1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Phương pháp tính tích phân và số phức phần 2

133 240 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 133
Dung lượng 39,28 MB

Nội dung

292 Tinh I = •7 Jo X sin x X + (x + 1) C O S x , dx S i n X + COS X DHkhoiA -2011 Gidi Ta CO : I = (7 Jo X s i n x + (x + 1) cos x , n dx = X s m X + cos X Jo Ii= pdx = x Jo X X cos X s i n X + cos X Jo s i n X + cos X cos x dx X ~ s m X + cos - +1 du -dx Dat u = xsinx -1- cosx => du = xcosxdx X = In u = ln V2 (7 X s i n X - - ( x - f 1) cos X , 1= Tinh I = X + X s i n x + cos -dx X _ 71 xcosx X u = l x =0 D o i can 71 X = — u = V2 I2 = Vay 93 •* Jo X sin X + cos x rr 4- X s i n x , dx 7t V2 f 7: v4 y - In = In , V2 ^4-1 dx = — + I n — 4 cos^ x Jo BHkhoiB -2011 Gidi 7C Ta I CO : Ii = h = \ X sin x cos^ x — = tan ^ cos * 71 dx dx = * cos^ sin X dx cos^ X X * X = V5 X X xsmx cos X u = X => du = dx , dv = sinx , , — dx chpn v = cos sin x dx = cos^ X cosx X 134 - X Sin X, Jo C O S X dx = 294J I = Tinh I = Jo cos X X Jo , s i n x - l 2K Vay COS _ 271 dx x sinx + n d(sin x) Jo s i r sill X - d(sin x) = 271 X- sin X-1 sin In J ln(2 - VS) - •0 + X s i n Xdx cos^ X = V3+ — + ln(2-V3) dx - ^ l + x + x^ + Vx* + x ^ + Gidi Dat x = - t => dx = - d t Vay = Suy r a : 21 = Ta x= - l t = X =1 t = -1 dx -dt ^1 ^ Doi can 1- t + -1 + Vt" + St^ + •'-^ + X + x^ + Vx^ + x ^ + [g(x) + g ( - x ) ] d x vdti g(x) = 1 + X + X^ 3x' +1 CO : g(x) + g ( - x ) = + X + x^ + Vx"* + x ^ + 1 - X + x^ (1 + X + x^ + Vx'* + 3x2 + X + x^ + Vx'' + Vx" + 3x^ + + ^ - X + x^ + A/X^+3X^+1 + 3x^ + _ X + x^ + Vx^ + Sx^ + 1) 2(1 H-x^ + Vx^ +3x^+1) (l + x + V x ^ + x + l ) - x 2(1 + x^ + V x ^ T s x ^ T l ) + x" + x" + 3x2 + + 2x2 + 2Vx^ + x + + 2x2 Vx^ + x + - x2 2(1 + x2 + AM+3X2TI) + 2x* + 4x2 ^ 2Vx*' +3X2+1 + 2x2 x ^ ^ x + I + x2 + Vx^ + 3x2 ^ + x^ + 2x2 + Vx^ + x + + x2Vx* + x + 135 1+ + Vx" + 3x2 ^ J (i + x^+ V77377T) + (x2+ xnx2V77377T) Do : Dat 21 = J-i + •1 dx •'0 + ^ X = t a n u => dx = (1 + tan^u)du + tan^ u I = i + x' dx Jo l + X^ fx = D o i can X = n Jo 295I T i n h I = u = U = 71 — 71 Jo dx ^ x V x^ + fiHAn ninh -1999 Gidi Bat t = Vx^ + => X = x = >/7 D o i can = x^ + 1= Vay 1= t-3 = i l n t + Vay Tinh I = 2tdt = 2xdx t = ^ t = dx 4 (t^ - 9)t tdt Esiel " e l dx 7J dt = - In - ^ x y f ^ ^ dx rl + X + V l + x^ HV Khoa hoc Qudn sU - 1998 Gidi Ta (1 + x) - V l + x^ (1 + xf d + x dx CO : • ' " ^ l + x + V l + x^ + x - V l + x^ fl > -1 u ^ (1 rl 2x -1 dx pi - +1 dx- -dx -1 2x^ 136 = - - + dx dx = - ( l n | x | + x) J 2J-1U J-i -1 X = t d t = 2xdx t=^ x =1 t = Vay I , = r i i ^ „d—xax= = J-i 97 1= I ^ f f t-^4d t^ = J - ' ^^ 22 (( tt 22 - l ) 2x2 r — ^ - • ' - ^ l + x t V l + x^ -I Tinh I -1 2x2 e= Nen I f i x V l + x^dx Tinh l = Doi can = f d x B i e t fl(x) = DHXdydung - 1999 Gidi ft Ta CO : fllx) A = V x ^ Vi x e V3 Vs nen x > T xdx Dat t = V l - x ^ X = X = Doi can ^ V8 ] Si -tdt _ [-3 " J l ( - t )t = t = 2tdt = -2xdx l t = i fg dt 1, t - t + ^ = i l n ^ 1 2 137 §9^ Vay V8 _ J— f V3 ^ dx = - I n — 2 T i n h = j " ^e'^ - I d x Gidi D a t t = V e " - => t^ = e" - V i t^ + = e" => dx = D o i can Vay X t d t = eMx 2tdt t^+l = In X = t = Ve" - = t = Ve" - = ffin in 2 I f•1l tt^^d tt Ve" - Idx = f = 1=1 Jo Jot^+i r l | (d t - Jo dt t^ + D o i b i e n dat t = t a n u => d t = (tan^u + l ) d u D o i can fl t = t =0 n u =— u =0 • - ( t a n ^ u + 1) du = dt ot^+l '7 , tan^ u + I= fin I Ve" - Idx = •4du Tinh I = f =4 Vay [299I = 2-2.^ = - ^ dv ^ (2" - ) V - ^ - " Gidi X Ta CO : 22 I = :dx = * (2" - 9)73-2^"" Dat t = V3.2" - dx * (2" - 9)73.2" - =^ t ' = " - => 2" - = 2tdt => ^ ^ = 2"dx 31n2 t^ - 138 Doi can Vay = X = t = X = t = 2tdt f2 t 51n2 300 Tinh I = •In In t-5 — In t + I n 10 dt In J i t ^ - S ^ _9_ 14 2" - 2" r2 r2 4"" -dx -2 Giai Dat du — = (2''In u = 2" + 2-" D o i can Vay 1= X = X = 2-'')dx va 4" + 4"" - = (2" + 2"'f u =— 17 u = — 2" - 2" •2 - •dx = ^ Ji 4" + 4"-" - du _ - ' In 2 du In Ji - 17 , 81 •In— hi 25 u-2 •In In u + Tinh I = 2e^''+e^''-l In -dx + e^" - e" + JO Giai Ta CO : Vay 2e3- + e^^ - + e^" In I = J- 26^" (e^'^ +1 ~ - e ' +1)' +6^'' + Jo In - X In Tinh I 2x^ - 3x^ - X -1 •ln2d(e^=' + " - e " + ^ " - ! = ln(e="= + e^" - e'' + 1) 302 +1 e^" + e^'' - „3x e , „2x +e „x - e +1) , 1 rln2 JO dx , 1 =^"T- + Idx 139 Dat Ta Gidi t = - X =>dt = -dx CO : 2x^ - Sx^ - x + = ( - tf - ( - t ) ^ - ( - t ) + = - t ^ + at^ + t - Doi can Vay 1= t = t = x = X = £ ^ x ^ - Sx^ - x + I d x = ^ ^ - ( t ^ - St^ - t + l ) ( - d t ) Jo ^2t^ - t ^ - t + I d t = - I S u y r a : 21 = => I = I = soil T i n h I = Jo dx fO ^ t ^ - St^ - t + I d t = "^^ + V - x ( l + x ) Gidi Ta CO : I = dx fO + V - x ( l + x) "'-^ + dx n - Dat ^ + X — + X = - s i n u => d x = - c o s u d u 2 Doi can X = 71 U = — u = — x = Vay 1= t — cosuau F ^ Jo 1 , + J sin'^ u V4 p - ^ ^ d u = Jo + c o s u J Jo - + cos u du ^-2p ^" Jo + cos u Tinh J = Jo + cos u u = Dat => d u = '^^^ 1+ e t = tan— Doi can t = 71 U = — t = 140 2dt + L a i dat 71 t = a =— [I f t a n ^ A/3 Jo a +1 tan a +1 da = dx I 2x + •1 18 7i(9 - 2A/3) 18 + x) V-x(l 304| T i n h I = a +l)da "a = rt = o J = D o : => Sitan^ t = A/3 t a n a Doi c a n Vay + t^ dx V2x - x^ Gidi Ta T I = CO 2x + , dx = •'iV2x-x2 •1 2x - + + V2x - x^ fi rl 2x-2 >/2x - x^ * Tinh I i = 2x-2 •1 dx + dx dx 2x-x^ dx V x - x^ Dat u : V2x - x^ => u = 2x - x^ Doi c a n X = Vay Tinhl2 = ^ •1 -2udu Ii * u = X = — •1 u => 2udu = (2 - 2x)dx A/3 u = = - 73 du = - u dx = -2 1- dx = (x^ - 2x + 1) Dat x - = sint dx = costdt Doi can = A/3-2 dx ^ Vl - (X - x =— X = 1)^ " t = 141 305| Vay « "i Do : I = [-1 cos t d t Vl - = - ^ dt = 5t sin^ t 2x + dx = V - + ^ i >/2x Tinh I = ^ A/-3X^ + 6X + Idx Gidi T a CO : f V-Sx^ Jo Dat + 6x + I d x = ( ^j4-3(x-lfd\ f , - - (x - l)^dx Jo Jo V Vs — ( x - 1) = s i n t => dx = - = c o s t d t V3 D o i can Vay X = X = t = 1=2 sm 2~ t - = cos t d t = rO V5 J cos^ t d t fO l + cos2t (1 + cos 2t)dt tdt = • ^ V3 J V3 J (n ( t + - sin 2t — + V5 306| T i n h I = ''Vx^ - x ^ S — +xdx DHThuy M ~ A/2000 Gidi V x ( x - D^dx = f ^ V x { l - x ) d x + I = X2dx- = i x^dx + rl Jo - - x - x o + 0 fVxCx-Dd i x^dx - C2dx -2j o -X2 = 142 Gidi Dat t = V x - X = t = X = t = +1 •it^_+_t Doi can I = 308 fU^ = X - 2tdt = t + TInh I = x - - t + 2tdt = dx • o dt = - t + - ^ — dt = — - 4ln2 t + l j Inxdx, DH Khoi D -2010 Gidi •e ( T a CO : I = h = 309 «lnx •Ji X I = Tinh I = Jo f •1 •e h Inx xlnxdx dx dv = xdx r J xdx = Ji 2 +1 v dx D o i can u = X = e u = f -A 3^ x - - I n x d x = e"^ + if x = 1 udu = (x + V = dx •3 + I n x dx -Inx u = I n x =:> d u = h = Vay Inxdx = u = I n x => d u = Ii = Dat 3^ xlnxdx Ii = Dat x - - -3.- = -2 dx DH Khoi B - 2009 143 |06| Cho In = j ^ ^ x ^ d - x ^ f d x ; Jn = £ x(l - x ^ f d x T i n h J n va chijfng m i n h bat dang thufc !„ < T i n h !„ + i theo !„ va t i m l i m 2(n +1) n = 0, 1, 2, vdi V n = 0, 1, DH Can Tha - 2000 Gidi T a c o : T a CO : J ^ = - [ ' ( - x ^ ) " d ( l - x^) = - Jo 0 V = rl Vay 2xn n + 2{n + l ) In ~ +l 2(n +1) - X x(l-x2)"x^dx = Jo (1) In + - 2(n +1) d-x") 2(n + 1) J In + + ~ x^d-x^f^Mx H ^n2n + I„^.i 2n + , l i m - ^ ^ = lim = x->x x^=o2n + Cho In = f^x^e-^Mx Jo n = 1, 2, 3, a) C h i i n g m i n h In > In + i T i n h In + i theo In 252 b ) Chufng m i n h < !„ < v d i Vx > Suy r a l i m I „ (n - De^ n->a3 DH Quoc gia TP.HCM - 1997 Gidi a) V i < X < < x" " ' < x" x" * 'e-'" ^ < x"e-''' f^X^^^e-^^dx < f^X^e-^Mx Jo Tinh Dat I„ ^ theo I„ u = x" * ^ ^ Vay (vi 6-2" > Vx) Jo T a c6 : In^l lim n —km In = v d i n l a so' nguyen > a) T i m he thiJc l i e n he giuTa In + i va ! „ b) Tinh liml„ BH Tong hap TPHCM - 1991 253 Dat b) Ta a) CO : !„ + i + rl = Gidi , - ( n + l)x 1+ e • dx + 2x rl 1+ e 2x lg-2(n.l)x^^g2x) ) CO k = - ( n + 1) nen dx ,-2(n + llx dx = + e^" ~1 -1 g - ( n + l)x 2(n + 1) Ta 2(n + 1) (e (e-2'"^>'-1)= n->K2(n + l ) lim dx -2(n + l) -1) k h i n - > oc t h i k - > - x -1 : l i m (!„ + i + I n ) = l i m Ma = l i m In lim i-(e'-=o Dodo loOOJ C h o a, b l a h a n g so Chufng m i n h limln^O lim e"^ s i n n x d x = ( v d i a < b ) Gidi I„ = Vay u = e''^=> d u = x " ' d x ; Dat e" a * Ta CO : IH J = dv = sinnxdx v2 s i n n x d x = - — e"' cos n x n — I x2 e — - —(e'' n cos n x e n b2 1 |cos nb| + - e b +— fb V = — cosnx n x.e" cos n x d x n cos n b - e^^ cos n a ) •\ a2 ma |cos na| J cosna < va Icosnb | < =^ Ma * < I H J < -(e'^' + e " ' ) n l i m - (e^^ + e^^ = Vay l i m Hp = (1) M a t k h a c f ( x ) = x e " cosnx l i e n t u c t r e n [a; b ] V a y l u o n t o n t a i m , M € R c h o m < x e " c o s n x < M => fb m ( b - a) < m ( b - a) xe" ^ < n cos n x d x < M ( b - a) •b J „ = n - J xe ^2 2M(b-a) cos n x d x < n a 254 , 2m(b-a) , M ( b - a) ^ Ma h m = lim = T i r ( l ) , (2) suy r a I l i m I„ = l i m b ^ Suy r a ,• T n h m Jn = (2) e" sin nxdx = f k+ 1 510| a) Chiing m i n h V k > thi Ink < I n xdx < l n ( k + 1) b) Churng m i n h : (n - 1) ! < n " e ' " " < n ! Suy r a co lni- >m Vn e N n DH Tdi chinh TP.HCM - 1992 Gidi a) Do y = Inx l a h a m so' dong bien t r e n (0; +=o) nen V k > : k < x < k + t h i Do [(k + 1) - k j l n k < f k+i b) Do k e t qua cau (a), t a c6 I n k < I n x < I n (k + 1) I n xdx < [(k + 1) - k ] l n ( k + 1) Inl< J I n xdx < l n (1) ln2 < I n xdx < l n (2) J2 l n ( n - 1) < n-l I n xdx < I n n Cong ve theo ve (n - 1) b a t dang thufc t r e n t a duoc I n l + ln2 + + l n ( n - 1) < I n xdx + < ln2 + ln3 + o Ma ln[1.2.3 (n - 1)] In = < I„ = f3 I n xdx + + Jn-l I n xdx + Inn I n xdx < ln(2.3 n ) I n xdx = x ( l n x - 1)1 ° = n ( l n n - ) + ' ^ Do l n [ ( n - 1)!] < n l n n - n + < l n ( n ! ) ^ e ' " " " - ' ' " < e " ' " " - " * i n-e^-" > n ! (n - 1)! < e ' " ' " " ' e ' ' " < n ! => n = n! (n-D! n 1! n! = > — n"e^"" n! 255 Isn] Taco: n , e° l i m ( e ° e"^) = — = e n-»co M a t k h a c x e t h a m so e y = x'' vdi x > (1) T a c6 : I n y = - I n x X Suy r a l i m [In y] = l i m = lim lim [Iny] = lim — = = I n l n->oo Ma n->« X lim[Iny] = lim [Iny] = I n l n—>x D o Nen n->cc l i m y = l i m x" n-*oo - - l i m n " e"e = n-»co ^ = lim n" lim e ^ = - n->oo n-*K n-»te TCr ( ) , ( ) n g u y e n l i k e p t a c6 lim n->=o Chutng m i n h r a n g , V n € N t h i : !„ = DH Y dicgc TP.HCM Q yfn^ n (2) = - e '"\2x-l)2""ie''-'''dx 1981 = + DH Thai Nguyen - 1999 Gidi D u n g p h i r o n g p h a p chufng m i n h q u i n a p * K h i n = t a CO I i = Dat u = (2x ( x - l ) e ' ' - ' ' dx - ir du = 4(2x - l ) d x dv = ( x - l ) e ' ' - ' ' ' d x Vay Gia SIJT - 8° • ( x - De^-^^dx + Ii = -(2x-ire I i = -e° + * e"-" = _4(e0 - e°) = dCx-x^) = - " I k = v - d t = dx => X = - t I : f'x(l-x)^^dx= Jo I = rl (t^^-t20)dt = D o i can t = x = t = X = f°(l-t)ti9(-dt) Ji /^20 ^21 20 21 420 (1) 259 b) Theo n h i thiJc N e w t o n t a c6 : x ( l - x ) ' ^ = x(C°9 - C i g X + 0^9x2 - Cl«x^«-C-xi^) pl8 x ( l - x)^^dx = 19 19 X -c 19 p 19^20 21 \ 21 p 19 Tir(lU2)tac6: i C SITI Cho I„ f - i C x^d + x^fdx, Chu-ng m i n h r a n g : + - C 21 (2) =-i^^ 420 n>2 - C ° + - C | , + - C ^ + + -C" = 3n + " 3(n + l ) BH Ma Hd Noi - 1999 Gidi D a t 2, du = Sx'^dx u = + x^ D o i can u = u =2 x == X == du 1 '^u"du ~ 3' n + •1 = x2dx 3(n + 1) n + 2""^ - 2""^ - (1) Theo n h i thufc N e w t o n t a c6 a ^ + x^r= c ° + c j , x + c^x'^+ + c>3" x2(l + x3)"= C ° x + C 1x5+C^x^+ + C ^ ^ " ^ ,3n + .+cr, 3n + c; •x2(l + x3)"dx = C ° = icO+icl+ic^+ + Tir(l), (2)tac6 : ^ C ^ + " J, + " " +3 3n + +—i—C = 3n + (2) 3(n + 1) 260 p i E N TICH HINH PHANG, THE TiCH V A T THE TRON XOAY A C O N G THL/C TfNH DIEN TfCH HINH PHANG PhUcfng phap ; Cho ham y = f(x) (Ci) y = g(x) (C2) lien tuc tren [a; b] thi dien tich hinh phang gidi han bdi (Ci), (C2) va hai dudng thfing x = a, x = b la : S = fV(x)-g(x)|dx Ja Ghi chu : a) De bo dau tri tuyet do'i ham so dudi dau tich phan, thi ta phai xet dau f(x) - g(x) tren [a; b] hoac nhd thi ta thay diTdng (Ci) (i = 1, 2) nao nkm tren b) Neu de bai khong cho dudng th^ng x = a, x = b ta phai tim giao diem ciia (Ci), (C2) trUdc tien C, : y = f(x) c) Khi phiTcfng trinh f(x) - g(x) = v6 nghiem tren (a; b) thi S = f(x)-g(x)| dx = [f (x) - g(x)]dx d) Khi phUcfng trinh f(x) - g(x) = cd nghiem x = c (c e (a; b)) thi [f (X) - g(x)ldx S = [f(x)-g(x)]dx e) Ta phai ve thi de thS'y [f(x) - g(x)] duong hay am cac ham so cd tri tuyet do'i Sisl Tinh dien tich hinh phang gidi han bdi dudng cong cd phiTcfng trinh y = sin^xcos^x, true Ox va hai dudng thSng x = 0, x = - DH Bach khoa Ha N6i - 2000 261 Vi < X < Vay S = => Gidi sinx > 0, cosx > sin^ x cos^ xdx = => sin^x.cos^x > sin^ X cos^ xd(sin x) sin^ x ( l - sin^ x)d(sin x) = - sin^ x — sin X — (dvdt) 15 |519| T i n h dien t i c h h i n h p h ^ n g gidi h a n bdi y = (e + l ) x va y = (1 + e'')x DHKhoiA -2007 Gidi PhUcfng t r i n h hoanh giao d i e m : (e + l ) x = (1 + e'')x c:> xCe" - e ) = x = 0, x = l T a t h a y k h i < x < t h i (e + l ) x > ( + e'')e'' (do => ( + e > (1 + e") Do : S = 0e'' (1 + e)x > ( + e'')x) f [(e + l ) x - (e'' + l ) x ] d x = e f x - f^xeMx = Jo Jo Jo (dvdt) [52oj T i n h d i e n t i c h h i n h phSng gidi h a n bdi y = x^ - 2x va y = -x^ + 4x DH Mo Dia chat - 1997 Gidi Phuang t r i n h hoanh (io giao d i e m : x^ - 2x = -x^ + 4x Ta CO : x 2x2 _ 2x^-6x = - t h a n h hai phan T i n h dien tich h i n h phang cua moi h i n h DH Kinh te Qudc dan Ha Ngi - A/2000 Gidi Phirang t r i n h h o a n h giao d i e m cua parabol va dudng t r o n 1^ : x^ + 2x - = X = o X = - (loai) Vay parabol c^t ducrng t r o n t a i h a i d i e m A(2; 2), A'(2; - ) Dudng t r o n cAt true h o a n h t a i h a i d i e m N ' (2V2; ) , N {-2^|2• 0) Ca diTcJng t r o n va parabol deu n h a n true hoanh l a m true do'i xufng D i e n t i c h cua p h a n h i n h phSng O A N A O dugc t i n h b a n g cong thiifc : Si = Ta CO I = ! , V2x.dx+ c2j2 ^f2x.dx = X A / X I 7- V8-x'^.dx ^ 265 Ta CO K = •272 Dat X = 2V2 sin t Doi can => dx dx = 2^2 cos t x = 2V2 x =2 -a/2 Vay : 71 K = } cos^ t.dt = Vay A 2(1 +cos 2t)dt = t + - sin 2t Si = 2(1 +K ) = - + 71 - — V3 ^ = 71-2 - - (dvdt) 3J Dien tich phan lai ciia hinh tron ngoai parabol la : \ ( S2 = 7:(2>/2)^ S,Si = 67t -< ^ + 3; (dvdt) |528i Tinh dien tich hinh ph^ng gidi han bdi cac dudng y = | x^ y = mp Oxy 4x + i va BH Su pham Hd Ngi - B/2000 Gidi PhiTcfng t r i n h hoanh giao diem : |x^-4x + 3|=3 Vay S = x = 0, x : = o (3-|x^ - x + 3|)dx Do tinh do'i xiJng qua dudng thang x = nen r2 ^ (-x^ + 4x)dx + f ^x^ - 4x + 6)dx = '5 S = ' ( S - l x ^ - x + 3|)dx S = r = (dvdt) 529I Tinh dien tich hinh ph^ng gidi han bdi true tung, y = 2" va y = - x HV Buu chink Viin thong - 1999 266 [...]... = Dat , ; 2v V l + sin xdx = 1= ^ X X N2 (^X ^\ 71 = 2sin2 — + — l2 4 J sin — + cos — 2 2J Vay _ = sin — + cos — + 2 s i n —cos — 2 2 2 2 2sin^ X 71 V2^4y dx fx 71 ^ sin — + — dx ^2 4J p2jt 0 71 t = - + 2 4 => dt = dx Doi can 2 X = 5jt Vay I = 2V2 I = - / _ 0 t = t = ^ 2 Ii 4 571 |sin t| dt = 2^ 2V2 C O S t I + — 2V2 cos t 4 I349I T i n h I = X = 27 1 2^ 2 , sin tdt - ^ sin tdt 5it 4 = 7t 2^ cos xVcos... : I = t r 2 0 Jt "2 0 (1 + cos 2x 1 - cos 2x - — s i n 2x 2 1 2 X dx 1 cos 2x — s i n 2x dx 2 2 3 3 1 — s i n 2x + 2 2 '71 ^ cos 2x1 ^ J o ^ 2 2 V 2 167 358 Tinh I = 2 sin^ X CDs'* xdx , DH Ngoai nga Ha N6i - 1996 Gidi Ta CO : sin^xcos''x = -8 (1 - cos 2x)(l + cos 2xr = - (1 - cos 2x)(l + 2 cos 2x + cos^ 2x) 8 = -(l-cos2x) 1 + cos 2x + 1 + cos4x 8 V4y I = - 359I Tinh I = 1 r 1 + -1 cos 2x - cos 4x... cos Jt - du = 6sin2xdx Doi can Vay 0 x sin2x Tinh I = ~ 3 - sin 2x + sin x , 2 dx Jo Vl + 3 cos X BH Khoi A - 20 05 Gidi Dat t = Vl + 3 c o s x =i> 7t X = — t =1 Doi can X = 2 0 = 1 + 3cosx => 2 t d t = -... DH Quoc gia TP.HCM -20 00 Gidi Ta CO :I = 4 2( l-cos2x)Mx= 0 '3 = I 8 355 4 J — 2 2 cos 2x + — cos 4x dx 4 1 1 ^ _37r — sin 2x + — sin 4x 4 32 / l 6 2 X 2 cos^ 2xdx, Tinh I = DH Kinh te TP.HCM - 1993 Gidi Ta CO : I = 2 2 (1 + COS 4x)dx = - ( 2 0 X + sin4x'| 2 _ 1 - + — sm 27 1 4 ) ~ 2 U 4 71 4 166 356| Cho I = 2 cos^ X cos^ 2 x d x ; J = a) T i n h I = I + J , I - J 2 sin^ X cos^ 2xdx b) T i n h I va... ( 2 (cos^ x + sin^ x) cos^ 2xdx = p cos^ 2xdx Jo Jo fr 1 + cos 4x , 2 dx = Ta CO : I - J = 2 (cos 1 - U X + sin4x^ 2 _ n 8 X - s i n x) cos^ 2xdx = s i n 27 r _ 8 71 ~4 2 cos 2x cos^ 2xdx 0 D d i b i e n , d a t u = sin2x X = D d i can 71 — => du = 2cos2xdx u = 0 2 u = 0 x = 0 2 (1 - sin^ 2x) cos 2xdx = - f (1 - u^)du = 0 2 Jo V4y 0 I - J = T 357 T I +J = 4 I - J = 0 b) T a c6 : Tinh I = 2 8 8 (2. .. g(x)] dx - J^^ [ f (x) - g(x)] dx -1 I = 34ll Tinh I = r (x^ - 2x2 - x" 2x^ x^ 4 3 2 X + 2) dx ' , + 2x f2 (x^ - 'x' 4 -1 2x2 - X + 2x2 ^2 3 2 2)dx + 2x 37 12 VT - sin x d x DH Ngoai thuang - 1994 Giai Ta CO : I = sm COS — 2) dx = X sin x dx COS — 2 2 159 ^p^SOD X p X UTS 2 — = K = UBD log XSOO : 0 f =1 = x p |X U T S | : OD -J •J U T S 2/ ^-3- J TpG x 1^8 nis I u SOD - ) + 6 - ;pi SOO BX ^aisgyNg =... cos 6x^ 2 2 16 1 + - COS 2x - cos 4x — cos 6x dx 2 2 — x + — sin 2x sin 4x sm 6x 161 4 4 12 cos^ x cos 4xdx 2 71 32 DH Ngoai nga - 1998 Gidi 1 1 I = - 2 (1 + cog 2x) cos 4xdx = - M (cos 4x + cos 4x cos 2x)dx 1 (cos 6x + cos2 2x) 21 JoT T T cos 4x + — Jo dx 2 (1— sin 4x + — 1 1 ^ 24 sin 6x +4— sin 2x = 0 U ^eol Tinh I = f 2 (cos^° x + sin^° x - cos* x sin* x)dx DH Sa pham Hd Ngi - 20 00 168 Gidi 2 (cos^°

Ngày đăng: 11/05/2016, 19:28

TỪ KHÓA LIÊN QUAN

w