Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 21 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
21
Dung lượng
0,93 MB
Nội dung
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HỐ PHỊNG GD&ĐT THỌ XUÂN SÁNG KIẾN KINH NGHIỆM KHAI THÁC MỘT SỐ DẠNG TỐN ƠN THI HỌC SINH GIỎI TỐN TỪ MỘT TÍNH CHẤT QUEN THUỘC Người thực hiện: Lê Văn Tu Chức vụ: Giáo viên Đơn vị công tác: Trường THCS Lê Thánh Tơng SKKN thuộc lĩnh vực (mơn): Tốn THANH HOÁ NĂM 2019 MỞ ĐẦU 1.1 Lý chọn đề tài Trong giảng dạy mơn Tốn, ngồi việc giúp HS nắm kiến thức bản, việc phát huy tính tích cực HS thơng qua việc khai thác thêm toán từ tốn điển hình bản, đồng thời biết ứng dụng toán đơn giản vào việc giải toán phức tạp điều cần thiết cho công tác bồi dưỡng học sinh giỏi Chúng ta biết tốn dù có khó, phức tạp đến đâu lời giải đưa chuỗi hữu hạn bước suy luận đơn giản, việc giải tốn phức tạp đưa việc áp dụng, tiền đề toán Nên việc thường xuyên ứng dụng, khai thác toán đơn giản để giải tốn khó cách nâng cao dần khả suy luận, tư sâu cho HS Qua số năm giảng dạy, học hỏi đồng nghiệp với kinh nghiệm thân giúp học sinh khai thác, ứng dụng nhiều tốn, sở tơi viết sáng kiến kinh nghiệm: “Khai thác số dạng tốn ơn thi học sinh giỏi Tốn từ tính chất quen thuộc” Trong khuôn khổ sáng kiến kinh nghiệm này, đưa số tập đặc trưng cho dạng, giúp học sinh nắm bắt dạng tập này, có kỹ giải tập dễ dàng 1.2 Mục đích nghiên cứu Với sáng kiến kinh nghiệm "Khai thác số dạng tốn ơn thi học sinh giỏi Tốn từ tính chất quen thuộc", tơi mong muốn giúp em đội tuyển học sinh giỏi Toán lớp trước hết nắm vững cách chứng minh tính chất quen thuộc là: “Với số tự nhiên x, x số hữu tỉ x số tự nhiên” (*) Sau em biết vận dụng tính chất vào khai thác số dạng tốn ơn thi học sinh giỏi Từ em giải số toán thi đề thi học sinh giỏi Cũng qua sáng kiến kinh nghiệm này, muốn em thấy đằng sau tính chất quen thuộc tưởng chừng đơn giản khô khan điều mẻ, khám phá bổ ích lý thú Từ khơi dậy niềm say mê học tập, khơi dậy óc sáng tạo học sinh 1.3 Đối tượng nghiên cứu Trong đề thi học sinh giỏi Toán lớp 7, lớp 9, thi vào trường chuyên toàn quốc ta thường xuyên bắt gặp thi khai thác từ đẳng thức (*) Tuy nhiên, khuôn khổ sáng kiến kinh nghiệm này, tơi đưa số dạng tốn khai thác từ tính chất (*), hệ thống dạng tập định hướng giải cho dạng Với dạng tập tơi trình bày theo mức độ từ dễ đến khó Từ giúp học sinh đội tuyển học sinh giỏi Tốn sử dụng tài liệu cách hiệu 1.4 Phương pháp nghiên cứu Xây dựng đề tài sử dụng phương pháp: - Phương pháp phân tích tổng hợp lí thuyết - Phương pháp thực nghiệm khoa học - Phương pháp điều tra - Phương pháp quan sát - Phương pháp phân tích tổng kết kinh nghiệm NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lí luận sáng kiến kinh nghiệm Gọi A, B biểu thức chứa biến x, : �B �0 2.1.1 A B � � �A B �A 2.1.2 A B � � �B C 2.1.3 AB C � A B �0 B 2.1.4 Nếu a, b, c số nguyên khác ab c a �U (c ); b �U (c) 2.1.5 AB � A B 2.1.6 Nếu UCLN (m, n) mMn m Mn n 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm Như biết, công tác dạy học việc quan tâm đến chất lượng đại trà, cần phải trọng đến chất lượng học sinh mũi nhọn, cơng tác bồi dưỡng học sinh giỏi Toán quan trọng Muốn nâng cao chất lượng bồi dưỡng học sinh giỏi giáo viên việc phải phân loại chuyên đề dạng tốn cho chun đề khai thác toán để giải tốn khó việc làm cần thiết để giúp em nâng cao dần khả suy luận, tư sâu Tuy nhiên, thời gian đầu ôn thi học sinh giỏi Toán 7, 8, 9,các tập tơi cung cấp cho học sinh chưa có hệ thống, chưa có khai thác, liên hệ Vì học sinh làm tập, thi mà có liên quan em thường tỏ lúng túng, nhiều em không định hướng cách giải Chính vậy,các em chưa thực say mê học tập chưa thấy điều thú vị ẩn sau toán quen thuộc Sau vài năm, thân tơi có nhiều kinh nghiệm công tác bồi dưỡng HSG, nghĩ phải làm để kiến thức truyền đạt đến học sinh phải hệ thống thành chủ đề, giúp học sinh dễ hiểu, dễ nhớ, đặc biệt giúp em thấy mối liên hệ kiến thức để kích thích tìm tòi, sáng tạo Do tơi hình thành nội dung sáng kiến kinh nghiệm hôm xin chia sẻ đồng nghiệp Ta biết tính chất quen thuộc với học sinh là: “Với số tự nhiên x, x số hữu tỉ x số tự nhiên” (*) Khi ơn đội tuyển HSG Tốn tơi có đưa cho HS làm tốn sau 30 phút: a) Tìm số tự nhiên x cho biểu thức b) Tìm số tự nhiên x thỏa mãn : x 1 x 1 x 2 có giá trị số nguyên y 2 4 c) Tìm tất ba số nguyên dương (a,b,c) thỏa mãn a, b, c độ dài ba 19 79 cạnh tam giác số tự nhiên lẻ abc bca cab khác Hãy nhận dạng tam giác Thì tơi thấy đa số em lúng túng, chưa đưa lời giải mong muốn Cụ thể là: Điểm Sĩ số – 10 8–9 7–8 6–7 5–6