1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Bất đẳng thức ôn thi học sinh giỏi cấp quận, thành phố

80 755 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 80
Dung lượng 2,77 MB

Nội dung

Các bài bất đẳng thức hay và khó trong đề thi đại học, học sinh giỏi cấp quận huyện, cấp tỉnh, quốc gia, bất đẳng thức cosi, bất đẳng thức amgm, bất đẳng thức cauchy, phương pháp dồn biến, phương pháp sos, phương pháp hàm số, phương pháp đặt ẩn phụ, phương pháp ép biến, phương pháp biến đổi tương đương, bất đẳng thức hoán vị, khử mẫu số, bất đẳng thức cơ bản, bất đẳng thúc lượng giác, phương pháp ẩn phụ, phương pháp dùng hằng số biến thiên, phương pháp ép tích, phương pháp bình phương, cói ngược dấu, trung bình cộng trung bình nhân, tài liệu bất đẳng thức, olympic, các bài bất đẳng thức ôn thi thptqg, ôn thi học sinh giỏi, chuyên đề bất đẳng thức, học sinh giỏi 12, hcj sinh giỏi 11

Khoá học BDHSG Chuyên đề Bất đẳng thức Bất đẳng thức Cô - si Các tập   a    b  Chứng minh rằng: 1    1    21 a, b  b a   HD     a  a   b  b  a, b  0, 1      , 1       b   b   a   a     a  b  VT    2  b   a        a        a  b 2 1      2   b  a b    c  Chứng minh rằng:             31 a, b, c  b c a    HD Với a, b, c>0 ta có:   a   a      b    b                             b  b   a b c a b c  1   c    c    VT   3 b    3 c    3 a   3  3 b   3 c   3 a                       c   c      a    a       a,b,c  Cho  abc  1 Chứng minh rằng: a  b2  c3  Với a, b, c>0 abc=1 ta có: 11 HD 1 11 a  b2  c3   6a  3b2  2c3  11 Ta có VT  a  a  a  a  a  a  b  b  b  c  c  116 a 6b 6c  11 (đpcm) a, b, c  Cho  abc  Chứng minh rằng: (2 + a)(2 + b)(1 + c)  32 HD Với a, b, c > abc=1 ta có: VT=(2 + a)(2 + b)(1 + c) =  2b  2a  ab  4c  2bc  2ac  abc - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức Bất đẳng thức Cô - si  VT   2b  2a  4c  ab  2bc  2ac   6 2b.2a.4c.ab.2bc.2ac   6 26.a 3b3c  32 Chứng minh rằng: 8a  8b  8c  2a  2b  2c a  b  c  HD Đặt  x,  y,  z  x, y, z  a b c  a  log x, b  log y, c  log z  a  b  c   log  xyz    xyz  Như toán trở thành chứng minh x3  y  z  x  y  z x, y, z  | xyz  Ta có x         y    z    3x  y  3z =>x +y3 +z3   x  y  z    x  y  z  2.3 xyz   x  y  z a, b, c  Cho  a b c  Chứng minh rằng: (a + b)(b + c)(c + a)  2(1 + a + b + c) HD (Các bạn tự giải) Cho a, b > Chứng minh rằng: a2 b2  8 b 1 a 1  a  1  2a    b  1  2b   a b   b 1 a 1 b 1 a 1 2 a,b,c  Cho  a  b  c  2   HD   1    Chứng minh rằng: 1   1   1    64 a b c HD Với a, b, c > ta có      a  1 b  1 c  1 1  a 1  b 1  c   abc      abc  ab  ac  a  bc  b  c  ab  bc  ca  1 1     54  64 abc abc abc abc a,b,c  Cho  a  b  c      1    Chứng minh rằng:           125 a b c (Các bạn làm tương tự 8) 10 Cho a  b > 0; a  2; ab  Chứng minh rằng: a  b  HD + Xét b   a  b  với a, b thỏa mãn điều kiện đề + Xét b    a   a  b  a  =>ĐPCM 2a  1  a2    a   1     a a  a - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức Bất đẳng thức Cô - si 11 Cho a > b > c > ; a  3; ab  ; abc  Chứng minh rằng: a  b  c  (Các bạn chứng minh tương tự 10) 12 Chứng minh rằng: 4a b   a  b2  a b2   a, b  b2 a HD VT  2 4 4 4 2a b a b a b a b    33 3 4 2 2 a b 2a b 2a b 2a b a,b,c  13 Cho  ab  bc  ca  Chứng minh rằng: Với a, b, c > ta có a3 b3 c3    bc ca ab HD a3 ab  ac a b3 ba  bc b c3 ca  cb c   ;   ;   bc ac ab  VT  ab  bc  ac a  b  c  2  VT  a  b2  c2 1   2 1 a 14 Cho a,b, c > Chứng minh rằng: a  b  c   (abc  1)   Với a, b, c > ta có HD 1 a c b     b c  c b a 1 a c b 1 1 a c b (abc  1)         bc  ca  ab       a b c c b a a b c c b a  2a  2b  2c  1    a  b  c  3 abc   abc6 a b c abc 1  3bc ca ab    15 Cho a,b,c > Chứng minh rằng:  a3  b3  c3         a Với a, b, c > ta có 11 12  b c  2 a b c  HD a3 a a a b3 b3 c c   , , , , ta BĐT phụ cộng vế với vế ta tương văn tự cho b b3 b c a c a b3 a a b3 b3 c c a a b b c c       3       b c a c a b b c a c a b   VT  VP  VP 3 a a b b c c  co 'VP          2 b c a c a b  VT  VP  ĐPCM - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức Bất đẳng thức Cô - si 16 Cho a1 , a2 , , an  for  n Chứng minh rằng: a12  a2 a3 a  a3 a1 a  an a1 a  a1 a2    n 1  n n a1 (a2  a3 ) a2 (a3  a1 ) an 1 (an  a1 ) an (a1  a2 ) HD Với a1 , a2 , , an  ta có a12  a2 a3 a  a3 a1 a  an a1 a  a1a2    n 1  n a1 (a2  a3 ) a2 (a3  a1 ) an 1 (an  a1 ) an (a1  a2 )    an2 a2 a3 a12 a1a2      a1 (a2  a3 ) an (a1  a2 ) a1 (a2  a3 ) an (a1  a2 )  a1   an 2  a1a2  a2 a3   an a1   2a1a2   2a2 a3      a1 (a2  a3 ) an (a1  a2 )  n n  n 2 a1  a2  a3  a4  a5  17 Cho a1 , a2 , a3 , a4 , a5 > Chứng minh rằng: a1a2a3a4a5   a1  a2 a1  a2  a3  a4  a5  5 a1a2 a3 a4 a5    a1a2 a3 a4 a5  a1  a2   a2  a3   a3  a4   a4  a5   a5  a1  20 HD   a2  a3   a3  a4   a4  a5   a5  a1  20  a1  a2  a3  a4  a5    a1a2  a2 a3  a3 a4  a4 a5  a5 a1 20   a1  a2  a3  a4  a5   10 a1a2 a3 a4 a5   a1  a2  a3  a4  a5     a1a2  a2 a3  a3a4  a4 a5  a5 a1  a1  a2  a3  a4  a5  a1a2  a2 a3  a3 a4  a4 a5  a5 a1  10 a1a2 a3a4 a5 Luôn với a1 , a2 , a3 , a4 , a5 > => ĐPCM - Trang | -  Khoá học BDHSG Chuyên đề Bất đẳng thức Bất đẳng thức Cô - si Hƣớng dẫn giải số tập (Các điều kiện dấu “=” xảy tự xét) II KĨ THUẬT TÁCH CÁC PHẦN TỬ NGHỊCH ĐẢO a, b  Cho  a  b  10 a b Tìm giá trị nhỏ biểu thức S  2a  3b   HD 10 10  a   b    a  b    10   18 a b a b a2 b2 Cho a,b > Tìm giá trị nhỏ biểu thức S   b 1 a 1 Với a, b  , S  2a  3b   Với a, b  , S  HD  a  1  2a    b  1  2b   a b   b 1 a 1 b 1 a 1 2 2 Cho a,b,c > Tìm giá trị nhỏ biểu thức S = a  b  c  abc HD a 2bc  ab3c  abc  Với a, b, c  , a  b2  c3   4 abc abc Cho a, b, c  Tìm giá trị nhỏ biểu thức P4 a  b  c  bc  ca  ab bc ca ab a b c HD Với a, b, c   bc  4 b P   a  a  4 b     bc ac a   ac 8  bc ac   b   ab    b  c ac ab    c  c           ab c   a b c  8   ab 3      2 2  P   2   ĐIỂM RƠI CỐ ĐỊNH - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức a, b, c  Cho  2 a  b  c  Bất đẳng thức Cô - si Tìm giá trị nhỏ biểu thức T  a  b  c  abc HD Với a, b, c  , ta có 1 1 T  a  b  c   3 abc   3 abc     abc 3abc abc 3abc 3abc   Cho a, b, c, d > Tìm giá trị nhỏ biểu thức S = 1  abc 4 2a   2b   2c   2d  1 1 1 3b   3c   3d   3a  HD Với a, b, c  , ta có S  3b  2a  3c  2b  3d  2c  3a  2d  34 abcd  5 a b 5 b c 5 c d 5 d a 54  34 abcd a,b,c  1  Tìm giá trị nhỏ biểu thức S  a   b   c  abc b c a   Cho  HD Với a, b, c  , ta có S  a2   1717  1 1 1    b2     c2    2 2 16b 16b 16c 16c 16a 16a a2 a2 a2 17 17  17  17  17 17 5 16 32 16 32 16 32 16 b 16 b 16 b 16 a b c 17 217  2a.2b.2c 5  17 15  2a  2b  2c  217     Cho a  ; b  ; c   17 1 11   9 Chứng minh rằng: T  a  b  c  2a  3b  4c  11 11 Với a  ; b  ; c  2a  1 1      2 2 2a  2 a  2 3b  1     3 3 3b  3b  3b  HD 4c  11 1 1 11      4 4 4c  11 4c  11 4c  11 4c  11 Cộng vế lại với ta điều chứng minh - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức Bất đẳng thức Cô - si KĨ THUẬT GHÉP ĐỐI XỨNG Chứng minh rằng: a3  b3  c3  a bc  b ca  c ab ,  a, b, c  HD Cách  a , b, c  a  a  a  a  b3  c  6a bc b3  b3  b3  b3  a  c  6b ac c3  c3  c3  c3  b3  a  6c ab Cộng vế lại với ta đpcm Cách  a , b, c  a bc  b ac a2  b2 c ab  c2 abc  abc  abc  a3  b3  a  abc  b  abc  c3  abc  c3  a  b3  c 4a  b3  c 3  b3  a  c 4b3  a  c 3  b3  a  c 4c3  a  c 3   a bc  b ac  c ab  a  b3  c Cho a, b, c độ dài cạnh tam giác Chứng minh rằng: b  c  a 3  c  a  b 3  c  a  b 3  a  b  c 3  a  b  c 3 b  c  a 3 ( a  b  c )5  (b  c  a)5  (c  a  b)5  abc HD Đặt x  a  b  c; y  b  c  a; z  a  c  b  x, y, z  Khi toán trở thành cho x, y, z>0 y z z x3 x3 y    x y z x5 y z - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức Bất đẳng thức Cô - si Có y z z x3 y z x3 z3    xy x5 y5 x5 y z x3 x3 y x3 x3 y y z y3   ;   yz z xz y5 z5 x5  x2  y  z  z y x3   z y x4   2VT          2 3xyz  xy xz yz   xyz xyz xyz  x  VT   y2  z2  xyz  x  y  z   x  y  z =>ĐPCM  x  y  z 3     Chứng minh rằng: a4  b4  c4  a3b  b3 c  c3 a  a, b, c  HD  a, b, c  ta có a  a  a  b  a 3b b  b  b  c  4b3c c  c  c  a  4c3 a      a  b  c  a 3b  b3c  c a  dpcm Chứng minh rằng: a5  b5  c5  a3b2  b3 c2  c3 a2 a,b,c  HD a,b,c  ta có a5  a5  a5  b5  b5  5a3b2 Tương tự với b, c Cộng vế lại với ta đpcm Cho a, b, c > Chứng minh rằng: bc ca ab a7 b7 c7    abc     2 2 2 2 2 2 a b c b c c a a b a b c HD a,b,c  ta có bc ca ab a7 b7 c7    abc     2 2 2 2 2 2 a b c bc c a ab abc  b3c3  c3a3  a 3b3  a 3b3c3  a  b9  c       b3c3  c3 a3  a3b3  a 3b3c3  a  b9  c9  Ta có - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức Bất đẳng thức Cô - si a  b9   3a 3b3 b9  c   3c 3b3 c  a   3a 3c a  b9  c  3a 3b3c =>Cộng vế lại với ta ĐPCM Cho a, b, c độ dài cạnh tam giác, p nửa chu vi Chứng minh rằng:  pa   p b  pc  bc pa  ca pb  ab pc HD Đang update……… Cho a, b, c > Chứng minh rằng: a 61 b61 c61 b61c 61 c61 a 61 a 61b61      182  182  a 61b61c61 b 20 c 20 c 20 a 20 a 20 b 20 a 20 b 20 c 20 a182 b c HD Các bạn làm tương tự số     Cho a, b, c > Chứng minh rằng: a  bc b  ca c  ab   (a3  b3 )(b3  c3 )(c3  a3 ) a b c HD Đang update………… Cho a, b, c > Chứng minh rằng: 5 13  a  b   b  c    c  a    16  ab  a  b   4a  4b  4ab  c     bc  b  c   4b2  4c  4bc  a   ca  c  a   4c  4a  4ca  b    HD Đang update…… ĐỒNG BẬC BẤT ĐẲNG THỨC Chứng minh rằng: a4 b4 c4     a  b  c  a, b, c  2       b bc c ca a ab a, b, c  HD b b  c  b  c  a4    a 8 b b  c  c c  a  c  a  b4    b 8 c c  a - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức Bất đẳng thức Cô - si a a  b a  b c4    c 8 a a  b Cộng vế với vế => ĐPCM Chứng minh rằng: a5 b5 c5     a  b  c  , a, b, c   a  b 4  b  c 4  c  a 4 16 HD a, b, c   a  b    a  b    a  b    a  b   5a a5  32 32 32 32 16 a  b Tương tự cho hoán vị cộng vế với vế ta ĐPCM 4 Chứng minh rằng: a  b  c   a2 c  b2 a  c2 b  a, b, c  ab bc ca HD a, b, c  a  c  a  b   2a c ab b  a  b  c   2b a bc c  b  c  a   2c 2b ca Cộng vế với vế ta ĐPCM Chứng minh rằng: b2 c c2 a a2b 11 1        a, b, c  3 a b  c  b c  a  c  a  b   a b c  HD a, b, c  b2c bc    a  b  c  4bc 2b 2b Tương tự cho hoán vị cộng vế với vế ta ĐPCM [Greece MO 2007] Cho a, b, c độ dài cạnh tam giác Chứng minh rằng: b  c  a  c  a  b   a  b  c     ab  bc  ca a  a  b  c  b b  c  a  c c  a  b  HD a, b, c  - Trang | 11 - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương PP dồn biến  ln a  ln b  ln c  ln  abc   a  b  c  a   b2   c2    a  b  c    a  b  c S a  b  c abc  * Vậy Max S  a  b  c  Nhận xét: 1) Từ giả thiết abc = liên tưởng đến lnt 2) g  t   t   2t   ln t , t   f  t   t   2t   ln t  0, t  f ' t   t  2  t t2 1 1 f ' 1         2 a  b  c  Bài [British MO] Cho a, b, c : a  b  c  Chứng minh rằng:  a   b   ab  bc  ca   GIẢI Đặt: r  abc Xét f  x    x  a  x  b  x  c   x3   a  b  c  x   ab  bc  ca  x  abc  x3  x  x  r f 1   r; f  3  r x  f '  x   3x  12 x   f '  x     ;  x  f    r ; f     r BBT: x f ' x + - + 4-r 4-r f  x -r Hocmai.vn – Ngôi trường chung học trò Việt -r Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương PP dồn biến PT: f  x  = có nghiệm a, b, c phân biệt nên ta có f 1 f  3   r  Mặt khác a  b  c , từ bbt   a   b   c  a3 b3 c3 a2 b2 c2      b3  c c  a a  b b  c c  a a  b Bài CMR: a, b, c  1 GIẢI Xét hàm f  x   f ' x   ax bx cx   , bx  cx cx  a x a x  bx    a x ln a b x  c x  a x b x ln b  c x ln c b  c  ln b  c  a   b  c c  a  ln c  a  b   c  a a  b  x bx x x x  cx x x x    a x b x  ln a  ln b  b x   cx a x b x  ln b  ln a  c x  ax  a x c x  ln c  ln a  a x  bx   x ln a  b x ln b  a x c x  ln a  ln c   b  x  cx  b x c x  ln b  ln c  c x  ax  c xb x  ln c  ln b   a   b x c x  ln b  ln c    cx  ax   x     x x a  b       x x a  b       x x c  a     bx     c a  ln a  ln c    bx  cx  x ln c  a x ln a x   a x b x  ln a  ln b    bx  cx  x x x x   a  b   a  b  2c   a b  ln a  ln b  b  c   c  a   b  c   b  c  2a   b c  ln b  ln c   c  a   a  b  x x  x x x0 x x x x x x x x x x x x x x x x x x x x Hocmai.vn – Ngôi trường chung học trò Việt  a  c   a  c  2b   ln a  ln c  b  c   a  b  x c a x x x x x x x x Tổng đài tư vấn: 1900 58-58-12 x x 0 - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương PP dồn biến  f  x  đồng biến  0;    f  3  f  2  (đpcm) Bài Cho a  1; 2 CMR:  2a  3a  4a  6a  8a  12a   24.24a 1 GIẢI   a   a    a   a  1        1       1  24            2 a  2 4 u    u   3 9 * Đặt   a  3  v v  16     4    * VT (2) =  u   1 v   1 v  u   1  u     v    2  u    v           u  v v u     2          1 t 1 * f  t   t  ; f '  t      0, t   0,1 t t t  f  t  nghịch biến (0; 1)  4 2  f  u  nb  ;     Từ đó:   f  v  nb  ;      16    f u      f v      97 f     36   337 f    16  144  97 337   36  144    1013 2  VT         24  VP      288    (đpcm) Bài Cho a, b, c số thực dương Chứng minh a2 b2 c2    2 2 2 a  (b  c) b  (a  c) c  (b  a) Chứng minh Không tính tổng quát chuẩn hóa a  b  c  Qui bất đẳng thức dạng 3 a2 b2 c2 a2       2 2 2 5 a  (3  a) b  (3  b) c  (3  c) cyc 2a  6a  Ta sử dụng bất đẳng thức phụ sau Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương PP dồn biến a2 12a    (8a  21)(a  1)2  2a  a  25 Không tính tổng quát giả sử a  b  c  a   c Xét hai trường hợp sau 21 + Trường hợp c   8a  21  8b  21  8c  21  21 + Trường hợp max{a, b, c}  Khi ta có: a2 49 f (a)     2a  6a  50 3     1 a  Do f (a) đồng biến (0,3] nên điều hiển nhiên Giáo viên : Lê Đức Việt Nguồn Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 : Hocmai.vn - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương PP dồn biến BÀI 26 PHƯƠNG PHÁP DỒN BIẾN (PHẦN 3) ĐÁP ÁN BÀI TẬP TỰ LUYỆN Giáo viên: LÊ ĐỨC VIỆT Các tập tài liệu biên soạn kèm theo giảng Bài 26 Phương pháp dồn biến (Phần 3) thuộc khóa học Bồi dưỡng học sinh giỏi Chuyên đề Bất đẳng thức – Thầy Trần Phương website Hocmai.vn Để sử dụng hiệu quả, bạn cần học trước giảng sau làm đầy đủ tập tài liệu x   y  Cho  x y2  y  3x  y  x   xy  1 Tìm P  x  32 y  x y  x  y  1  5 x 4y GIẢI   P  x2  y   x  4y  2    x2  y  x2  y  3x y  x y 2  x2  y   x  4y     5 2  x2  y         2 x2  y   2t  2t    t , t  x  y t  t  2t    f  t  t Đặt u  2 y  u  0, ta biến đổi (1): x2 u2 12  x  3u    0 x u x u 12 x u     3 x  u   xu u x 3 12 x  u    3u  x   ux u x  12  x3  u  3ux  u  x   xu  12   u  x   xu  12   u  x    x  u      12   u  x   u  x    12   2.t    2t  2t t t 6   t   2t  t   Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương PP dồn biến  t  t2 5t  4t  f ' t   t    2t t 4t  t  1  t    0, t  2t  f  t  đồng biến  2;    f  t   f  2  2 x   * Kết luận: Min P = -2   y   2 [JMO 2001] Chứng minh rằng: a, b, c   a  b  c  b  c  a   c  a  b  2     a  b2  c b2  c  a c  a  b2  1 GIẢI Ta cần xét toán trường hợp a , b2 , c độ dài cạnh ABC Ta chứng minh:   a   b  c 2   a  b  c     2    a  2a  b  c    b  c   a  b  c  b  c  2 2   b  c    b  c   2a   b  c          b  c  b2  c  a  Tương tự ta có: b   c  a    b  c  a      3    4  c   a  b 2   c  a  b     3   VT 1 2  VP 1   Đpcm CMR: a, b, c  1    b  b  a  c  c  b  a  a  c   ab  bc  ca  1 GIẢI Ta có 1  ab  c  b  a  b b  a   bc  a  c  b  c c  b  ca  b  a  c  a a  c  a b c c a b       ab bc ca a c a  a b c c  b a  c b  a 15       ab bc ca b c a Hocmai.vn – Ngôi trường chung học trò Việt   2 Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương Ta có: PP dồn biến a ab a a b  2 1 a  b 4a a  b 4a b bc c ca   1;  1 b  c 4b ca 4c 3 ab bc ca   VT         4 a b c    b c a   3 3       a b c  3 b c a   3  3  4 a b c 15     VP   (đpcm)  b  c  3a    a  c  3b    a  b  3c   1  2 2 2a   b  c  2b2   a  c  2c   b  a  Cho a, b, c  Chứng minh: 2 Chứng minh Không tính tổng quát chuẩn hóa a  b  c    4a     4b     4c    2 2 2a    a  2b2    b  2c    c  Khi (1) 2   4a   8a    a  1  39  8a   6  a  2a   2a    a  Sử dụng bất đẳng thức sở sau Điều hiển nhiên  a   39  8a  39  24  15  Tương tự với biến lại ta có điều phải chứng minh Đẳng thức xảy a  b  c  b  c  2a    a  c  2b    a  b  2c    2 2a   b  c  2b2   a  c  2c   b  a  Cho a, b, c  Chứng minh: 2 Chứng minh Không tính tổng quát chuẩn hóa a  b  c  Khi bất đẳng thức (1) tương đương với  a  1   b  1   c  1  2 2 2a  1  a  2b  1  b  2c  1  c  2  a  1  12a     3a  1  4a  1 2 2a  1  a  2a  1  a  Sử dụng bất đẳng thức sở sau: Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương PP dồn biến Điều hiển nhiên Đẳng thức xảy a  b  c Cho a, b, c  Chứng minh:  2a  b  c    2b  c  a    2c  a  b   12 1 3 abc 4a3   b  c  4b3   c  a  4c3   a  b  2 Chứng minh Không tính tổng quát, giả sử a  b  c  3, bất đẳng thức (1) trở thành  a  3   b  3   c  3    3 4a3    a  4b3    b  4c3    c  2  a  3   a  1 , 2a   3 4a    a  Xét đại diện Thật vậy, ta có  a  1 2a  12a    a  1 a  3     3  a3  3a  9a   4a    a  0  b  3   b  1 , 2b ;  c  3   c  1 , 2c     3 3 4b3    b  4c    c  Tương tự ta có: 2 Từ (2a), (2b), (2c) suy (2)  (Đpcm) Đẳng thức xảy  a  b  c Giáo viên : Lê Đức Việt Nguồn Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 : Hocmai.vn - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương PP dồn biến BÀI 27 PHƯƠNG PHÁP DỒN BIẾN (PHẦN 4) ĐÁP ÁN BÀI TẬP TỰ LUYỆN Giáo viên: LÊ ĐỨC VIỆT Các tập tài liệu biên soạn kèm theo giảng Bài 27 Phương pháp dồn biến (Phần 4) thuộc khóa học Bồi dưỡng học sinh giỏi Chuyên đề Bất đẳng thức – Thầy Trần Phương website Hocmai.vn Để sử dụng hiệu quả, bạn cần học trước giảng sau làm đầy đủ tập tài liệu Cho x, y, z  :   x  y    y  z    z  x   2 1 Tìm max P  x  y  z  ln  x  y  z   x  y  z GIẢI * Từ (1)   x2  y  z  xy  yz  zx   x, y, z   0;1  x  y  z  x  y  z       ln x  y  z  ln x  y  z  2 2 * Ta có   x  y    y  z    z  x    x  y    y  z    z  x  3  x y z 0 2     x  y  z   * Để ý: x, y  0;1 nên 4x  3x  Ta chứng minh: f  x   x  3x   x  0;1   f '  x   x ln  4; f '  x    log    0;1  ln  BBT  f  x    f    f 1  dpcm   * Vậy: P   3x  1   y  1   3z  1  ln x  y  z   3 x  y  z    x  y  z Đặt t  x  y  z, t 0 x  y  z Xét: g  t   3t   t 4 g '  t   3t  3t  3t 1  t  t  g ' t     t  Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương PP dồn biến BBT: t g ' t  + - 21 g t   g  t   g 1   Max P  21 21 x  1; y  z  2 a  b  c P 2 Cho a, b, c  : a  b  c  Tìm max 2  2ab 2 a   b 1  c   a  b   a  b2  GIẢI Ta có: a  b  c  2ab  a  b2  c  2c  a  b    2c  a  b  a  b2 2 a  b2   a  b  a  b4    Từ đó: 2 a  b 1  c   2c  a  b  P 2 2  a  b  a  b2        2c  a  b   2c  a  b   2c  a  b   a 2    b 1  c  ab  a  b  1  c   22 ab   a  b 1  c   1  6  c  a  b    a  b      a2  b2  2     a  b    a  b    6    a  b   a  b    a  b     Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương Đặt t  a  b, P PP dồn biến 0t 2      t t  t   f  t  2  f ' t    t2   t2 2  t2 t  t   f ' t     t   t   15  loai  t   BBT: t f ' t  + f t  - 62 a  b   Max P  t    c  [Vasile Cirtoaje - Algebraic Inequalities – Old and New Method] Cho a, b, c, d số thực dương thỏa mãn a  b  c  d  , Chứng minh 1 1 16    3a  3b  3c  3d   2 Chứng minh Ta cần xác định hệ số để bất đẳng thức sau 3a    m(2a  1) Dễ dàng tìm bất đẳng thức phụ sau 3a   52  48a 3(2a  1)2 (12a  1)  0 49 49(3a  1) Tương tự với biến lại Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương PP dồn biến Xét hai trường hợp sau + Trường hợp min{a, b, c, d }   12a   12b   12c   12d   12 + Trường hợp d 49 48   3d    12 48  3d 49 Xét tương tự với biến lại ta tìm điều phải chứng minh Đẳng thức xảy a  b  c  d  Cho a, b, c số thực dương thỏa mãn a2  b2  c2  Chứng minh rằ ng a5  a b5  b c5  c   0 a  b  c b5  a  c c  b  a Chứng minh Bất đẳng thức tương đương với 1    2 2 2 a b c b a c c b a a  b2  c Từ suy ta cần chứng minh trường hợp a2  b2  c2  đủ Áp dụng bất đẳng thức AM-GM ta có 2a 2a   a5 a2  a2 Đặt a  x, b2  y, c2  z lúc ta có x  y  z  ta phải chứng minh 1   2x 2y 2z  x3  y3  z 3 x 1 y 1 z 1 x 1 y 1 z 1 1   2 2x  x  2x  y  y  y  2z  z  2z  x 1  3 x     0 2x  x  2x   cyc   ( x  1) (2 x  x     0 cyc  6(2 x  x  x  3)  Không tính tổng quát giả sử x  y  z  x   z Xét hai trường hợp + Trường hợp y  z   x  ta có Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương PP dồn biến 2 x2  3x   0, 2 y  y   0, 2 z  3z   Dẫn đến toán hiển nhiên + Trường hợp y  z   x  ta có 2  (2 x3  x  x  3)  5( x  1)  x3  x  3x   x3      x x x   3 2 x   x3       0 2   Từ suy x 1  ta cần chứng minh 2x  x  2x  z 1 y 1   2 2z  z  2z  y  y  y  Điều luôn với k  0,1 ta có k 1   4k  (k  1)(2k  1) 2k  k  2k  Nếu k  toán giải Nếu k  ta có 4k  (k  1)(2k  1)  4k  2(2k  1)  2(2k  2k  1)  2(k  2k  1)  2(k  1)2  Từ y  z   y, z  0,1 Vậy toán giải hoàn toàn Đẳng thức xảy a  b  c  Tìm số k tố t nhấ t để bấ t đẳ ng thức sau đúng với mo ̣i a, b, c  a3 b3 c3 3(a  b  c)    2 2 2 ka  (b  c) kb  (c  a) kc  (a  b) k 4 Chứng minh Cho a  b  1, c  ta đươ ̣c k  Ta sẽ chứng minh rằ ng giá trị cần tì m, tức là qui về chứng minh a3 b3 c3 (a  b  c )    2 2 2 5a  (b  c) 5b  (c  a) 5c  (a  b) Sử du ̣ng bấ t đẳ ng thức Cauchy-Schwarz, ta có Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương  a3  2   cyc 5a  (b  c) Ta cầ n chứng minh: PP dồn biến    a2   ( a  b  c)   2    cyc 5a  (b  c)   a2   2 cyc 5a  (b  c) Không mấ t tiń h tổ ng quát ta chuẩ n hóa a  b  c  a  b  c  suy a   c  Bấ t đẳ ng thức cầ n chứng minh tương đương với a2 b2 c2    2 6a  2a  6b  2b  6c  2c  Ta phải xét hai trường hơ ̣p + Trường hơ ̣p c  ta có 9 cyc + Trường hợp c   27a 27a  (3a  1)2 (8a  1)  12 a    0     6a  2a  cyc   cyc 6a  2a  1 ta có 6a 6b 6c 2a  2b  6c   2   6a  2a  6b  2b  6c  2c  6a  2a  6b  2b  6c  2c  a bc bca 6c    6a  2a  6b  2b  6c  2c  2(a  b) (3c  2) 6c 1     c    2 (6a  2a  1)(6b  2b  1)  6c  2c  6a  2a  6b  2b   Ta cần chứng minh: Vì c  6c 1   6c  2c  6a  2a  6b  2b  6c  vâ ̣y nên ta sẽ chứng minh bấ t đẳ ng thức sau nên 6c  2c  1 Nế u b  1  6a  2a  6b  2b  1 đó:  6b  2b  1 Nế u b  , áp du ̣ng bấ t đẳ ng thức Cauchy-Schwarz, ta chỉ cầ n chứng minh  6(a  b2 )  2(a  b)  Điề u này tương đương với :  2(a  b)  c (a  b  c)  3(a  b2 ) Từ giả thiế t b   3b  a đó Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương PP dồn biến  2(a  b)  c (a  b  c)  2(a  b)2  3(a  b2 )  4ab  a  b2  3(a  b2 )  a(3b  a)  3(a  b ) Như vâ ̣y bài toán đã đươ ̣c chứng minh Đẳng thức xảy a  b  c a  b, c  hoán vị Hằ ng số k tố t nhấ t cầ n tìm là Giáo viên : Lê Đức Việt Nguồn Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 : Hocmai.vn - Trang | - [...]... c 2 Không mất tính tổng quát, giả sử a ≥ b ≥ c, suy ra Sa ≥ Sb ≥ Sc Ta có: 2  2 2 2  2 3  a  2c   2  3 2  4  ca Sb  3 a  b2  c2 28ca  3 a 2 2c 2  8ca  0 2 ca  a  b  c  ca  a  b  c  ca  a 2  b2  c2  2 - Trang | 2 - Khoá học BDHSG Chuyên đề Bất đẳng thức – Bất đẳng thức Cô - si  ab  16 a  b2  c2 Ta cần chứng minh Sb  Sc  0  3 1  1  ca 2 Sử dụng bất đẳng thức AM... được bất đẳng thức sau: 2 2 2  a  b  c    a  b  b  c  c  a   8  6 2 abc a 2  b 2  c2 Đẳng thức xảy ra  a = b = c hoặc a  2b  2c và các hoán vị Chú ý rằng lúc đó 2 2 cũng là hằng số tốt nhất (lớn nhất) để bất đẳng thức đã cho đúng Bài 4 Cho a, b, c là độ dài 3 cạnh của một tam giác c  a  b  Chứng minh rằng a 2 b  1  b2 c  1  c2 a  1  0 Chứng minh:  Cách 1: Ta có bất đẳng. ..  y2  x2y xy2   x 2  y2  2xy  0 xz yz Sử dụng mệnh đề 4 suy ra đpcm Đẳng thức xảy ra khi và chỉ khi x = y = z Bài 2 a, b, c > 0 thỏa mãn abc = 1 Chứng minh rằng:   3 111 2  1  1  1 a b c a  b  c a 2 b2 c2 a 2  b2  c2 - Trang | 1 - Khoá học BDHSG Chuyên đề Bất đẳng thức – Ta có 1  1  1  a b c Bất đẳng thức Cô - si Chứng minh:   3  12  12  12 2 22 2 a bc a b c a b c ... Khoá học BDHSG Chuyên đề Bất đẳng thức – Bất đẳng thức Cô - si BÀI TẬP PHƢƠNG PHÁP CÂN BẰNG HỆ SỐ 1 Cho 2 x2  4 y 2  5z 2  88 Tìm Max của S  xy  yz  zx 2 HD Dự đoán điểm rơi x= 4, y=3, z=2 Các bạn làm tương tự như trong bài giảng: Đưa thêm tham số a, b, c ax 2  by 2  2 ab xy   2 2  2  a  x  cz  2  2  a  c xz   4  b  y 2   5  c  z 2  2  4  b  5  c  yz  Đẳng thức. .. xz   MaxS= 4a 2 55  2 4a 2 55  2 Dấu “=” xảy ra các bạn tự xét  a,b,c  0 5 Cho   a  b  c  3 Tìm giá trị lớn nhất của biểu thức: S = 4ab  8bc  6ca HD - Trang | 3 - Khoá học BDHSG Chuyên đề Bất đẳng thức – Bất đẳng thức Cô - si Ta sẽ biến đổi biểu thức S về dạng tổng bình phương 4ab  8bc  6ca  a  b  c   3b  a  c   5c  a  b   a  3  a   3b  3  b   5c  3  c  ... 2c c  2a a  2b 3 HD a, b, c  0 3 3 3 Với  Đề bài trở thành, chứng minh rằng: a  b  c  ab  bc  ca b  2c c  2a a  2b 3 ab  bc  ca  1 Ta có: ab  2ac 2a 2 a4   ab  2ac 9 3 bc  2ab 2b 2 b4   bc  2ab 9 3 ca  2cb 2c 2 c4   ca  2cb 9 3 Cộng vế với vế ta được - Trang | 12- Khoá học BDHSG Chuyên đề Bất đẳng thức Bất đẳng thức Cô - si  3 3 a3 2 2  b  c  ab  bc  ca  a 2 ... MaxS  88, "  "  x  4, y  3, z  2  a,b,c  0 2 Cho  2 2 2  a  2b  3c  1 Tìm giá Min của biểu thức: S  2a 3  3b 3  4c 3 HD Xét các tham số x, y, z >0 a 3  a 3  x 3  3a 2 x 3b 3 3b 3 9   y 3  3 yb 2 3 2 2 4 - Trang | 1 - Khoá học BDHSG Chuyên đề Bất đẳng thức – Bất đẳng thức Cô - si 2c 3  2c 3  z 3  3c 2 z 2 3 4  S  x 3  y 3  z 3  3a 2 x  3 yb 2 3 9  3c 2 z 3 4 4... 13 - Khoá học BDHSG Chuyên đề Bất đẳng thức Bất đẳng thức Cô - si HD Ta có a, b  0 : a 5  b 5  a 3b 2  b 3 a 2  a 2b 2  a  b   ab ab 1 abc c  2 2    5 a  b  ab a b  a  b   ab ab  a  b   1 ab  a  b   abc a  b  c 5 TT : bc a  5 a  bc b  c  bc 5 ca b  5 c  a  ca a  b  c 5  ab bc ca  5 1 5 5 5 a  b  ab b  c  bc c  a 5  ca 5 - Trang | 7 - Khoá học BDHSG... c 16 a   Hocmai.vn – Ngôi trường chung của học trò Việt 17 1 16 a 5 b5 c 5 8 Tổng đài tư vấn: 1900 58-58-12 - Trang | 6 - Khoá học BDHSG Chuyên đề Bất đẳng thức – Thầy Trần Phương  3 17 2  17 (2a 2b 2c) 5 Với a  b  c    3 17 2  17 2a  2b  2c 3  15  Phương pháp đạo hàm 3 17 2 1 3 17 thì Min S  2 2  Cách 2: Biến đổi và sử dụng bất đẳng thức BunhiaCôpski ta có  1 1   a2  2  b 17... 3  1 Chứng minh rằng: a 7  b 7  c 7  61 3 HD a, b, c  0 a7  a7  a7  b7  b7  b7  1  3 6 7  7 3 3 ab 3 6 - Trang | 1 - Khoá học BDHSG Chuyên đề Bất đẳng thức b7  b7  b7  c7  c7  c7  a7  a7  a7  c7  c7  c7  1  3 6 1 7  3 6 7 Bất đẳng thức Cô - si 7  6  3 b 3c 3 7 3 3 c a 3 6 7 7  6 a 7  b 7  c 7  63  6 a 3b 3  b 3c 3  c 3a 3  6 3 3 3 3   a 7  b 7  c 7 

Ngày đăng: 18/06/2016, 11:57

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w