1. Trang chủ
  2. » Giáo án - Bài giảng

Phương pháp tìm số hạng tổng quát của một số dãy số cơ bản

4 6,1K 172
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 189,5 KB

Nội dung

Một số cách xác định công thức tổng quát của một số dạng dãy số bản Kết quả 1:Dãy số hạng tổng quát là Cm: Ta chứng minh bằng phương pháp quy nạp *n=1 ta thấy (1) đúng *Giả sử ta cm Thậy vậy: đpcm Kết quả 2:Với dãy được xác định bởi : , biết Ta xét phương trình đặc trưng: (*) -Nếu (*) hai nghiệm thì: -Nếu (*) nghiệm kép thì : Kết quả 3: Với dãy được xác định bởi : , biết Ta xét phương trình đặc trưng: (**) -Nếu (**) ba nghiệm thì: -Nếu (**) 1 nghiệm đơn, 1 nghiệm kép thì: thì: -Nếu (**) nghiệm bội ba thì: Kết quả 4: Với dãy được xác định: Cách 1: Đưa vào tham số phụ . Nhân vào pt thứ hai với và cộng hai pt vào ta được Tiếp theo ta xác định sao cho .Nếu hai pt này nghiệm khi đó ta Từ đây chúng ta xác định được cttq của các dãy đã cho Cách 2: ta có: ta dễ dạng tìm được cttq của dãy theo kết quả 2 Kết quả 5:Với dãy số : với mọi n 1. Đối với dạng này ta hai cách làm như sau: Cách 1: Xét hai dãy số được xác định như sau: ; Theo kết quả 4 ta xác định được dãy và khi đó dãy : Cách 2:Ta đưa vào các tham số x,y như sau: Tiếp theo ta xác định x,y sao cho: . Khi đó ta có: . Đặt . Ta được . theo kết quả 1 ta xác định được dãy nên ta tìm được Sau đây là các ví dụ: Ví dụ 1: Cho dãy và .Tìm số hạng tổng quát của dãy Lời giải: Bài này chúng ta thể giải theo các cách sau: Cách 1: Xét pt đặc trưng: pt này hai nghiệm nên . Vì nên ta suy ra . Vậy Cách 2: Đặt ta nên ta suy ra lấy tổng hai vế ta Ví dụ 2: Cho dãy số xác định bởi: a)Tìm công thức tổng quát của dãy b)Chứng minh rằng nếu p là số nguyên tố thì chia hết cho p Lời giải : Xét pt đặc trưng: pt này ba nghiệm nên Theo gt nên ta hệ gồm ba pt sau: giải hệ ba pt này ta nghiệm Vậy b)Ta 1 1 (mod p) Vì p là số nguyên tố nên theo định lí nhỏ Fecma ta có: Suy ra đpcm Ví dụ 3: Cho dãy a) Tính b) Tìm phần nguyên: Lời giải: Ta có: Đặt . Ta Áp dụng kết quả 1 ta có: a) Theo trên ta có: b) Ta có: Mặt khác: Ví dụ 4:Cho hai dãy được xác định như sau: . Tìm công thức tổng quát của hai dãy Lời giải: Ta có: . ta chọn sao cho: Do đó ta hệ: Suy ra: Ví dụ 5: Cho dãy với mọi n>=2. Cmr Lời giải: Để chứng minh bài toán ta chỉ cần chứng minh là được Dãy số đã cho gần giống với dạng ở kết quả 2, nhưng vì hệ số tự do 1975 nên ta chưa áp dụng được kết quả 2.Chúng ta thể chuyển về dạng ở kết quả 1 bằng cách đặt . Khi đó , đến đây ta chọn a,b sao cho 22a-8b=0, chọn a=4, b=11 Suy ra Phương trình đặc trưng hai nghiệm x=-1 và x=-5 nên dựa vào ta xác định được . Do đó suy ra Do 1997 là số nguyên tố nên theo định lí nhỏ Féc ma ta có: (vì (4;1997)=1) đpcm Chú ý: Theo chứng minh ở trên ta bài toán tổng quát hơn là :Cmr với mọi số nguyên tố p Ví dụ 6: Cho hai dãy được xác định như sau: và . Tìm tất cả các số nguyên tố p sao cho : không chia hết cho p Lời giải: Ta có: Mặt khác: . Đặt Đặt ta có: . Áp dụng kết quả 1 ta được . Thay vào (1) ta có: *p=2 không thỏa mãn *p=3 không chia hết cho 3, suy ra p=3 thỏa mãn *p=5 thỏa mãn *p 5 khi đó không thỏa mãn Vậy p=3,5 là những số cần tìm Các bài tập 1) Cho dãy được xác định bởi . Xác định công thức tổng quát của dãy ? 2) Cho dãy số . Cmr: là số chính phương 3) Cho dãy a) Xác định công thức tổng quát của dãy b)Đặt . Tìm để dãy giới hạn và tìm giới hạn đó 4)Cho hai dãy được xác định như sau: . Cmr: 5) Cho dãy a) Tìm số nguyên dương h bé nhất để: với mọi n b) Cmr tồn tại ít nhất một số của dãy chia hết cho 1996 . Một số cách xác định công thức tổng quát của một số dạng dãy số cơ bản Kết quả 1 :Dãy có số hạng tổng quát là Cm: Ta chứng minh bằng phương pháp quy. những số cần tìm Các bài tập 1) Cho dãy được xác định bởi . Xác định công thức tổng quát của dãy ? 2) Cho dãy số . Cmr: là số chính phương 3) Cho dãy a)

Ngày đăng: 24/06/2013, 01:25

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w