  y Không tính tổng quát, giả sử x > y Từ (3y + 1)  x  y   p.x  p  N  Vì x > y nên 3x > 3y + = p.x  p < Vậy p  1; 2 * 0,25 0,25 VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Với p =  x = 3y +  3x + = 9y +  y   y Mà y > nên y  2; 4 0,25 + Với y = x = 0,25 + Với y = x = 13 Với p =  2x = 3y +  6x = 9y +  2(3x + 1) = 9y + 0,25 Vì 3x +  y nên 9y +  y suy  y, mà y > nên y = suy x = Tương tự với y > x ta giá trị tương ứng Vậy cặp (x; y) cần tìm là: (7; 2); (2; 7); (8; 5); (5; 8); (4; 13); (13; 4) a) 2,0 đ 0,25 0,25 0,25 A R R H B D * Ta có: SABC = BC.AD C 1,0 ABD vuông D có AD = AB.sinB, Do SABC = BC.AB.sinA ABR vuông R có AR = AB.cosA BRC vuông R có BR = BC.cosB ACD vuông D có CD = AC.cosC 1,0 VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Do AR.BR.CD = AB.BC.CA.cosA.cosB.cosC b (1,5 đ) Xét ABD có tanB = AD AD ; ACD có tanC = CD BD AD suy tanB.tanC = (1) BD.CD 0,5   CAD  (cùng phụ với ACB  ) nên  BDH   ADC Do HBD DH BD (g.g)   BD.DC = DH.DA  DC AD 0,5 AD AD Kết hợp với (1) tanB.tanC =  DH.AD DH 0,5 c(1,5đ) Chứng minh ARR  ABC (g.g)   ABC   ARR 0,5   CBA  nên ARR   CRD  mà BR  AC Tương tự CRD   DRB   RH phân   CRB  = 900 Từ suy RRB  ARB 0,5 DRR Tương tự DH, RH phân giác  DRR nên H 0,5 giao ba đường phân giác DRR d (1,0 đ) Ta có: SBHC + SCHA + SAHB = SABC Dễ thấy CHR  CAR(g.g)  CH CR HB.HC HB.CR 2.S BHC S BHC      CA CR AB.AC AB.CR 2.S ABC S ABC Tương tự có Do đó: HC.HA SCHA HA.HB S HAB ;   BC.BA SCBA CA.CB SCAB HB.HC HC.HA HA.HB SBHC SCHA SAHB      1 AB.AC BC.BA CA.CB SBAC SCBA SACB Đặt a  x  y ; b  y  z ;c  z  x 0,25 0,25 0,25 0,25 VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí  a; b;c  a  b  c  2015 Ta có: a  b  c  2(x  y  z )  x2  a  b  c 2 a  b  c 2 a  b  c ;y  ;z  2 0,25 Do đó: (y  z)  2(y  z )  2b  y  z  2b  Tương tự:  T  y2 a  b2  c2 z a  b  c  ,  zx xy 2c 2a a  b2  c2 2b b   a  b2  c2  2c c  a  b2  c2 2a  1  a b c (a  b  c )       2 a b c   1  2015 (a  b  c)(a  b  c)       2 a b c 2015.9  2015  2015 0,25 2 Dấu đẳng thức xảy a  b  c  Vậy T  a 0,25  1  2015  (a  b  c)       2 a b c   1  0,25 x2 a  b2  c2  yz 2b Đặt 2015 2 x  y  z  2015 2015 S BIC  x , S CIA  y , S AIB  z  S ABC  x  y  z A K N 0,25 I B M C VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí AM S ABC x  y  z AI y2  z2 AI y  z      1   IM S BIC x2 IM x2 IM x2 IA  IM  y z x IB Chứng minh tương tự ta có:  IN z2  x2 , y IC  IK y2  z2  x z x  y x2  y2 z IA IB IC    IM IN IK   yz 2.x Vây  zx y  0,5 x y 2.z  x2  y2 z y z z x x y  3        2x x y y z z IA IB IC   3 IM IN IK 0,25 1,0 ... ĐÁP ÁN ĐỀ THI HỌC SINH GIỎI MÔN TOÁN LỚP Bài Câu Tóm tắt cách giải 6x  (x  6) x  A  Điểm  0,75 2(x  x  3)(2  x) 2x 10 x 12 x  x  6x  (x  6) x  A   2(2  x)( x  3)( x 1) 2(...  1  a b c (a  b  c )       2 a b c   1  2 015 (a  b  c)(a  b  c)       2 a b c 2 015 .9  2 015  2 015 0,25 2 Dấu đẳng thức xảy a  b  c  Vậy T  a 0,25  1  2 015 ...  x = 3y +  3x + = 9y +  y   y Mà y > nên y  2; 4 0,25 + Với y = x = 0,25 + Với y = x = 13 Với p =  2x = 3y +  6x = 9y +  2(3x + 1) = 9y + 0,25 Vì 3x +  y nên 9y +  y suy  y, mà

Ngày đăng: 17/03/2017, 15:48

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w