1. Trang chủ
  2. » Giáo án - Bài giảng

Chuyên đề hàm số hay

20 364 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 801,15 KB

Nội dung

Gia s Thnh c www.daythem.edu.vn o hm VD Tỡm o hm ca cỏc hm s sau : 1, y 2x4 x3 x 3, y x 2 x x 3 2, y ( x3 2)(1 x2 ) x 4, y x 4x 6, y 5, y x5 x3 x x ; x 3 x x x b a2 c x b ( a , b , c l hng s) a x VD Tỡm o hm ca cỏc hm s sau : 1, y 2x 1 3x 2x 2x2 x 7, y 10, y x x x ( x x 1) x 12, y 2, y 2x VD Tỡm o hm ca cỏc hm s sau : 4, y x x 9, y 11, y x 1, y (2 x3 3x x 1) x x2 x x2 6, y x x 2x 8, y x 10, y 3, y 5, y x(2 x 1)(3x 2) 4, y (2 x 3)( x5 x) 7, y x 3x x 2, y 5x x x 3, y ( x2 x 1)3 ( x2 x 1)2 5, y x x x x x 8, y x x ( x 1)2 6, y x x ; 9, y ( x2 x 1)4 12, y 2x 11, y ( x 2) x2 ( x 1)3 VD Tỡm o hm ca cỏc hm s sau : 2, y 1, y 2sin 3x cos x 4, y (sin x cos x) sin x cos x 5, y tan x cot x 2 sin x cos x 6, y tan2x tan3 2x tan5 2x 3, y tan x tan x 3, y sin x cos x sin x cos x ; 7, y tan sin cos3 x VD Tỡm o hm ca cỏc hm s sau : sin x x sin x cos x 1, y 2, y sin x cos x x sin x sin x cos x 4, y sin x cos x.sin x 5, y 4 7, y cos x sin x 8, y (sin x cos x) sin x cos x 6, y sin x x cos x cos x x sin x 9, y sin x cos3 x Gia s Thnh c www.daythem.edu.vn 10, y sin cos3 x VD Tỡm o hm ca cỏc hm s sau : 1, y sin x cos x sin x cos6 x 6 x3 x2 12, y cot cos2 2, y cos x 2cos x sin x 2sin x sin x 3cos x 4, y sin x cos x 3cos x x tan sin x 6, y sin x 8, y 2cos x , x ; 3, y sin x cos x cos x 2sin x 6sin x 11, y sin cos cos3 x x cos x sin x sin x sin x sin x 7, y cos x cos x cos3 x cos x VD Cho hm s y x sin x chng minh : 5, y cos x cos y' x tan x cos x VD Cho cỏc hm s : f x sin x cos4 x , g x sin x cos6 x Chng minh : f ' x g ' x 1, xy y ' sin x x 2cos x y 2, VD 10 1, Cho hm s y x x Chng minh : x y' y 2, Cho hm s y cot x Chng minh : y ' y VD 11 Gii phng trỡnh y ' bit : 2, y cos x sin x 1, y sin x cos x 3, y 3sin x cos x 10 x f x x / x mx Tỡm m : VD 12 Cho hm s : 1, f x x 2, f x , x 0; ; 3, f x , x 0; 4, f x , x ; VD 13 Cho hm s : f x 1, f x , x ; m m x x m x 5m Tỡm m : 2, f x cú hai nghim cựng du VD 14 Cho hm s y x3 2m x mx Tỡm m : 1, y ' cú hai nghim phõn bit 3, y ' , x ; 2, y ' , x 4, y ' , x VD 15 Cho hm s y mx3 m x mx Xỏc nh m : 1, y ' , x 2, y ' cú hai nghim phõn bit cựng õm 3, y ' cú hai nghim phõn bit tha iu kin : x12 x22 BàI: PHƯƠNG TRìNH TIếP TUYếN Gia s Thnh c www.daythem.edu.vn 1, Khi bit tip im : Tip tuyn ca th C : y f x ti M x0 ; y0 , cú phng trỡnh l : y f ' x0 x x0 y0 ( ) 2, Khi bit h s gúc ca tip tuyn: Nu tip tuyn ca th C : y f x cú h s gúc l k thỡ ta gi M x0 ; y0 l tip im f ' x0 k (1) Gii phng trỡnh (1) tỡm x0 suy y0 f x0 Phng trỡnh tip tuyn phi tỡm cú dng : y k x x0 y0 Chỳ ý : Hai ng thng song song vi thỡ h s gúc ca chỳng bng Hai ng thng vuụng gúc nu tớch h s gúc ca chỳng bng 3, Bit tip tuyn i qua im A x1 ; y1 VD Cho ng cong C : y f x x3 3x Vit phng trỡnh tip tuyn ca C 1, Ti im M ; 3, Ti giao im ca C vi trc honh VD 2.Cho ng cong C : y 2, Ti im thuc C v cú honh x0 4, Bit tip tuyn i qua im A ; 3x 1 x 1, Vit PTTT ca C bit tip tuyn song song vi d : x y 21 2, Vit PTTT ca C bit tip tuyn vuụng gúc vi : x y VD 1, Cho hm s y x3 3x x C Tỡm tip tuyn cú h s gúc nh nht 2, Cho hm s y x3 3x x C Tỡm tip tuyn cú h s gúc ln nht VD Vit phng trỡnh tip tuyn ca th hm s y x2 2x bit tip tuyn ú ct trc honh, trc tung ln lt ti hai im phõn bit A, B v tam giỏc OAB cõn ti gc ta O VD 5.Cho C l th ca hm s y x x CMR tip tuyn ti mt im bt kỡ ca C ct trc tung ti mt im cỏch u gc ta v tip im VD 6.Cho hm s C : y x3 x Vit phng trỡnh tip vi C : 1, Ti im cú honh x0 2, Bit tip tuyn song song vi: x y ; VD 7.Cho hm s : y 3x 1 x C 1, Vit PTTT ca C ti im M ; 2, Vit PTTT ca C ti giao ca C vi Ox 3, Vit PTTT ca C ti giao ca C vi Oy 4, Vit PTTT ca C bt TT // d : x y 5, Vit PTTT ca C bit tip tuyn vuụng gúc vi : x y VD 9.Cho hm s y x x C Tỡm phng trỡnh tip tuyn vi C : VD 10.Cho hm s y x 3mx m x 2, Song song vi: d : x y 1, Ti im cú honh x0 Tỡm cỏc giỏ tr ca hm s (1) ti im cú honh x i qua im A ;2 VD 11.Cho hm s y 3x x m tip tuyn ca th ca Tớnh din tớch ca tam giỏc to bi cỏc trc ta v tip tuyn ca Gia s Thnh c www.daythem.edu.vn th ca hm s (1) ti im M ; VD 12.Cho hm s y 3x3 C Vit phng trỡnh tip tuyn ca th C bit tip tuyn to vi ng thng d : y x gúc 300 VD 13.Cho hm s y 2x x C Gi I ; Tỡm im M C cho tip tuyn ca C ti M vuụng gúc vi ng thng IM 2x VD 14 Cho hm s y C Tỡm im M C , bit tip tuyn ca C ti M ct hai trc ta x ti A , B v tam giỏc OAB cú din tớch bng (Khi D - 2007) x C Vit phng trỡnh tip tuyn ca C cho v hai x ng d1 : x ; d : y ct to thnh mt tam giỏc cõn VD 15 Cho hm s : y 2x Vit PTTT vi th (C) bit h s gúc ca tip tuyn bng - x2 3x VD 17 Cho hm s y (C) Vit PTTT vi (C) bit tip tuyn ú vuụng gúc vi y x 10 x 3x VD 18.Cho hm s y (C ) Vit phng trỡnh tip tuyn vi th (C) i qua im A (2; 0) x VD 19 Cho hm s y x3 3x (C) Vit PTTT ca (C) bit h s gúc bng (TN THPT 2013) x VD 20.Cho hm s y (C) Vit PTTT ca (C) bit tip tuyn i qua im P(3;1) x VD 16.Cho hm s y VD 21 Cho hm s y x 3x (C) 1, Vit PTTT (C) ti im M 2;4 2, Vit PTTT (C) ti im cú honh x 3, Vit PTTT ca (C) ti cỏc im cú tung y VD 22 Cho hm s y = - 2x + 3x - (C) 1, Vit phng trỡnh tip tuyn ca (C), bit tip tuyn vuụng gúc vi d : y x 2015 2, Vit phng trỡnh ng thng i qua M 1; v tip xỳc vi th (C) 4 VD 23 Cho hm s y x x (C) 1, Vit phng trỡnh tip tuyn ca th (C) ti im cú honh x 2, Vit phng trỡnh tip tuyn ca th (C) ti im cú tung y 3,Vit phng trỡnh tip tuyn ca th (C) , bit h s gúc ca tip tuyn bng 24 Gia s Thnh c www.daythem.edu.vn Bài: Hàm số đồng biến, NGHịCH BIếN Bi toỏn: Xột s bin thiờn ca hm s y = f(x) P2: Ta cn thc hin cỏc bc sau: B1: Tỡm xỏc nh ca hm s B2: Tớnh o hm f (x), ri gii phng trỡnh f (x) = B3: Lp bng bin thiờn ca hm s B4: Kt lun VD Tỡm cỏc khong ng bin, nghch bin ca hm s 1, y = 3x2 8x3 2, y = x3 6x2 + 9x 4, y x3 x x 5, y = x2(4 x2) 8, y x x x 7, y x3 x2 17 x 3, y x3 x 6, y = x4 + 8x2 + 9, y x3 x VD Lp bng bin thiờn v tỡm cỏc khong ng bin, nghch bin ca hm s x2 x 2, y x 2x 1, y x7 4, y x 4x 5, y 7, y x2 2x 2x x2 x 8, y x x2 3, y x2 x x 6, y x2 x3 9, y x 2x x2 Bi toỏn: Xỏc nh m hm s y = f(x, m) ng bin (hay nghch bin) trờn khong D B1: Tỡm xỏc nh ca hm s B2: Tớnh o hm f(x) B3: Lp lun cho cỏc trng hp f (x) vi x D f '(x) xD f (x) vi x D max f '(x) xD VD Tỡm m sau cho hm s: 1, y = x3 3(m 1)x2 + 3m(m-2)x + B / R 3, y = x3 + 3x2 + (m + 1)x + 4m NB/ 1;1 5, y = 2, y = mx3 (2m 1)x2 + (m 2)x B / R 4, y = (m2 + 5m)x3 + 6mx2 + 6x n iu / R m x + mx2 + (3m 2)x B / R 3 6, y = - x3 + (m 1)x2 + (m + 3)x B /(0; 3) 7, y = x3 3(2m + 1)x2 + (12m + 5)x + B /(2; + ) 8, y = x3 (m+1)x2 (2m2 3m + 2)x + 2m(2m 1) ng bin x 9, y = x3 3mx2 + m ng bin khong (- ; 0) VD Tỡm m sau cho hm s: 1, y = (2m + 3)sin2x + (2 m)x B / R 2, y = 2x + mcosx, tng trờn R 3, y = x + msinx, ng bin trờn R 4, y = (m 3)x (2m + 1)cosx, nghch bin trờn R VD Tỡm m sau cho hm s: x 2( m 1) B/ (0; + ) x x 3x m y 4, B / (3; + ) x mx luụn nghch bin x m3 x x m y 3, NB/ ( ; ) 2x 2, y 1, y Gia s Thnh c www.daythem.edu.vn Bài: cực trị Hàm số VD Tỡm cc tr ca hm s 3 1, y x3 x 3x 2, y x3 x 3x 3, y x3 x 12 x 4, y x3 3x x 5, y 3x x3 24 x 48 x 6, y x 2, y x x 3, y x x ; x2 VD Tỡm cc tr ca hm s 1, y x ; x VD Tỡm a , b , c hm s y x3 ax bx c t cc tiu ti x , y v th ca hm s ct trc tung ti im cú tung bng VD Cho hm s y x3 3x Vi giỏ tr no ca m ng thng ni hai im cc tr ca hm s tip xỳc vi ng trũn (C) : x m y m VD Cho hm s y = VD x + ( m )x2 + (2m )x (1) Tỡm m hm s (1) cú hai cc tr Tỡm m hm s y m x3 3x mx cú cc i, cc tiu VD Cho hm s y = x3 + ( 2m )x2 + 3x + m (1) Tỡm m hm s ( 1) khụng cú cc tr VD Cho hm s: y m x mx Vi giỏ tr no ca m thỡ th ca hm s khụng cú im cc i v im cc tiu 2 VD Cho hm s: y x mx m m x Tỡm m hm s t cc tiu ti im x=1 VD 10 Cho hm s y = x + mx2 + (m2 )x +2 (1) Tỡm m hm s ( ) t cc i ti x = VD 11 Cho hm s y x 3x 3x 1, Tỡm cc tr ca hm s 2, Vit phng trỡnh ng thng i qua cỏc im cc tr VD 12 Cho hm s y x x m x m Xỏc nh m cho: 1, Hm s cú cc tr 2, Hm s cú hai cc tr cựng du 3 VD 13 Tỡm m hm s y mx3 m x m x t cc i, cc tiu ti x1, x2 tho x1 x2 x3 x mx t cc i v cc tiu cú honh ln hn m VD 15 Cho hm s: y f x x3 m x m x (1) Tỡm m (1) cú cc i, cc tiu v ng thng i qua im cc i, cc tiu song song vi ng thng y 3x VD 14 Tỡm m hm s y x 3x VD 16 Cho hm s: y Vit phng trỡnh ng thng i qua cỏc im cc tr x2 x mx m VD 17 Cho hm s: y m Tỡm m cú giỏ tr cc i v giỏ tr cc tiu Vit xm phng trỡnh ng thng i qua cỏc im cc tr Gia s Thnh c www.daythem.edu.vn VD 19 Tỡm m hm s y = x - ( m + )x2 + (m2 + )x + m t cc tr ti x1 , x2 tha x12 + x22 = 10 1 x1 x2 VD 20 Tỡm m y = x3 3mx2 (2m+3)x + t cc tr ti x1 , x2 tha x1 x2 VD 21 Cho hm s y = x mx2 (3m2 )x + 3 (1) Tỡm m hm s (1) t cc tr ti x1, x2 tha x1x2 + 2(x1 + x2 ) = VD 22 Cho hm s y = 2x3 ( 9m + )x2 + 12m(m+1)x m3 Tỡm m hm s ( 1) t cc tr ti x1, x2 tha x1 x2 = VD 24 Cho hm s y = x3 (2m )x2 + (2 m )x + (1) Tỡm cỏc giỏ tr ca m hm s ( ) cú cc i, cc tiu v cỏc im cc tr ca th hm s ( 1) cú honh dng VD 25 Tỡm m 1, th hm s y = x3 (2m + )x2 + (m2 3m + )x + cú cc i, cc tiu v im cc i, cc tiu ca th hm s nm v hai phớa i vi trc tung 2, th hm s y x3 3x 6mx m cú hai im cc tr cựng mt phớa i vi trc honh VD 26 Cho hm s y = x3 3mx2 + 3m3 (1) Tỡm m (Cm) cú im cc tr A v B cho tam giỏc OAB cú din tớch bng 48 VD 27 Cho hm s y = -x3 + 3x2 + 3(m2 )x 3m2 ( 1) Tỡm m hm s ( ) cú cc i, cc tiu v cỏc im cc tr ca th hm s ( ) cỏch u gc ta O VD 28 Cho hm s y = 2x3 3(2m + 1)x2 + 6m(m+1)x + (1 ) Tỡm m hm s ( ) cú cc tr Khi ú chng minh rng khong cỏch gia hai im cc tr ú khụng i VD 29 Cho hm s y x3 3mx 3(m2 1) x m3 m (1) Tỡm m hm s (1) cú cc tr ng thi khong cỏch t im cc i ca th hm s n gúc ta O bng ln khong cỏch t im cc tiu ca th hm s n gc ta O x mx 4mx (1) Tỡm m hm s ( ) cú cc tr ti x1, x2 tha 2 x 5mx1 12m m biu thc A t giỏ tr nh nht x1 5mx2 12m m2 VD 30 Cho hm s y = VD 33 Tỡm m hm s y x3 3(m 1) x 6mx m3 cú cc i , cc tiu : yC yCT VD 34 Cho hm s y x3 (m 1) x m2 x x Vi giỏ tr no ca m hm s cú cc i cc tiu x1 , x2 Tỡm GTLN A = x1 x2 2( x1 x2 ) VD 36 Cho hm s y x3 mx m Tỡm m im cc i v im cc tiu ca d th hm s nm v hai phớa ca d : x y VD 37 Tỡm m y x3 2(m 1) x (m2 4m 1) x 2(m2 1) cú cc tr ti x1 , x2 sao: 1 x1 x2 x1 x2 Gia s Thnh c www.daythem.edu.vn VD 39 Cho hm s : y x3 3(m 1) x x m Tỡm m hm s t cc i v cc tiu ti cỏc im cú honh x1 ; x2 : x1 x2 VD 40 Cho hm s y x3 (1 2m) x (2 m) x m Tỡm m th hm s cú im cc i v cc tiu, ng thi honh ca cc tiu nh hn VD 41 [HB11] Cho hm s y x m x m Tỡm m th hm s cú ba im cc tr A , B , C cho OA BC ; ú A thuc trc tung, B v C l hai im cc tr cũn li VD 42 [HA12] Tỡm m th hm s y x m x m2 cú ba im cc tr to thnh ba nh ca mt tam giỏc vuụng VD 43 Cho hm s y x 2mx 2m m4 ( m l tham s) Tỡm m th hm s cú cc i v cc tiu lp thnh mt tam giỏc u VD 46 Tỡm m th hm s y x 2mx m cú im cc tr to thnh mt tam giỏc cú din tớch bng VD 47 Cho hm s y x 2mx m Tỡm m th hm s cú im cc tr to thnh mt tam giỏc cú bỏn kớnh ng trũn ngoi tip bng Bài: ứng dụng đạo hàm Phn 1: Giỏ tr ln nht, nh nht 1, N: Cho hm s xỏc nh trờn D f ( x) M , x D +Nu thỡ max f ( x) M xD xo D : f ( xo ) M Gia s Thnh c www.daythem.edu.vn f ( x) m, x D +Nu thỡ f ( x) m xD xo D : f ( xo ) m 2, PHNG PHP GII TON Bi toỏn Cho hm s y=f(x) liờn tc trờn khong (a;b) (a cú th l -, b cú th l +) Hóy tỡm max f ( x) ( a ;b ) v f ( x) (nu chỳng tn ti) ( a ;b ) Cỏch gii Lp bng bin thiờn Cho hm s y=f(x) liờn tc trờn on [a;b] Hóy tỡm max f ( x) v f ( x) Bi toỏn [ a ;b ] [ a ;b ] Cỏch gii 1, ỡ cỏc i ti h n 1, x2, ., n ca ( t n o n a;b] 2, ớnh (a , ( 1), f(x2 , , ( n), f(b) 3, max f ( x) max f a , f x1 , f x2 , , f b ; f ( x) f a , f x1 , f x2 , , f b [ a ;b ] [ a ;b ] 3, B I T P P D NG VD Tỡm GTLN-GTNN ca cỏc hm s sau: 1, y f x x3 x trờn on 1;1 2, y f x x x trờn on 0; 3, y f x x3 x x trờn on 1;0 VD Tỡm GTLN-GTNN ca cỏc hm s sau: 1, y f x x3 x trờn on 1;3 2, y f x x x 3, y f x x3 3x 12 x trờn on 2; 4, y f x x3 3x trờn on 1; 5, y f x x x 16 trờn on 1;3 6, y f x x x trờn on 0; trờn on 0; 2 VD Tỡm GTLN-GTNN ca cỏc hm s sau: 1, y f x 2x trờn on 2; x 2, y f x 2x trờn on x2 ;1 x2 2x 4, y f x trờn on 0;3 x2 3, y f x x trờn on 1; x2 VD Tỡm GTLN-GTNN ca cỏc hm s sau: 1, y x x2 2, y x x x x 1, x 1;1 3, y x x trờn on 0;3 4, 5, y x x2 6, y x x trờn on 0; trờn on 1; VD Tỡm GTLN-GTNN ca cỏc hm s sau: 1, y f x sin x x trờn on ; 2, y f x x cos x trờn on 0; 2 Gia s Thnh c www.daythem.edu.vn 3, y f x 2sin x sin x trờn on 0; 4, y f x cos x 4sinx trờn 0; 5, y f x 2sin x cos x 4sin x 6, y f x s inx trờn on 0; cos x VD Tỡm GTLN v GTNN ca hm s : 1 x2 x x x x x x 8x 8x 4, y x2 x 1, y x x ( x 1)(3 x) 3, y x2 x 5, y 2, y x3 x x4 x2 x2 x2 x2 VD Tỡm GTLN v GTNN ca hm s : sin x cos x sin x cos x sin x 3, y sin x sin x 1, y 2, y = sin4x +cos4x +sinx.cosx +1 4, y = sinx + cosx + sinx cosx 6, y 5, y 2cos x 2sin x 7, y cos4 x sin x sin x cos2 x cos x cos x cos x 1 8, y 2(1 sin x cos x) (cos x cos8 x) Phn 2: Giỏ tr ln nht, nh nht ca biu thc 1, Phng phỏp gii tỡm GTLN, GTNN ca mt biu thc cú cha nhiu hn mt bin s no ú ta cú th dựng phng phỏp i bin s nh sau: Bc Biu din cỏc bin s ca biu thc ban u theo mt bin s mi 10 Gia s Thnh c www.daythem.edu.vn Bc Tỡm iu kin cho bin s mi (da trờn iu kin ca cỏc bin s ban u) Bc Tỡm GTNN, GTLN ca hm s theo bin s mi tng ng vi iu kin ca nú 2, Mt s bt ng thc c s thng s dng: a, Vi a, b, c bt k, ta cú: 1, a b 2ab 2, (a b) 4ab 3, 2(a b ) (a b) 4, a b c ab bc ca 5, (a b c) 3( ab bc ca) 6,3(a b c ) ( a b c) b, BT Cụsi - Vi a, b, c khụng õm, ta cú: a b ab , a b c 3 abc , a b c 27abc ab a2 b2 ab 1 11 a b ab a b ab a b a b a3 b3 2 (a 0, b 0) (a 0, b 0) (a 0, b 0) (a c) (b d ) a b c d 2 1 a b ab a b ab (a, b R) (0 ab 1) (ab 1) 3, Tỡm GTLN, NN ca biu thc M cú tớnh cht sau: Tớnh cht 1: M ph thuc vo i lng: x + y + z, xy + yz + zx hoc x2 + y2 + z2 Tớnh cht 2: Gi thit cho trc giỏ tr ca mt i lng: x + y + z, xy + yz + zx hoc x2 + y2 + z2 Cỏch gii: Gi s biu thc M cú mt i lng nờu trờn, ú cú th t mt hai i lng ca biu thc M l n ph t ri dựng gi thit ca bi toỏn ó cho v kt hp hng ng thc (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx biu din i lng cũn li theo t Tỡm K cho t ta thng dựng mt ba BT sau: x2 + y2 + z2 xy + yz + zx hoc (x + y + z)2 3(xy + yz + zx) hoc 3(x2 + y2 + z2) (x + y + z)2 Quy v bi toỏn n gin a b4 a b2 a b VD Tỡm giỏ tr nh nht ca F Vi a,b b a b a b a VD Cho x, y l hai s thc dng tha x y Tỡm GTNN ca biu thc P x 4y VD Cho hai s thc x, y thoó món: x 0, y , x+y = Tỡm giỏ tr nh nht, ln nht ca biu thc : P = x3 + 2y2 +3x2 + 4xy - 5x 11 Gia s Thnh c www.daythem.edu.vn VD Cho x, y, z l cỏc s dng Tỡm GTNN ca biu thc P xyz x yz xyz x yz VD Tỡm GTLN, NN ca A x y Bit x, y tho iu kin x y x y VD Tỡm GTNN ca Q xy VD Cho x, y tha x2 + y2 = 2, Tỡm GTLN, NN ca M = (x3 + y3) 3xy x y 1 vi x, y dng v x khỏc y x2 y x, y Tỡm GTLN, GTNN P ( x 1)( y 1) x y x y VD Cho x, y tha x, y x y Tỡm GTLN, GTNN ca P x y xy x y xy Cho x, y tha VD 10 VD 11 Cho x, y l hai s thc khụng õm tha x3 y xy Tỡm GTLN, GTNN ca biu thc P x y xy x, y x2 y2 VD 12 Cho x, y tha Tỡm GTLN, GTNN P y x x y x y xy x y VD 13 Cho cỏc s thc dng tho: x + y = Tỡm GTNN ca: P x y VD 15 Cho y 0, x x y 12 Tỡm GTLN, NN ca: P=xy + x + 2y +17 Cho x, y l cỏc s thc khụng õm thay i v tha iu kin 4( x y xy ) 2( x y ) Tỡm giỏ tr ln nht ca biu thc P xy x y x y VD 22 Cho cỏc s thc khụng õm x, y, z tho x y z VD 21 2 Tỡm giỏ tr ln nht ca biu thc P xy yz zx x yz VD 23 Cho x, y , z tha x2 + y2 + z2 = Tỡm GTLN, NN ca R = x3 + y3 + z3 3xyz VD 24 Cho x, y , z > v x + y + z Tỡm GTNN ca M = x + y + z x 1 y z VD 25 Cho cỏc s x, y , z thuc khong (0 ; 1) v tha xyz + (x 1)(y 1)(z 1)=0 Tỡm GTNN ca N = x2 + y2 + z2 VD 26 Cho x, y, z 0, x y z Chng minh: x2 1 y z 82 (H- A-03) x y z VD 28 Cho x,y,z l cỏc s thc khụng õm tha x+y+z=1 Tỡm GTLN ca: P=xy+yz+zx-2xyz VD 29 Cho x,y,z l cỏc s thc khụng õm tha x+y+z=1 Tỡm GTNN ca P x3 y z VD 30 Cho x, y, z 1; Tỡm GTLN ca biu thc P ( x y z ) x 12 1 y z 15 xyz Gia s Thnh c www.daythem.edu.vn VD 31 Cho x, y, z v x y z Tỡm GTLN ca P x y z VD 32 Cho x y z Tỡm GTLN v GTNN ca biu thc P x y z xy yz zx VD 33 Cho x,y,z l cỏc s thc khụng õm tha x+y+z=1 VD 34 27 Cho x, y, z v x y z Tỡm GTLN ca P x3 y z VD 35 Cho x, y, z v x y z Tỡm GTLN ca P xy 10 xz 22 yz VD 36 Cho ba s thc dng a, b, c tha a b c Tỡm GTNN ca P a b3 c3 Chng minh: xy yz zx xyz Phn 3: Chng minh bt ng thc bng phng phỏp tip tuyn Xột bi toỏn: Cho a1 , a2 , a3 , , an D tho a1 a2 a3 an n , vi D , cn chng minh bt ng thc f a1 f a2 f an nf , ng thc xy a1 a2 a3 an VD Cho bn s dng a, b, c, d tho a b c d CMR: a b3 c3 d a b c d VD Cho ba s thc dng a, b, c tho a b c CMR: 10 a3 b3 c3 a5 b5 c5 VD 2a b c 2b c a 2c a b Cho cỏc s thc dng a, b, c CMR: 2 2 2a b c 2b c a 2c a b VD Cho ba s thc dng a, b, c tho a b c CMR: 13 2 1 27 ab bc ca 8 Gia s Thnh c www.daythem.edu.vn VD Cho ba s thc dng x , y , z tha x y z 12 CMR: VD Cho bn s thc dng a, b, c, d tha a + b + c + d = , CMR: a + 3a VD + b + 3b2 + c + 3c + d + 3d Ê 1 1 x y z Cho ba s thc a, b, c tha a b c CMR: a b2 c 10 a b c a c b c b a l cỏc s thc dng CMR: 2 2 c b a b2 a c a b c VD 10 Cho a,b,c Bài: khảo sát hàm số 1, Kho sỏt v v th hm s *) TX: D *) SBT: CBT: Tớnh y Du y v suy CBT 14 2 Gia s Thnh c www.daythem.edu.vn Cc tr Gii hn Bng bin thiờn, *) V th 2, Bin lun s nghim phng trỡnh da vo th (C ): y=f(x) - a phng trỡnh v dng f(x) = A(m) - S nghim ca phng trỡnh l s giao im ca th hm s y = f(x) vi ng thng y = A(m) - V hai th lờn cựng mt h trc ta v bin lun kt qu VD Cho hm s y x3 3x 1, Kho sỏt v v th hm s trờn 2, Da vo th bin lun theo m s nghim ca phng trỡnh x3 3x2 m VD Cho hm s y x3 x 1, Kho sỏt s bin thiờn v v th (C) ca hm s 2, Vit phng trỡnh tip tuyn ca (C) ti im trờn (C) cú tung bng 3, Vit phng trỡnh tip tuyn ca (C) ti im cú honh bng VD Cho hm s y x3 3(m2 1) x 6mx 2m 1, Kho sỏt s bin thiờn v v th (C) ca hm s m = 2, Tỡm giỏ tr ca m hm s t cc tr ti x = Khi ú xỏc nh giỏ tr cc tr ca hm s ti ú VD Cho hm s y x3 3x cú th (C) 1, Kho sỏt s bin thiờn v v th (C) 2, Vit phng trỡnh tip tuyn vi (C) bit tip tuyn song song vi d : y x 3, Tỡm GTLN, GTNN ca hm s y x3 3x trờn [1; 3] VD Cho hm s y x3 mx m , m l tham s 1, Kho sỏt v v th hm s (C) ca hm s m = 3 2, Vit phng trỡnh tip tuyn ca (C) bit tip tuyn vuụng gúc vi d : y x 3, Xỏc nh m hm s t cc tiu ti im x = VD Cho hm s y x x cú th (C ) 1, Kho sỏt s bin thiờn v v th (C ) 2, Vit phng trỡnh tip tuyn ca th (C) ti im cú honh x0 = VD Cho hm s y x 3x cú th (C) 1, Kho sỏt s bin thiờn v v th hm s (C) 2, Da vo th (C) tỡm m phng trỡnh x 3x m cú nghim phõn bit 3, Tỡm GTLN, GTNN ca hm s y x 3x trờn [0; 2] VD Cho hm s y x mx (m 1) cú th (Cm) 1, Kho sỏt s bin thiờn v v th (C) ca hm s m = -2 2, Tỡm m th hm s i qua im M(-1;4) 3, Tỡm m hm s y x mx (m 1) cú cc i v cc tiu VD 10 Cho hm s y x 3x cú th (C) 1, Kho sỏt s bin thiờn v v th (C) ca hm s 2, Vit phng trỡnh tip tuyn vi (C) ti im cú honh x0 = 15 Gia s Thnh c www.daythem.edu.vn 3, Tỡm m phng trỡnh sau cú nghim phõn bit: x4 12 x2 m VD 11 Cho hm s y x m x (Cm ) 2 1, Kho sỏt hm s m = 2, Bin lun theo m s nghim ca phng trỡnh x x 4m 3, Tỡm iu kin ca m hm s cú cc i, cc tiu VD 12 Cho hm s y 3x x2 1, Kho sỏt v v th hm s 2, Tỡm cỏc im trờn th ca hm s cú ta l nhng s nguyờn VD 13 Cho hm s y x x 1, Kho sỏt hm s 2, Cho d : 2x-y+m = CMR d luụn ct th hm s ti hai im A, B phõn bit vi mi m 3, Tỡm m AB ngn nht VD 14 Cho hm s y 2x cú th (C) 2x 1, Kho sỏt v v th hm s (C) 2, Vit phng trỡnh tip tuyn ca th (C) ti giao im ca (C) vi trc tung VD 15 Cho hm s y 2x x 1, Kho sỏt s bin thiờn v v th ca hm s ó cho 2, Tỡm m ng thng y mx ct th ca hm s ó cho ti hai im phõn bit VD 16 Cho hm s y 2x cú th (C) x 1, Kho sỏt s bin thiờn v v th (C) ca hm s 2, Vit phng trỡnh cỏc ng thng song song vi d: y x v tip xỳc vi th (C) VD 17 Cho hm s y x 3x (C) 1, Kho sỏt v v th (C) ca hm s 2, Da vo th (C) , bin lun theo m s nghim thc ca phng x 3x m 3, Tỡm m phng trỡnh x3 3x m3 3m cú nghim phõn bit 4, Vit phng trỡnh tip tuyn ca (C) ti im cú honh x 5, Vit phng trỡnh ca (C) ti cỏc im cú tung y VD 18 Cho hm s y 4x 3x (C) 1, Kho sỏt v v th (C) ca hm s 2, Da vo th (C) bin lun theo m s nghim thc phng trỡnh : x x m 3, Bin lun s nghim phng trỡnh 4x 3x 4m 3m theo m 4, Vit phng trỡnh tip tuyn ca (C) , bit tip tuyn i qua im M 1, VD 19 Cho hm s y = 2x - 3x - 1, Kho sỏt v v th (C) ca hm s (C) 16 Gia s Thnh c www.daythem.edu.vn 2, Vit phng trỡnh tip tuyn ca (C), bit tip tuyn vuụng gúc vi d1 : y x 2015 3, Vit phng trỡnh ng thng i qua M 2;3 v tip xỳc vi th (C) 4, Tỡm m ng thng d : y mx ct th (C) ti im phõn bit 5, Tỡm m ng thng d : y m x ct th (C) ti im phõn bit VD 20 Cho hm s y = (2 - x )(x + 1)2 (C) 1, Kho sỏt v v th (C) ca hm s 2, Tỡm m th (C) y x m ct th (C) ti im phõn bit 3, Vit phng trỡnh tip tuyn ca (C), bit tip tuyn vuụng gúc vi ng thng d1 : y x 4, Tỡm m ng thng d : y m x ct th (C) ti im phõn bit VD 21 Cho hm s y x3 mx 2(3m 1) x 1, Kho sỏt s bin thiờn v v th ca hm s m = 2, Tỡm m hm s cú hai im cc tr x1; x2 cho x1x2 + 2(x1 + x2 ) = VD 22 Cho hm s y x3 (m 1) x (m 4m 3) x 1, Kho sỏt s bin thiờn v v th ca hm s m = -3 2, Vi giỏ tr no ca m hm s cú C, CT x1; x2 Tỡm GTNN ca x1 x2 2( x1 x2 ) VD 23 Cho hm s y x3 (m 3) x 2( m 1) x 1, Kho sỏt s bin thiờn v v th ca hm s m = 2, Tỡm tt c cỏc giỏ tr ca tham s m hm s cú hai im cc tr vi honh ln hn VD 24 Cho hm s y x3 x mx 1, Kho sỏt hm s vi m = - 2, Tỡm m hm s t cc tr ti x1; x2 cho y ( x1 ) y ( x2 ) x1 x2 VD 25 Cho hm s y x3 (m 1) x 2(m 2) x 1, Kho sỏt hm s vi m = 2, Tỡm m hm s t cc tr ti x1; x2 cho P x1 x2 x1 x2 VD 26 Tỡm m th hm s (Cm): y x3 3mx 3x 3m ct trc Ox ti im phõn bit cú honh l x1, x2, x3 tha x12 x22 x32 15 VD 27 Cho hm s y x3 x (1 m) x m 1, Kho sỏt s bin thiờn v v th ca hm s vi m = 2, Tỡm m th hm s (Cm): y x3 x (1 m) x m ct trc Ox ti im phõn bit cú honh l x1, x2, x3 tha x12 x22 x32 < VD 28 Cho hm s y x x (C) 1, Kho sỏt v v th (C) ca hm s 2, Bin lun theo m s nghim thc ca phng trỡnh x x m 3, Vit phng trỡnh tip tuyn ca th (C) ti im cú honh x 4, Vit phng trỡnh tip tuyn ca th (C) , bit h s gúc ca tip tuyn bng 24, 5, Tỡm m y=m ct (C) ti im phõn bit cú honh lp thnh cp s cng 17 Gia s Thnh c VD 29 Cho hm s y www.daythem.edu.vn 2x (C) x 1, Kho sỏt v v th (C) ca hm s 2, Tỡm m ng thng d : y mx 2m ct (C) ti im phõn bit 3, Vit PTTT ca (C) bit tip tuyn to vi hai ng tim cn mt tam giỏc cú chu vi x x VD 30 Cho hm s y (C) 1, Kho sỏt v v th (C) ca hm s 2, Tỡm m d : y mx 2m VD 31 Cho hm s y ct th (C) ti im phõn bit cú honh dng 3x (C) x 1, Kho sỏt v v th (C) ca hm s 2, Tỡm m d : y mx 2m ct th (C) ti hai im A, B phõn bit Tỡm hp trung im I ca on thng AB 3, Tỡm nhng im trờn th (C) cú to vi honh v tung u l s nguyờn VD 32 Cho hm s y 2x (C) x2 1, Kho sỏt v v th (C) hm s 2, Tỡm phng trỡnh tip tuyn vi (C) ti im M thuc (C) v cú honh x o= 3, Tỡm N cho PTTT ti N ca (C) cỏch tõm i xng I on VD 33 Cho hm s y 2x (C) x3 10 1, Kho sỏt s bin thiờn v v th ( C ) ca hm s 2, Tỡm M cho PTTT ti M ca (C) cỏch tõm i xng I on LN VD 34 Cho hm s y 2x , (C) x 1, Kho sỏt s bin thiờn v v th (C) ca hm s 2, Tỡm m d: y = mx + ct th (C) ti hai im phõn bit M, N: MN VD 35 Cho hm s y 2x C x 11 1, Kho sỏt hm s 2, Gi (d) l ng thng qua A( 1; ) v cú h s gúc k Tỡm k cho (d) ct ( C ) ti hai im M, N v MN 10 VD 36 Cho hm s y 2x (1) x 1, Kho sỏt s bin thiờn v v th ca hm s (1) 2, Tỡm k ng thng d: y kx ct th hm s (1) ti hai im M, N cho tam giỏc OMN vuụng gúc ti O ( O l gc ta ) VD 37 Cho hm s : y 2x x (1) 18 Gia s Thnh c www.daythem.edu.vn 1, Kho sỏt v v th (C) ca hm s (1) 2, Chng minh rng ng thng d: y = 2x + m luụn ct th (C) ti hai im M v N phõn bit vi mi m Xỏc nh m on thng MN ngn nht MT S B I H PHNG TRèNH HAY Những lúc suy t- y (3x 2x 1) 4y 2 y x 4y x 6y 5y 4x 12x 9x (2 y) 2y 2 2x 5x 2y 3y x y y x y 1 y 1 x 2 2 x xy 2y 2x xy y 2(x y) (8 y 6) x (2 y 2)(y x 3) x y x 2y 2( x 4y) y xy 2y 34 15x 2 2x 5xy 3y 49(2y 3x 1) 2 x 2xy 10y 637 2y3 12y2 25y 18 (2x 9) x 2 3x 14x 3x 4y y x y3 x y x y x x 9(y 1) 2x x x y y x x3 x 11 x y x y(x 1) 2x 5xy y2 2 y( xy 2y 4y xy) 2 2 x(4y 3y 5y x ) y (x 4y 8) 10 x 12 2x 2y y 2x 4x (y y ) 12 x x y xy 2xy x y MT S PHNG TRèNH HAY 1, (3x + 1) 9x + 6x + - x + = 4x 16x + 2, - 10x + 12x - 5x + = 2x 7x - 7x + 2x 3, - 2x + 10x - 17x + = 2x 5x - x 4, x + 3x + 4x + = (3x + 2) 3x + 5, 8x - 36x + 53x - 25 = 3x - 6, 7, 27x -27x + 13x - = 2x-1 9, (x - 1) 11, x ( x+ 1- 2x + - = x+ 8, 4x + 18x + 27x + 14 = 4x+ - x - - (x - 5) x - - 3x + 31 = 10, (s inx - 2)(sin x - s inx + 1) = 3 s inx - + x+ 1+ ) x+ = ( + + x2 ) ( 12, 2x + ) 4x + = x + x2 + 13, 4x + x + (x - 3) - 2x = 14, x3 x2 3x 2(3x 1) 3x 15, x x x x x 16, x - 15x + 78x - 141 = 2x - ( ) 19 Gia s Thnh c www.daythem.edu.vn 18, (x + 6) + x + - x - 12x - 48x - 64x - x - 4x = 17, x + 6x - 171x - 40 (x + 1) 5x - + 20 = 19, 27x + 54x + 39x + 10 = (x + x + 2) x + x + 20, 2x + (x + 1) x + 2x + + (x + 2) x + 4x + + = ( ) 21, x + 4x + = x + 23, (x + 5) x + + = x2 + 22, (x - 1) - 8x + x + 32x + 24, x - 3x - 2x - - 3x + ( ) x - - 23x = - 23 3x + 3x + = 26, x + 2x - = (x + 1) x - 2x+ ổ1 x ữ 4(1 + + 4x ) ỗ ữ = 27, ỗỗ ữ ỗỗố x x + 1ữ ữ x + + x + 3x + ứ 28, x+ = (x + 2) x + x3 + x 29, x (4x + 1) - (x + x + 1) 2x + 2x + 1= 30, x + 9x - 156x-144 = 20 (x + 2) 5x + 25, 17 - x + 6x - 2x = 14 - 2x + 3x - x ( x+ 2- ) 20 [...]... 2 1 2 Cho ba s thc a, b, c tha món a b c 1 CMR: a 2 1 b2 1 c 2 1 10 a b c a c b c b a l cỏc s thc dng CMR: 2 2 2 2 c b a b2 a c a 2 b c 2 VD 10 Cho a,b,c Bài: khảo sát hàm số 1, Kho sỏt v v th hm s *) TX: D *) SBT: CBT: Tớnh y Du y v suy ra CBT 14 2 2 3 5 Gia s Thnh c www.daythem.edu.vn Cc tr Gii hn Bng bin thiờn, *) V th 2, Bin lun s nghim phng trỡnh da vo th... GTNN P y 1 x 1 x y 3 x y xy 3 x y VD 13 Cho cỏc s thc dng tho: x + y = 1 Tỡm GTNN ca: P 1 x 1 y VD 15 Cho y 0, x 2 x y 12 Tỡm GTLN, NN ca: P=xy + x + 2y +17 Cho x, y l cỏc s thc khụng õm thay i v tha món iu kin 4( x y xy ) 1 2( x y ) Tỡm giỏ tr ln nht ca biu thc P xy x y x 2 y 2 VD 22 Cho cỏc s thc khụng õm x, y, z tho món x 2 y 2 z 2 3 VD 21 2 2 Tỡm giỏ tr ln nht ca biu... Thnh c www.daythem.edu.vn 1, Kho sỏt v v th (C) ca hm s (1) 2, Chng minh rng ng thng d: y = 2x + m luụn ct th (C) ti hai im M v N phõn bit vi mi m Xỏc nh m on thng MN ngn nht MT S B I H PHNG TRèNH HAY Những lúc suy t- 3 2 y (3x 2x 1) 4y 8 1 2 3 2 2 y x 4y x 6y 5y 4 3 2 4x 12x 9x 1 (2 y) 2y 1 2 2 2 2x 5x 3 2y 3y 1 0 9 x 1 2 y 1 y 4 3 x 1 y 1 1 1 y 1 1 x 1... 2 5xy y2 1 8 2 2 y( xy 2y 4y xy) 1 3 2 2 2 2 2 x(4y 3y 5y x ) y (x 4y 8) 10 2 x 12 2x 2y 2 y 4 2x 4x 2 1 (y 1 y 2 ) 1 12 x x y xy 1 2xy x y 1 MT S PHNG TRèNH HAY 1, (3x + 1) 9x 2 + 6x + 2 - x + 1 = 4x 16x 2 + 1 2, - 10x 3 + 12x 2 - 5x + 1 = 2x 2 3 7x 3 - 7x 2 + 2x 3, - 2x 3 + 10x 2 - 17x + 8 = 2x 2 3 5x - x 3 4, x 3 + 3x 2 + 4x + 2 = (3x + 2) 3x + 1 5, 8x 3

Ngày đăng: 02/09/2016, 19:22

TỪ KHÓA LIÊN QUAN

w