1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Phương pháp tính tích phân và số phức phần 3

133 301 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 133
Dung lượng 40,73 MB

Nội dung

Gidi > Phirang t r i n h hoanh dp giao d i e m : 2" = - X x = l ^ \ V T = 2" la h a m t a n g : Do X = la n g h i e m n h a t S = fir (3-x)-2'' 3x- dx 2" y VP = - X la h a m g i a m Vay / y = 2' Inx ln2 (dvdt) 53o| T i n h d i ^ n t i c h h i n h phfing gi6i h a n bdi cac diTdng y=|x^-4x + 3|, y = x + DH kiwi A/2002 Gidi Phirong t r i n h hoanh giao d i e m cua h a i diTorng x-4x S = 5r L + 3| = x + X = X = (x + 3) - (x'' - 4x + 3) d x - _x^^5x2^ _iL + x - x (-x^ + 4x - 3)dx 109 (dvdt) 267 531 T i n h d i e n t i c h h i n h t h a n g cong gidi h a n b d i (C) : y = xln^x, true hoanh va h a i dudng t h i n g x = 1, x = e DH Xdy dung -1997 Gidi Vi j^^lxln^ X u = hi^ X =:> dv = x.dx Uj = In xln^x > 0, dx = du = do I n ^ x.dx X 21nx , dx S= V = X => d u j = —In^x Ji X I n xdx dx X Lai dat dvj = x.dx Do : = S = •e • hi X 2 e V -.dx 2 e x 2• + -l)(dvdt) = -(6^ I532I T i n h dien t i c h m i e n gidi h a n bdi y = x, y = x + sin^x va hai dudng thSng CO Ta 0, X = X = 7t Gidi : S = X - (x + s i n x) dx = sin^ xdx f" (1 - c o s x ) d x = 2J X - sin 2x = - (dvdt) T i n h d i e n t i c h cQa h i n h phSng gidi h a n b d i cac dudng : I x^ y = J4 - — va y = 4V2 DH khd'i B - 2002 268 Gidi y > * * 1/ — y = 14 - 2 PhifOng t r i n h hoanh giao d i e m : - 4V2 x" - 8x - = x^ = 00 x^ = - (loai) X = ±2>/2 N h a n xet S = Vx e 4>/2 j-2%/2 4- x2 x2 4V2 -2V2; 2V2 dx = - —.dx - r2^ x2 4V2 dx dx D a t X = 4sint D o i can Vay I.= h = Vay dx = 4costdt X = 2V2 X = ^ * 4(1 + cos 2t)dt = + - sin 2t cos^ t d t = r2j2 t = x2 4V2 2J2 :dx = S = 2(Ii-l2) = I2V2 271 + - 3; = 71 + (dvdt) |534| Cho h i n h p h i n g (D) g i d i h a n bdi cac difdng y = —^—1 + X va y = — a) T i n h dien t i c h h i n h (D) b ) T i n h the tich vat thi tron xoay k h i quay h i n h (D) xung quanh true Ox DH Nong nghiep Hd Noi - 1999 269 PhiTOng t r i n h hoanh : a) Vay b) SD- pi r -1 ^ dx l l + x^; Gidi 1^ ^7t l + x^ 3, O X = ±1 (dvdt) Ca hai dirctng cong deu n^m tren Ox nen ta c6 : VD/OX = 35 71 f1f -1 V + x' ^ dx - T: -1 y -dx = V ^271 (dvtt) Tinh dien tich hinh phang (D) gidi han bdi cac ducJng X = 1, X = e, y = 0, y = In X 2V^ ' DH Kien true Ha Noi - 1999 Gidi Ta CO : 8,0, In X e = 2A/^ • e Vxds , dx = Vx In X X • = V^-2 f ' - ^ 2V^ ISSGI Tinh dien tich hinh phSng = V e - V ^ ' = (2-Ve)(dvdt) gidi han bdi y = (x + l)'^ va y = e\ = ( D ) DH Hue - 1998 Gidi Phifdng t r i n h hoanh giao diem (x + if xet f(x) = (x + / - e" C O : = e" c6 nghiem x = va ta f (x) = ( x + ) ' - e" > - e > Vx G (0; 1) !=> f dong bien tren (0; 1) => Vay f(x) > f(0) = (x + l ) ^ d x - S(D) = ^ + i f > e" (X f69 eMx = - e (dvdt) Tinh dien tich hinh phing gidi han bdi true hoanh, y = x^ - 2x va dudng thang x = - , x = DH Thuang mai - 1999 270 Gidi Ta CO : 2x = - Vay X = X = —CO X - x^ - 2x s X V f - X - + J X X +00 - (2x-x^)dx A = -(dvdt) 3 (x^ - 2x)dx + -1 f + (x^ - 2x)dx = = ,2 38| T i n h dien t i c h h i n h p h i n g gi6i h a n bdi y = x** + 8x 3 HV Bau chinh Viin vay = ~ X X — thong - 1997 Gidi Phuong t r i n h hoanh giao d i e m ciia h a i dudng 7-x _ x-3 " X- 8x Y~ x = X = x = Theo h i n h ve, ta c6 : S = V ^ V X- 8x 3 8x -1 + 4 3'"^T~3~x-3 x^ 4x^ 3 iL + 2iL _ X - ln(x - dx 3) = (9-41n4)(dvdt) 539I T i n h dien t i c h S gidi h a n bdi diidng y = sinx t r e n doan [0; K ] va true hoanh 271 Gidi J y = sinx Nhcf t h i t a c6 : Trirdc h e t t a t h a y di/dng cong y = sinx cat x'Ox t a i d i e m 0, X = 71, X = 271, X - 3n X = s = •371, sin x dx sin xdx - r27t s i n xdx + = (-cosx) " +(cosx) 2n va \ ,n.M '///" 1/ 37t X sin xdx 3ii -(cosx) 2n =6(dvdt) 401 T i n h d i e n t i c h h i n h phAng gidi h a n b d i cac y = sin IXI diTdng : y = IxI - 7t DHMaHd N6i - A/2000 Gidi sin x CO Ta CO Ta : : y = sin I x y = |x I neu x > I = s i n ( - x ) = - sin X neu x - TI = neu X - X - 7t neu x > X - 71 < dx = Rcostdt Doi can -R X= R x = t = il 'g(x)=-N/R^-X^ t = -^ 274 s = = 2R2 f2 V l - s i n H c o s t d t = 2R2 f cos^ = R2 tdt ~2 sin t ^ (l + cos2t)dt = R2 = 7iR2(dvdt) 2 546| T i n h dien t i c h cua h i n h elip (E) : — + = „2 a b Gidi Taco: (E) : ^ a + ^ b = b - a \ a > b y = + -Va^ a -b Ta xem (E) la hop cua h a i dudng cong : f(x)= ^ V a ^ - x ^ ; a g(x) a Suy dien t i c h ciia h i n h elip E a dx = J-a L D a t X = a sint => dx = acostdt Vay S= b fa 2Va^-x^dx a J-a X = a D o i can X = -a t = ^ t = -^ — | \ V a ^ ( l - s i n H ) a cos t dt = 2ab J cos^ t dt S = 54?! 2ab x ( l + cos2t)dt I A t + - sin 2t = ab 7t = Trab (dvdt) Goi S la dien t i c h h i n h ph&ng gidri h a n boti y = ax^ va y = — ax^, hai ducfng t h i n g y = 1, y = (vdi x > 0) 275 a) Tinh S a = b) Tinh tat ca cac gia t r i ciia a (a > 1) cho S dat gia t r i Idn nhat Tinh gia t r i Idn nhat DH Hang hdi - 1998 Gidi a) K h i X > 0, a > t h i y = ax y = -ax dy = S = Va va V - I f2 2(V2^) Vydy = 3VI VI S = ^(5-3A^) 3VI Khi a = thi S = — (5 - 3V2) (dvdt) b) S = - ^ ( - V ) 3VI Dodo - S„,a, o Luc S„ax = a^i„ - o a=l (5 - 3V2) (dvdt) |548| Tinh dien tich hinh p h i n g gidfi han bdi : 2y = x^ + x - va 2y = -x^ + 3x + DH Hang hdi - 1997 Gidi PhifOng t r i n h hoanh giao diem ciia hai dUcJng cong : x^ + x - = - x ^ + 3x + c:> x^-x-6 =0 S = - ( x ^ + x-6) (-x^ Ta c6 : X x^ - X - x= -2vx=3 +3x + 6)dx = -2 -00 (•3 x^ - -2 X - dx -foo WwM - 276 l l l | Cho h a i so' phiJc khac l a z = rCcoscp + isincp) va z' = r'(cosip' + isincp) (r, r', cp, if)' M) T i m dieu k i ^ n can dii ve r, r', cp, cp' de z = z' Gidi Ta CO z = z' k h i va chi k h i : + Hoac r' = r, (p' = cp + k2n + HoSc r' = - r , cp' = + (2k + DTI (k e Z) (k e Z) 112i Xac d i n h tap hop cac d i e m t r o n g m a t phSng phufc bieu d i l n cac so phufc z t h o a m a n cac dieu k i ^ n sau : a) M o t acgumen cua z - (1 + 2i) b^ng - b) M o t acgumen cua z + i bang m o t acgumen ciia z - Gidi a) Goi z = X + y i t h i z - (1 + 2i) = (x - 1) + (y - 2)i N e n tap hop cac diem t r o n g m a t p h a n g bieu d i l n so' phufc z thoa yeu cau b a i toan la t i a c6 goc A (A la diem bieu dien + 2i) v d i vecto chi hudng u bieu dien so phiirc Vs + i (tufc la u c6 m o t acgumen la -) k h o n g lay d i e m A ( H i n h 1) O V3 Hinh b) Goi z = x + y i Hinh => z + i = x + (y+l)i => z - l = x - l+yi X e t d i e m B ( l ; 0) bi§u d i l n so 1, d i e m J(0; - ) bieu d i l n so - i t h i t a p hop can t i m 1^ cac d i e m thuQC dudng t h i n g B J n ^ m ngoai doan B J ( H i n h 2) 385 l i s j Tim p h a n thiTc v a p h a n a o c u a m o i s o phufc s a u : a) c) COS + if (V3 I isin— i^{l + V3i)^ b ) a-i)HS + if 3^ d)-"°°->^bietrkngz.l=l z ^ Gidi , m 7t a ) Ta CO : 7t Vs c o s — ism— = 3 cos 1; i = i + Si) = [1 + 2Si + 3i^fa + Si) (1 + Vsi)^ = [(1 + Siffa Vay - 721^ + 24V3i - 8)(1 + Si) n = [2Si n ' 2fa + Si) =S(24V3i^ i^(l +Vsi)"^ = — + —1 (64 + 64Si) = + 1281 2 isin— 3 V a y phan thifc bkng 0, phan ao b^ng 128 b) z = ( l - i ) ^ ( V + i)^ Ta CO : - i = >^ s s: 71 71 c o s — ism— A) (1 - i)"* = (V2)^cos7: - isinTt) = - [S T a CO : (>/3 + i) = 12 + —1 = cos— I 2; + isin—6J (1 - i)^ (V3 + i)^ = (-4)(-64) = 256 Do : (VS + i)^ = 2*^(cos7T + isin;:) = - ^ Vay s o phufc (1 - i)'^{S + i)^ c6 p h a n thiTc b k n g 256, p h d n a o b a n g {S c ) T a CO : (1 + i) = V2 — + iS = s[cos— + isin— 71 , ^ (1 + = 57t (>/3 + i) = 2 71 S"' c o s — + i s i n j V 'S T a CO : — 57t 4; = 321 1.1 = cos— + i s i n - +- 971 971 cos— + isin— (V3 + 1)^ = 2^ 6 = 2^ 371 c o s — + isin 371 2) = -5121 386 10 32i (1 + i) Nen (V3 + i ) ^ -512i Vay p h a n thuc l a d)Tac6: 16 z + - = l z 16' , p h a n ao l a z^-z + l = A = - = -3 = 3i' z = + V3i z = = — + — 3 2000 2000 + isin— COS— z^""" = cos z 0 071 271 + isin 271 cos 1 ,2000 271 271 cos— + isin — z2°*^° + 271 + 333,271 271 isin— 3 27C 2Tt 271 — — = cos— + i s i n — + cos Do so phvjfc z T i n h (1 - 20 0 - = — 3 z^ooo 114 20 0071 vi = C O S — + isin — 3 Vay 1-V3i z = A/3 z = +Vsi 3 + 27r 271 i s i n — = 2cos— = - 3 c6 p h a n thirc bang - va p h a n ao b ^ n g iSf Gidi Ta CO : Vay - iVs = cos - —— + i s i n v 3v f (1 - iVs)^ = 2^ cos - 71 ' - — + isin 3y 71 ^ V —3 , - 7t ' —3,; = 2'^[cos(-27:) + isin(-27t)l = 2*^ = 64 (cong thiJc Moa-vrcf) 115 27r 271^ Cho z = cos— + i s m — T i m cac so phiic (3 cho P'' = z 3 387 lisl Gidi D a t P = r(cos9 + isincp) t h i p ^ = r^(cos3(p + isinScp) Vay p^= z 2K 2n r^(cos3(p + isinScp) = c o s — + i s i n — 3J r = 271 , 3cp = — + K.2n, k e Cho k = 0, 1, 2, t a diTcJc cAc gia t r i khac cua P 1^ : Pi ^ 2n 2n^ cos— + ism9 J V 871 BTI^ cos— + i s i n — P3 - 3/ cos 1471 j 147:^ + isin 9 T i n h t i c h a p v a thucfng ^ v d i a) a = V2 cos— + i s i n — 3) 3n b) a = VS c o s — + i s i n - P= 3n'] , V Vs 71 n cos— + i s i n — 4) 471 P= c o s — + i s i n , 47r 3 ; Gidi a) T a C O : a p = V2.V3 cos CO : b) T a CO : Ta a - P = a.p = V2^ V3 cos ^ TT 2>/5 cos 4J 7t > 71 ^ 71 cos V 3, \2^ 47i' 3n 471^ ' K 37t 71 + 12 771' 77r cos— + i s i n — 12 12 j 47C 3)) 571 571 = 2V5 C O S — + i s m — j + isin 12 cos— + i s i n — -I ^7t_7I^^ + isin 1771 + isin f3n — H + isin + isin 1771 = 2V5 C O S p " f3_n _ V Vs 4K\\ 71 Til cos- + i s i n 6) " 388 l l ? ! H a y t i n h t i c h ap v d i : a ) a = coscpi - isincpi va P = cos(|)2 + isin{p2 b ) a = cos(pi + isincpi P = cos(p2 - isin 0, so da cho c6 dang lugng giac la : - 2sin K h i sin u -cos + — COS 4) + — 4; + isin — + — 12 4, < 0, so' da cho c6 dang lircrng giac : 12^4, - s i n q) VI n cos = cos 2^4 (p 57r + isin 2^Tj, -sin cp ST: 71 = sin 2^4, (p 57: ,2^T; 1191 T i m so phufc z cho | z | = | z - | va mot acgumen cua z - bang m g t acgumen ciia z + cong v d i — Gidi Goi z = X + y i (x, y € R) t h i |z| = | z - | c:> ^|x^ = - 2f + L l ^ , l ^ i y - , z l l i y ,-3^y^+4iy Khido z+ l + iy + + iy o x = l ^ ^ + y' {I la so' thuc ducfng) o y > Vay 120 y = V3 + Vsi z = Cho so phufc z CO modun b k n g B i e t m p t acgumen cua z la cp, hay t i m m o t acgumen ciia m i so phufc sau : a) b, - 2z2 d) -z^z c) ^ 2z f) z^ + z e) z + z h) z^ + z - z g) Gidi Theo gia t h i e t t a c6 z = cos(p + isincp a ) 2z^ = 2(cos(p + isincp)^ = 2(cos2(p + isin2(p) V a y 2z^ c6 m g t acgumen la 2(p 390 b) Ta C O : 2z = 2(cos(p - isincp) 2z - 1 (coscp + isincp) 2(coscp - isincp) (coscp - isincpXcoscp + isincp) — ^ = —[-coscp - isincp] = —[cos(cp + n) + isin(cp + n)] 2z 2 => Vay —\ CO m o t acgumen la cp + TT 2z c) z coscp - isincp - = z coscp + isincp (coscp - isincp) (coscp + isincp)(cos(p - isincp) = cos2cp - isin2cp = cos(-2cp) + isin(-2cp) Vay - CO m o t acgumen la -2cp z d) -z^.z = -[cos2cp + isin2cp][coscp - isincp] = -[cos2cpcoscp - icos2cpsincp + isin2cpcoscp - i^sin2cpsincp] = —[(cos2cpcoscp + sin2cpsincp) + i(sin2cpcoscp - cos2cpsincp)] = —[coscp + isincp] = cos(cp + T:) + isin(cp + TI) Vay -z^.z e) C O m o t acgumen l a cp + TI z = (coscp + isincp), z = (coscp - isincp) z + z = 2coscp • z.+ z c6 m g t acgumen b k n g neu p h a n thuc ciia z diTcfng C O m p t acgumen bSng TI neu p h a n thuc cua z a m C O acgumen khong xac d i n h neu z la so ao (tufc la z = i hoac z = - i ) f) Ta c6 : z^ = (cos2cp + isin2cp), z = coscp + isincp => + z = (cos2cp + coscp) + i(sin2cp + sincp) 3 2 3cp n acgumen cua z + z l a — neu cos— < z^ + z = -2cos— -cos Sep 3cp ism— 391 g) + = -2cos- acgumen cua T a c6 : COS — l2 + 7r J + isin I — + 71 ; + z k h o n g xac d i n h neu c o s - = (tufc 1^ z = - ) z^ = (cos2(p + isin2(p), z = coscp + isincp z - z = (cos2(p - cos(p) + i(sin2(p - sincp) ^ • 3^ • 3u) (p „.(!)'' 3(p 3(p' = - s u i — s i n — + i c o s — s i n — = 2sin— - s i n — + i c o s — 2 2 = s i n ^ cos I + isin ) f3q) + ^ 7i' , Do t a c6 : + ,, acgumen cua z - z la 3(0 + 71 (D neu sin— > 2 ,, + 3U) - TT acgumen cua z - z l a — (D neu sin— < 2 + acgumen cua z"^ - z k h o n g xac d i n h neu sin— = (tufc l a k h i z = 1) h ) T a CO : =:> Do t a z^ = cos2(p + isin2(p, z = coscp - isincp z^ + z = (cos2({) + coscp) + i(sin2(p - sincp) 3(p (P 3(0 u) „ 3(0 (p (p = 2cos—cos— + i c o s — s i n — = c o s — cos— + i s i n — 2 CO : acgumen cua z^ + z l a + 3(p acgumen cua z^ + z l a — neu c o s — > + *P \ 3(p „ — + 71 neu c o s — < j v2 + 3(p acgumen ciia z + z k h o n g xac d i n h neu c o s — = l | a) H o i v d i so n g u y e n dUOng n n a o , so phufc 3-V3i^ lV3-3i^ la so thirc, l a so ao " b ) Cung cau h o i tuong tiT cho so' phiic r 7+i 4-3ij 392 Gidi a) T a c6 : - V i _ (3 V3 - 3i nen SIKS + 3i) _ (V3 - 3i)(V3 + 3i) ~ b) >/3-3i n7i So' l a so' t h u c sin— = Soddlasoao cos— = n7i „ n = 6k + Ta CO : 12 S + i ~ 3-A/3I A/3 71 71 -= = — + - i = cos— + i s i n — N e n v d i so n n g u y e n duang t a c6 : • ^ + 6i _ + i - 3i 3i) ^ = (4 - 3i)(4 + 3i) (7 + i)(4 + N e n v d i so n n g u y e n dUdng t a c6 : 3-V3i n7t Vs-3i • S o l a so' t h u c S o Ik so ao HTI C5> n = k (k n g u y e n duong) o — = — nTi 71 , +k7i (k l a so' n g u y e n k h o n g a m ) f-( V2 + = 7t COS— + , =0 o 71 4J +i^ isin— nn nTi COS— + ism— 4 U-3i • = COS— + isin— 6 nTt o sin— o n = k (k n g u y e n duang) cos— = o n = k + (k l a so' n g u y e n k h o n g a m ) o — = = k7t - + k r I22I C h o A, B , C , D l a bon d i e m t r o n g m a t p h S n g phuTc theo thiJ tir b i e u d i e n cAc so + (3 + V3)i; Chiifng m i n h rkng + (3 + V3)i; + 3i; + i bo'n d i l m n a m t r e n m o t diTcfng t r o n Gidi Ta CO A(4; 3+ S); B(2; + VS); C(l; 3); D(3; 1) G o i ( C ) l a dudng t r o n t a m I ( a ; b), b a n k i n h R c6 phuong t r i n h : (X - af + (y - b)' = 393 (4) (3 - af + ( - b)^ = R ^ D e (C) • (3) ( - a ) ' + (3 - b f = R ' e (C) C • B e (C) • A e (C) o o » (4 - a)2 + (3 + V3 12 - a = L a y ( ) - ( ) t a CO : (2-af => T h e a = 3, b = v a o ( ) =o T h e a = v a o (1) v a ( ) + {3 + S « - b)' = R ' - hf = R^ (1) (2) a = b = R = Thur l a i a = 3, b = 3, R = t a c6 (4) d u n g V a y b o n d i e m A , B , C, D n a m t r e n ducfng t r b n t a r n 1(3; 3), b a n k i n h R = |l23| B i e u d i i n h i n h h o c cac so' + i v a + i , r o i c h i i n g m i n h r k n g n e u cac so' thiTc a, b t h o a m a n cac d i e u k i e n : < a < - , < b < - v a tana = - , tanb = t h i a - b = — 239 Gidi D i e m M b i e u d i i n so' + i D i e m N b i e u d i i n so + i M thi tan(Ox; OM) = tan(Ox; ON) = = tana o N 239 X = tanb 239 D o M , N n a m t r o n g goc p h a n t U thiir I c i i a h e t o a dp O x y Con < a < — , < b < — n e n m o t a c g u m e n cua + i l a a, m o t a c g u m e n cua 239 + i l a b TiS m o t a c g u m e n c i i a 3^9 + i l a a - b ( d a n g I t f p n g g i a c cua so phiJc) T a CO : nen 239+ i 239+ i 476 + 480i (5 + i ) * (5 + i)'^ 239+ i ma (239 + i ) ( l + i) = 238 + i = 2(1 + i) So ( + i ) CO m o t a c g u m e n b ^ n g - Vay 4a - b = - + k27i ( k G Z ) D i thay < b < a < - Suy r a 4a - b = - 394 124| Cho t a m giac deu O A B t r o n g m a t p h i n g phufc (O l a goc toa do) Chufng m i n h rkng neu A , B theo thuT tU bieu di§n cac so Z Q , Z i t h i ZQ + Zj = ZQZI Gidi • T a m giac O A B la t a m giac deu k h i va c h i k h i OA = OB va goc (OA,OB) bang - hoac - — tufc l a k h i va c h i k h i ZQ ^ va neu d a t — = a t h i 3 • zo i a I = va m o t acgumen cua a la — hoac -— 3 • M a t khac, k h i — = a t h i : ZQ + Zi = ZQZI O ZQ + a = o a - a ' + = a^Zg = aZfl ± V3i o + I = a I a = va m p t acgumen cua a l a — hoac - - 3 • V a y t a da chiJng m i n h O A B l a t a m giac deu k h i vk c h i k h i ZQ + Z j 125| a) Cho z - coscp + isincp - Z o Z i (zo # 0) (cp e R) Chijrng m i n h r ^ n g v d i m o i so' nguyen n > t a c6 : z" + — = 2cosn(p; z z" — = 2isinn(p z b) Txi cau a), chiing m i n h r k n g : cos'*(p = -(cos4(p + 4cos2(p + 3) sin^(p = ^(sinScp - 5sin3(p + lOsincp) Gidi a) T a CO : Nen : z" = cosncp + isinncp; — = cosncp - isinncp z z" + — = 2cosn(p; z Dac b i e t : z + - = 2cos(p; z z" — = 2isinn9 z z - - = 2isin(p z 395 Ta • Ta b)« CO z + - = 2cosq) z cos^cp — 1r 1^ — z + 4 cosq) = — z + - ^ ! z" + — + z ^ - + z ^ — + z^ 2^ + 4 z.— z^ + — [ c o s ( j ) + 4.2cos2(p + 6] = - ( c o s ( p + 4cos2(p + 3) 16 CO z - - = 2isin(p z If sine) = — z 2i 1^ — Z/ n5 • z sin^cp 1\ ' z V 2^i zj 1^ — z; s i n ^ ^ = - ^ ( s i n ( p - 2C5 sinScp + 2C5 sincp) 16 126i (sinScp - 5sin3(p + lOsincp) T i m d a n g lUcfng g i a c c u a cac c a n b a c h a i c i i a cac so' phufc s a u : a ) cos(p - isin(p b ) sincp + icoscp c ) sincp - icoscp v d i cp e R c h o t r U d c Gidi a) T a CO : coscp - isincp = cosC-cp) + i s i n ( - c p ) n e n d a n g lUcJng g i a c c u a c a n b a c hgii c i i a coscp - isincp l a cos b) T a CO : ^ cp^ + ism va sincp + icoscp = cos cos I - - + ism + 71 I - - + 7t , n + isin - - C P n e n d a n g l u c f n g g i a c c u a c a n b a c h a i c u a sincp + icoscp l a cos c) 7t cp 71 isin — u T a CO : va 2y sincp - icoscp - cos = cos cos - - - C P f57I u isin 2y + isin fn + isin " - ! f5n u ^-2 396 nen dang lUdng giac cua can bac hai cua sincp - icosip la cos + va isin cos f ^ 37r^ ; 2,n\ + ism "^T Viet cac so' phiic sau dudi dang luong giac : , -2 71 Tt cos isin — 4 cos— + ism— 6j 2I Ta b) 71^ 71 If c) a) 71 7t -cos— + isin— 3 a) Giai 2n + isin 2n -cos—3 + isin — = cos— — 3 7r CO : 7t Vi cos— = -cos—, sin— = sin— (hai gdc bu nhau) b) Ta CO : 3 71 -2 C O S — 7: = isin— ^ 71 -COS— + isin— A) 7r = ^ 71 71^ =— =— + i s i n6,- ^cos-6 - isin— 128| Tinh phan thUc va phan ao ciia so phiirc sau : c) Ta a) c) a) b) Ta CO : z= - - A/2 7t , 7: COS— z = V3 cos CO 71 ^ + isin— b) z= 371 COS \ v — + isin 6y 71 71 3 ( I 6, ^ cos— + i s i n - 371 isin— 2 : z = V2 f 37T + isin— / J7t> COS- 371 COS— 71 I COS— j Gidi 71^ + isin—4 , rv2 +1— 2j = 1+i Vay z CO phin thuc la 1, phdn ao la 1 iVs 71 = —+ Ta : z = cos-7r + isin— = + iV3 2 3; CO Vay z CO phan thUc la 1, phan ao la Vs c) Ta : z= 37t 371 COS isin— = V3(0 + i) = Vsi 2 Vay z CO phan thuc la 0, phan ao la V3 CO A/S 397 MVC LVC TICH PHAN ChUffng HO N G U Y E N HAM ChUcfng T I C H P H A N X A C D I N H 68 PHLfONG P H A P TICH P H A N T I T N G P H A N 52 P H U O N G P H A P D O I B I E N SO 39 K I E N THtfC CO BAN TICH P H A N C A C D A N G T H U C J N G GAP 231 Tich phan truy hoi 165 Tich phan cac ham lifgfng giac 155 Tich phan ham chiia gia t r i tuy^t doi 119 Tich phan cac ham v6 t i 101 Tich phan ham hufu t i Chitang D I E N T I C H H I N H P H A N G , T H E T I C H V A T T H E T R O N XOAY 283 B THE TICH VAT THE TRON XOAY 261 A CONG THLfC T I N H D I E N TICH H I N H P H A N G ChUimg B A T D A N G THLfC T R O N G T I C H P H A N 296 SO PHlTC 328 BAI TAP 326 K I E N THtfC CO B A N 398 y y y y X y y •vvw w n H a s a c; h h n g a n c o m V n Email: nhasachhongan@notmail.com 20C N g u y i n T h iMinh Khai - Q.1 - T P H C M BT: (08) 38246706 - 39107371 - 39107095 • F a x : 39107053 \ I' H O C T6T \ \ \ \ HOC TOT \ \ HOC TOT G I A I T O A N BAI GIANG i iiaiticii IU0N6GIAC !?i'l'"'!SS - N SMINH T A M , 245 Tran N g u y e n H a n- H P* D T : (0313) L U Y $ N T H I Di!hl HOC ^ ^ i [...]... ciia hai dudng : 2 , 4 = - V 4 - x^ — 9 =4-x2 o x*+9x2 -36 = 0 = ±V3 S = f ,.2 ; dx = 2 p /3 / ^0 2 3 dx 279 I554I S = 2 ( Tinh I = 2 73 V3 + 2 V4 - 73 3 3 cos^ t dt = 4 ^ S = 2V3 73 Jo dx D a t X = 2 s i n t => dx = 2costdt I = 8 ^ Do do D o i can : V3 X = x = 0 3 ( l + c o s 2 t ) d t = (4t + 2 s i n 2 t ) 47: + + 3V3 47: + = V3 3 3 t = 0 47I + 3V3 (dvdt) T r o n g m a t p h i n g Oxy, t i n h dien t... f '(x) = ^^^^^ ^ ^ j ^ ^ smx 6' 3 ^ Q ^ 71 71 6' 3 Ta x e t T(x) = xcosx - sinx T'(x) = cosx - xsinx - cosx = - x s i n x < 0 T(x) g i a m t r e n 71 Vx e 6' 3 n 6' 3 x 7t 71 6 3 - f' 3 f Vay 3V3 7t 3 s i n x 3A /3 - > > — 7t X 271 299 3 ^ dx < 27t n dx < 3 J^ X 271 Pha dau bkng : XQ = — t h i 4 •Tsinx 3 1 X 6 J aVs 1 , ^f3 Nen ta c6 : — < - dx s i n XQ 0 => ^ < r 4 3 o =^ 1 sin X x , 1 dx < 2 6 ^... 4 4 Suy ra 2 37 1 -dx< 2 fT dx ^ 3- 2sin2x f3n 2 [ 4 71^ 1 7t — < dx 4 4y < ' 4 7 dx 3- 2sin^x 4 Vay 3 - 2 sin rT ^ dx 37 t 71 T~ 4 71 3- 2sin2x"2' 4 297 5 8 l | Chiing m i n h r k n g : — < dx 0 5 + 3cos^ X 10 Gidi X e t h a m so f(x) = Ta CO : 5 + 3 cos^ — < 16 X 0 - < 5 + 3 cos^ x dx 0 5 + 3cos^x 0 < 3cos x < 3 5 dx _ ^ 4 P d x + 3cos^x 5 Jo 16... 278 Ta CO : S = x +2 dx -2 4 3 -2 = -(dvdt) 3 I552I T i n h dien tich hinh p h i n g gidi han bdi hai dudng cong : = ax va = ay (a > 0) Giai T a CO hai dudng cong (P) c i t nhau tai (0; 0) va A (a; a) 0 y = ^[s^ ,2 Vax dx a r- I - — Vx a v x 3 3 3 y 3 A 3a 3 553I T i n h di^n tich hinh p h i n g gidi han bdi cac dudng : y = - V 4 - x^ va x^ + 3y = 0 BH Bach khoa Hd Noi -2001... giao diem cua (Ci) va ( C 2 ) la : A(4; 2A/2), B ( 4 ; -2^2) Ta CO : 27y' = 8(x - if o y = ± 2A/2 3V3 (x - 1).A/X - 1 vdi X > 1 Do true hoanh la true do'i xilfng cua (Ci) va ( C 2 ) nen : S V2xdx+ r =2 A/2I-^V(X-1)' ix J = 2 0 V2^dx - ^ r Ji V3 ^|{x-lfdx 4V2 5 32 A/2 8 V2 „ /- 3 2 V 2 _^.1£9V3 = 3 15 Vs 3 72 /88 V2 = — V 2 ( d v d t ) 15 15 5561 Cho diem A tuy y tren (P) : y = px^ (vdi p > 0) Goi (D)... kien x > 0) lnx = 0 o (xlnx) dx = n => du = -2, In^x x = l x^ In^ xdx 21nxdx dv = x^dx => V = - - x^ In xdx 3 Ji x^Inxdx dx => du = — , Dat u = Inx dv = x^dx => v = X x — 3 - - x^dx = — I n x 3 Ji x^ Inxdx = — I n x I = Nen Tt(5e3 - 2) V = Tc ^ - A ( 2 e 3 1 ) 3 27 27 -ix3 ' 26^+1 9 (dvtt) |5 73| Cho D la mien gidi han bdi 4 ducrng y = 0, y = Vcos'' x + sin'* x , x = —, x = TI 2 Tinh the tich ciia khoi... ( x 2 - X i ) - - ( x ^ - x ? ) = - 6 - X i ) 3 k (x2 + X i ) + 6 (y - k x g ) - 2 (xg + X i + X j X g ) I- 4^ 3k2 + 6 ( y o - k x o ) - 2 ( S 2 - P ) = J V k ' - 4 k x o + 4 y o (k^ - 4kxo + 4yo) b = i(k2-4kxo+4yo)2 D 3 = ^ [ ( k - 2xo f + 4yo - 4x21i > 1 ^^^^ _ ^,^2 b 3 b Dau " = " xay r a k - 2xo = 0 3 Khido S„,„= i 8 ( y o - x 2 ) 2 b k = 2xo 3 =l(yo-x2)2 6 Cho (P) : y^ = 2x va di/dng t... 2"' < 2 2 3 2" 1 3 2" dx < -1 f1 2 " ' < 2" '"^^2'''dx< | _I \ 2 2.dx c -12 Vay 1 < x'^ < ^^l.dx => l a h a m so t a n g t r e n R , do do 2x -1 dx < sin x < 1 - < sin^x < 1 2 N h a n b a t d i n g thuTc t r e n cho ( - 2 ) , t a c6 - 2 < -2sin^x < - 1 Vi vay 1 < 3 - 2sin^x < 2 3it D o do... Si M a t khac t a c6 : ( 2 p a x + b - px^ )dx = pax^ + bx - px pa(xN^ - XM^) + b(xN - XM) - ^ (XN^ - XM^) 3 : (XN - X M ) :VS2 -4P S2 a 2 pa(xM + X N ) + b - | ( x ^ + x ^ i paS + b - ^ ( S 2 2A " (2 —a p+- b + - 3 3 j +XMXN) -P) 3 2a2p + b - 2 V ^ = 2 Do do 4a + — =1 + ^(pa^ + b) 3 \ =-Si 3 282 B THE TfCH VAT THE TRON XOAY KIEN THLfC C d B A N 1 Cho h i n h p h i n g gidi h a n b d i cac dudng... chiif n h a t A B C D quay quanh Ox V l a the t i c h c^n t i m 290 Ta V = V i + V2 - CO •2 V= 71 „ „ (x^fdx +n J2 1 V = V3 r3 (-3x + 10)2dx-7i ^ xMx + Tt C(9x^ 1 J2 \ n — 5 +100x) 1 I _ „ + 7n-2n 5 - 60x + 100)dx - 71 + 7i(3x^ - 3 0 x ^ SITI V = 5671 = 1 -3 l^dx f 3 dx - 1) - 71 (3 2 ,, (dvtt) 5 57o| T i n h the t i c h k h o i t r o n xoay tao nen k h i quay quanh true Ox h i n h S gidi h a n bdi y = xe",

Ngày đăng: 11/05/2016, 19:28

TỪ KHÓA LIÊN QUAN

w