1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bài toán biên cho một vài lớp phương trình có chứa toán tử elliptic suy biến mạnh

110 201 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 110
Dung lượng 0,94 MB

Nội dung

ệ P P Pì P S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn ệ P P Pì P t số ữớ ữợ P S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn ổ ổ tr ự tổ t q t ợ t ữủ sỹ t tr ỗ t ữ t q ợ ữ tứ ữủ ổ ố tr t ý ổ tr P t S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn ỡ ữủ tỹ t t tở trữớ ữ ữợ sỹ ữợ t t P r tr t tự t ự ợ t ỏ tr s s t tọ ỏ t ỡ t s s t ố ợ t t ỡ t ổ ũ ự s tr sr ổ t trữớ ữ Pỏ Pữỡ tr ổ ú ù t tr ự tr số ỡ ố trữớ ữ Pỏ ự Pỏ ũ t t tr t tờ t t t ủ ú ù t tr q tr t ự t ố ũ t tọ ỏ t ỡ tợ ỳ ữớ t ú ù t t P t S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn ệ ệ r ỡ ử ởt số ỵ tr ữỡ ổ t tữớ t ố ợ ữỡ tr t s ỷ t t ỹ ổ tỗ t ổ t tữớ ỵ ú ỹ tỗ t ữỡ tớ t r ổ ũ ữỡ tr r ỷ t t õ ự t tỷ t s rt ổ rt t ổ tr õ q t S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn ởt số ỵ tr RN ổ tỡ tỹ N C k () ổ tử k tr Lp () ổ ụ tứ p t s tr x y z x y z , , t x x1 xN1 tỡ t tỷ y = , , t y y1 yN2 , , t z tỡ t tỷ z = z1 zN3 N1 tỷ t x : x = i=1 xi N2 tỷ t y : y = j=1 yj N3 tỷ t z : z = l=1 zl tỡ t tỷ x = (., ) ổ ữợ tr ổ L2 () P, P, u = x u + y u + |x|2 |y|2 z u ợ , + > 0, |x|2 = N1 x2i , |y|2 = i=1 N2 yj2 , j=1 dx = dx1 dx2 dxN1 , dy = dy1 dy2 dyN2 , dz = dz1 dz2 dzN3 C(X, Y ) ổ tử tứ X Y C (X, Y ) ổ rt tử tứ X Y S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn ỵ t t ổ ự ữủ q t ỳ ự rở r õ tr t ỵ õ s t ự tỗ t ổ tỗ t t õ ự t tỷ t s õ ự t t q t ữủ tr q trồ tr t tr ỵ tt t ợ ỵ tr ú tổ t ự t ởt ợ ữỡ tr õ ự t tỷ t s t q trồ tự t q trồ tự t r ữủ số ụ tợ ỵ ú ổ õ trồ t ợ t tỷ t s ứ t q õ ú tổ ự ữủ sỹ tỗ t t õ ự ữỡ tr t s ỷ t t q trồ tự ữ r ữủ ỗ t tự P tứ õ ú tổ ự ữủ sỹ ổ tỗ t ổ t tữớ t ố ợ ữỡ tr t s ỷ t t q trồ tự ú tổ ự ữủ sỹ tỗ t sỹ tỗ t t sỹ tỗ t t út t t õ ự ữỡ tr r ỷ t t õ t tỷ t s S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn tr trữớ ủ số t õ t ọ ỡ t tợ số t õ t tý ỵ ố tữủ ự ố tữủ ự t t t tr õ ự t tỷ t s P, u = x u + y u + |x|2 |y|2 z u, ợ , 0, + > Pữỡ ự ú tổ t t tờ ủ tự q tợ t ự sỷ ữỡ t ữỡ ữỡ ự tr ỵ tt t s t ợ sỹ ũ ủ ợ t tỷ P, r ỏ sỷ ữỡ t ự sỹ tỗ t t tỗ t t út t ỷ õ S(t) s ữỡ tr r ợ t ủ tr trữớ ủ rt ữỡ r tr trữớ ủ ổ rt q t ứ sỡ ỵ tt ữỡ tr r ữớ t q t tợ t t t ữỡ tr ữỡ tr r tr õ trỡ t t ữủ t q t t trỡ ữủ ổ t tr ợ t tỷ t t t tỷ rs Gk u = x u + |x|2k y u ợ (x, y) RN1 +N2 , N1 , N2 1, k Z+ , tr t ữớ rs t ữủ t q k = t G0 t tr k > t Gk ổ t tr RN1 +N2 õ rộ ợ t x = S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn t rs ự ữủ Gk u ổ tr t ụ ổ tr t t ữỡ Gk ữủ t ự tr ữ ú t t ởt tr ỳ t tỷ t ữủ ự õ t tỷ u = 2u 2u 2u + + + x21 x22 x2n ự sỹ tỗ t ổ tỗ t t ỷ t t ự t tỷ ữủ t t tr ự t tứ ỷ t tự ữỡ r ổ tr P t t u + f (u) = tr , (1) u = tr , ợ ợ tr Rn (n 2), f (u) = u + |u|p1 u t q t ữủ tr ổ tr n = < p < , t t ổ õ ổ t tữớ n = p ổ õ ữỡ n+2 s t t n2 n+2 , t t õ ữỡ n2 n+2 n tr p0 = tr rt t tr n2 2n q p0 + = tr tợ t õ ỵ ú n2 p0 ữủ số ụ tợ t t tỷ n = < p < S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn t rs rr ổ ố t q tỗ t ữỡ t n+2 u = u + u n2 tr , (2) u = tr , ợ õ trỡ tr Rn , n t q r n t õ ữỡ < < ợ tr r t t tỷ ự ợ rt n = tỗ t < < < = ỳ t q t t ũ ợ t ữủ t r tú tr ổ tr ự s õ ũ ợ t t t ữ sỹ tỗ t ổ t tữớ tỗ t ữỡ t ự t tỷ t t ữủ tữỡ ố trồ ởt tữỡ tỹ ữủ t r ố ợ t õ ự t tỷ t s tr r t t Lk u + f (u) = tr , (3) u = tr , 2u 2k u tr õ ợ tr R Lk u = +x (k 1) x2 y f (u) = u|u|1 t q t ữủ Lk s t t ổ õ ổ k t tữớ < < t õ ổ t tữớ k 4+k tr số ụ tợ t tỷ Lk k S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn a+b t tự p ap + bp t õ T ||f (x, y, z, un (t))||pLp (Q T) C2p (1p + |un (t)|(p1)p )dxdydzdt T T = C2q |un (t)|p dxdydzdt = C |un (t)|p dxdydzdt < + |un (t)|p tr Lp (T ) f (x, y, z, un (t)) tr Lp (T ) dun } tr ổ dt Lp ((0, T ); S01 () + Lp (T ) t tứ ữỡ tr t ú t ự { dun (t) = P, un (t) f (x, y, z, un (t)), dt dun } tr L2 ((0, T ); S () + Lp (T )), dt L2 ((0, T ); S ()) Lp (T ) ú tử Lp ((0, T ); S () + dun } tr Lp ((0, T ); S ()) Lp (T ) { dt tr ổ õ ởt dunk du tử õ t ởt sỷ tr dt dt L2 ((0, T ); S ()) ứ t q tr t õ t u, v tọ u L2 ((0, T ); S01 ()) Lp (T ); du Lp ((0, T ); S () + Lp ()), v Lp (T ), dt ởt nk s s r { unk u tr L2 ((0, T ); S01 ()), unk u tr Lp (T ), f (x, y, z, unk ) v tr Lp (T ), dunk du tr L2 ((0, T ); S ()), dt dt nk ữ t t ữủ t q S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn un u tr L2 ((0, T ), S01 ()); un u tr Lp (T ); f (un ) dun dt v tr Lp (T ); du tr L2 ((0, T ), S01 ()) dt u L2 ((0, T ); S01 ()) Lp (T ) dun L2 ((0, T ); S () + Lp (T )) dt ú t ự ữủ u C([0, T ]; L2 ()) P ỏ t s ự v = f (x, y, z, u) u(0) = u0 dun ứ {un (t)} tr L2 ((0, T ); S01 ()) { } dt tr Lp ((0, T ); S ()) +Lp (T ) ú t t ữủ t q un u L2 ((0, T ); L2 ()) ú t õ t unk s unk u ỡ tr T ứ t tử f t õ f (x, y, z, unk ) f (x, y, z, u) ợ (x, y, z, t) T t {f (unk )} tr Lp (T ) f (x, y, z, unk ) f (u) tr Lp (T ) nk ứ t t ợ t v = f (x, y, z, u) ú t ự u0 = u(0) tỷ C ([0, T ]; S01 () Lp ()) ợ (T ) = ú t õ Lp (T ) L2 ((0, T ); S01 ()) t tứ t t T T (u, )dt + |x|2 |y|2 x u zu z x + y u y + f (x, y, z, u) dxdydzdt = (u(0), (0)) S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn ỷ ữỡ ú t õ T T (un , )dt + x un |x|2 |y|2 z un z x + y un y + f (x, y, z, un ) dxdydzdt = (un (0), (0)) q ợ n + t ữủ T T (u, )dt + { +|x| |y| zu z x u x + y u y + f (x, y, z, u)}dxdydzdt = (u(0), (0)) n +, t un (0) u0 s r u(0) = u0 T ổ tở u0 u(t) õ t t tr ữ t tr [0, ) ú t ự t t t tở tử ỳ sỷ u, v t ợ tr u0 = u0 (x, y, z), v0 = v0 (x, y, z) t w = u v w tọ w P, w + f (x, y, z, u) f (x, y, z, v) = 0, tr , t > 0, t w(x, y, z, t) = 0, ợ (x, y, z) , t > 0, w(x, y, z, 0) = u0 (x, y, z) v0 (x, y, z), ợ (x, y, z) ợ 2w s õ t tr t ữủ 0= d||w||2L2 () dt +2||w||2S01 () +2 (uv) f (x, y, z, u)f (x, y, z, v) dxdydz ỷ t õ (u v)2 dxdydz (u v)(f (x, y, z, u) f (x, y, z, v))dxdydz C = C||w||2L2 () S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn 0= d||w||2L2 () dt +2||w||2S01 () +2 (uv)(f (x, y, z, u)f (x, y, z, v))dxdydz d||w||2L2 () dt + 2||w||2S01 () 2C||w||2L2 () t tự r t ữủ ||w(t)||2L2 () ||w(0)||2L2 () e2Ct r ỵ ữủ ự ỵ r t ởt ỷ õ S(t) tử tr L2 () ỵ sỷ f tọ õ t ởt ỷ õ tử S(t) : L2() L2 () õ ởt t út t tổ t tr L2 () ự ứ s tỗ t ởt số R ữỡ s ợ ộ u0 L2 () t õ số t0 (||u0 ||L2 () ) s ||un (t)||L2 () R ợ n, t t0 ợ u u u uP, u + u.f (x, y, z, u) = t rỗ sỷ 1d ||u(t)||2 + ||u(t)||2S01 () + C dt |u(t)|p dxdydz vol() t t t tứ s tợ s + ú t t ữủ s+1 s+1 ||un (t)||2S01 () + C||un (t)||pLp () dt s (||u(t)||2S01 () + vol())dt s vol() + R2 , S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn ợ n s t0 ú ỵ r C(|u|p 1) F (x, y, z, u) C(|u|p + 1), s+1 F (x, y, z, un )dxdydz dt C, n s t0 ||un (t)||2S01 () + s õ tứ un (t) S01 () Lp () ú t õ d ||un (t)||2S01 () + dt F (x, y, z, un )dxdydz = dun dt L2 () ứ ú t s r ||un (t)||2S () + r F (x, y, z, un )dxdydz C, ợ n s t0 + ||un (t)||2S () + ||un (t)||pLp () C, ợ n s t0 + n + t ||u(t)||2S01 () + ||u(t)||Lp () C, t t0 + ứ ữợ ữủ tr t õ BC (0) t út tr S01 () Lp () ố ợ ỷ õ S(t) ỹ tỗ t t út t tổ t A t q tứ ú t S01 () L2 () L2 () tổ (A = w(BC (0))) ỵ ữủ ự t sỹ tỗ t t út t t s u t + P, u + u = 0, ợ (x, y, z) , t > 0, u(x, y, z, t) = 0, ợ (x, y, z) , t > 0, u(x, y, z, 0) = u0 (x, y, z), ợ (x, y, z) , S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn tr õ ợ tr RN1 +N2 +N3 trỡ (x, y, z) = (x1 , , xN1 , y1 , , yN2 , z1 , , zN3 ) RN1 +N2 +N3 , P, u = x u + y u + |x|2 |y|2 z u ú t tr ố ợ f (x, y, z, u) = u3 tr trữớ ủ p = 4, = õ f (x, y, z, u)u = u4 , õ (|u|4 1) u4 |u|4 + f (x, y, z, u) = u3 tọ t (u v)(f (u) f (v)) = (u v)(u3 v ) = (u v)2 (u2 + uv + v ) u2 v 2 (u + v) + + (u v)2 (u v) 2 õ f (x, y, z, u) = u3 tọ tọ ỵ t tỗ t ởt t út t tổ t tr L2 () ố ợ ỷ õ S(t) s t t ữỡ t q ữỡ t ữủ ự ữủ sỹ tỗ t t tỗ t t t tớ t r ổ ũ tổ q sỹ tỗ t t út t ỷ õ tử S(t) s t tr ự ữỡ tr r õ t tỷ P, tr trữớ ủ ố t õ t ọ ỡ t tợ trữớ ủ rt S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn ố t t trữ t tự trữớ ủ ổ rt ữ r ữủ trữớ ủ rt trữớ ủ ổ rt t q ữỡ sỹ rở t q tữỡ ự trữợ õ ố ợ ữỡ tr r ỷ t t ự t tỷ rs t P ố ữ r r P r ợ ữỡ ự tữỡ tỹ ữủ ũ ủ ợ ợ t tỷ P, ữủ t tr ữỡ ữủ t ỹ tr tr ổ tr t q S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn t ỳ t q ự tỗ t ổ tỗ t t õ ự ữỡ tr t s ỷ t t tr õ trỡ sỹ tỗ t t t út t t tr ố ợ ữỡ tr r õ t tỷ t s t q ữủ tự t P s rở ố ợ t ỷ t t õ ự P, tứ õ ữ r ổ tỗ t ổ t tữớ tr P, s r ữủ số ụ tợ ỹ ữủ ổ õ trồ tữỡ t ợ t tỷ P, tt ữủ ỵ ú tữỡ ự ự ữủ sỹ tỗ t ổ t tữớ t ỷ t t õ ự P, ự sỹ tỗ t ổ số t õ ự t ữ r ữủ t sỹ ổ tỗ t ổ t tữớ tỗ t ự ữủ ởt số t q ố ợ t tr ố ợ ữỡ tr r ỷ t t õ P, tỗ t tớ t r ổ ũ õ tr trữớ ủ S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn rt ổ rt ỳ t tử ự tỗ t t õ tr tr ổ ự t t t út t ữ sỹ tở tử t số t trỡ ổ ự tỹ t S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn ổ tr t ổ ố q P t st tr sts t r r r sr t rt qt R3 P r rt ts r r r sr t rt r t qt Prs t trt r Prt rt qts s P r tr sts t r rs r sr str rt t rt qts r r q P r t r sts t sr r qts str rt t rt rtrs r r q S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn t ữỡ r r Pữỡ tr r ứ ủ Pữỡ tr r t ũ sữ Pữỡ tr r tỹ t qố r ự ỵ tt ữỡ tr r qố rt P rtrt trt ts L stts r sts sr r rt t rt tr qts rt rt t r r P ts t tr st tr trt tr r rt Pss rst t t r t rstt t P rt ts rt t tr ts t S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn P P ttrtr r sr r qt t rs rtr tr r rt qts st tt ttrtrs r rt sr r qt tr r rt qts ts rs Ptr ts d, qts tqs st rtq q t s Prs t r Pt sts r sr qt t sr r t t s sst sts rs t s t s p qt ss rs t ss Pr t r tt tr t sr qts t sr r rr s st Prt r q rs rr Pst sts r t qts rt ts Pr t Prtr stt r sts t qts t rt ts r ts Pr r t t r tr t r qt r r st q ts Prt r q S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn r st tr r r r r s sss Pr t r sr rt rtrs Ps tr ts st sts r r rt t sst tr r q st rsts r s r rtr r t rs t rtr tr r q s trt t t tr t s sst ssts r r t Ps s tt r rt r rt t r t r Ps r trs r ss rt t st tr s r qt Prt r q r trr rrts ss r t r stt st r sts r sr qts t sr r t rs rt ss t s rt rtrs tt r rt s t s trs t sr S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn stt r sst ssts tt rs rs r t Pr r tr tr sr r q ts tr ts t rs r s r s s s t rs ts rr r st rs t rt rt rt rs sr t P rt ts r sr q ts t r rt t Pr t rr t rt rt qts r Ps P u + f (u) = ts r t qt ss ttrtrs rt rt qts ssts rt str ts P t t rt rtrs tt rs t t s t s sỵts r rst Prss S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn trs rs stt r sts r qsr t ssts Rn rt qts tr r r ts qts r t ss t r rs tts t r st tts P P r st st rsts r r r P r sr t rt rtrs ss t Ps r rt t r rt t rtrs t t t r t rs qt t ts r t rsts t tr sr t rt rt qts t t r r rt t rt qts rs t rt Ps st tr r sr rt r rt t ss t sr r r r q S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn [...]... = S(t)S(s) = S(s)S(t) ợ ồ t, s 0 S(t)u0 tử ố ợ (t, u0 ) [0, +) ì X S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn õ {S(t)}t0 ữủ ồ ỷ õ t tử tr X ởt ỷ õ S(t) tử ữủ ồ rt tử tỗ t C 0 (X, R) s (S(t)u) (u) ợ ồ t 0, ợ ồ u X (S(t)u) = (u) ợ ồ t 0, t u tự S(t)u = u ợ ồ t 0 ồ ỷ õ S(t) sỷ S(t) ỷ õ tử tr ổ tr ừ X A X ữủ ồ t út t ử ố ợ ỷ... (A) = + () = 0 sỷ X ổ C([0, T ]; X) ổ ỗ tt tử u : [0, T ] X ợ u C([0,T ];X) = max ||u(t)||X 0tT X ổ tr ữỡ ừ x X t + (x) = {S(t)x : t 0} B X t q ữỡ ừ t B t + (B) = t0 S(t)B = zB + (z) sỷ ổ ổ Lp((a, b); X) ổ ỗ tt u : (a, b) X tọ b ||u||pLp ((a,b);X) = ||u||pX dt < + a ờ sỷ (t) ởt ổ tử tr (0, T ) s t (t) c0 t0 + c1 (t s)1 (s)ds, t (0,... \{0} ||u||2 ừ Au1 = 1 u1 ồ (1) HA = {u HA : [u, u1 ]A = (Au, u1 )H = 0}, õ |a|2A = 2 1 2 (1) aHA \{0} ||u|| inf |a|2A inf t ữủ t u2 , t u2 r tữỡ ự ợ 2 2 (1) aHA \{0} ||u|| ừ Au2 = 2 u2 ự t tử ữ tr t t ữủ ởt tr r S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn 0 < 1 2 3 n u1 , u2 , , un , r tữỡ ự ú tứ HA H t t |a|2A 2 (i) aHA \{0} ||u|| inf (i) t... ỵ P ố ừ ữỡ ởt số ử t tỗ t ổ tỗ t ổ t tữớ t q ừ ữỡ ữủ t ỹ tr r ữỡ ú tổ ự tớ t r ổ ũ ừ ữỡ tr r ỷ t t õ ự t tỷ t s ừ t tr rt ổ rt r ử ợ rt ú tổ ự ữủ Lp () ú tử 2, (2 p) D ợ > ờ ỹ ừ f 2p(2, 2) tr ữủ f : u(x, y, z) f (x, y, z, u(x, y, z)) s 1 t tứ D 2 D0 ợ 0 = ờ ữỡ 2(2, 2) t ở ú tổ ự sỹ tỗ t t 1 u C([0, T ], D 2 ) sỹ tỗ t... ữủ ỷ õ 1 S(t) õ t út t ử tổ t tr D 2 t ự ữủ ỷ õ S(t) s t õ t út ỹ t tr S01 () ỵ ữ r ử ồ t tr trữớ ủ rt r ử t t trữớ ủ ọ tt ở t t ừ f, ự ữủ t tỗ t t ỵ ự ữủ t ởt ỷ õ tử S(t) õ t út t ử tổ t tr L2 () ỵ ố ũ ử ồ t tr trữớ ủ S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn ổ rt t q ừ ữỡ ữủ t ỹ tr ữỡ tr ở ỏ ừ t ử ổ tr ... t ởt số S húa bi Trung tõm Hc liu i hc Thỏi Nguyờn http://www.lrc-tnu.edu.vn K = K(1 , c1 , T ) s (t) c0 0 t K(1 , c1 , T ), ợ t (0, T ) 1 0 ờ sỷ X0, X, X1 ổ s X0 X X1 , ú ừ X X1 tử ú ừ X0 X t X0 , X1 sỷ 1 < 0 , 1 < , t du E = {u L0 (0, T ; X0 ), L1 (0, T ; X1 )}, dt ợ du ||u||E = ||u||L0 (0,T ;X0 ) + dt L1 (0,T ;X1 ) õ E L0 (0, T ; X) t S húa bi Trung tõm Hc liu

Ngày đăng: 29/06/2016, 12:33

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w