Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 133 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
133
Dung lượng
38,82 MB
Nội dung
515.076 PH561P iGV cbuyen Toan Trung tam luyen thi Vinh Viin - TP HO Chi JViinhJ PHUONG PHAP TINH HA VAN CHUCING (GV chuyen Toan Trung tarn luyen thi Vfnir Viin TP -Hd Chf Minh) PHl/CfNG PHAP T I N H TICK PHAN VA so PHUfC • LUYEN THI TU TAI VA DAI HOC m m m • CHirOfNG TRINH Mflfl NHAT CUA BO GIAO DUG VA DAO TAO • (Tdi ban idn thii nhat, IHU VIEN • c6 siia chita TiNH BIN'H • vd bo sung) THUAN NHA XUAT BAN DAI HOC QUOC GIA H A NOI TICH PHAN Hp N G U Y E N HAM K I E N THLfC C d B A N I D i n h nghia F(x) la nguyen hain cua fix) t r e n khoang (a; b) neu F'(x) = fix), Vx e (a; b) k i hieu F(x) = [f{x)dx II Tinh chat a) (Jf(x)dxj' = f(x) b) [ f (x) ± g(x)]dx = c) kf(x)dx = k f (x)dx ± f(x)dx g(x)dx k e R d) Neu F(t) la mot nguyen h a m ciia f(x) t h i F(u(x)) la mot nguyen ham ciia f [u(x)] u'(x) I I I B a n g n g u y e n h a m thi^dng d u n g v d i u = u ( x ) .n + l u"du = ^ — + C n + l = In u + C e"du = e" + C cosudu = sinu + C sinudu = -cosu + C du = u + C fdu u f du cos^ u r du sin^ u (1 + t a n u)du = t a n u + C (1 + cot u)du = -cotu + C du , u - a + C = — I n u^-a^ 2a u + a T] T i n h dao h a m cua F(x) = x.lnx - x, r o i suy nguyen h a m ciia f(x) = Inx Gidi T a CO : F(x) = x l n x - x = x(lnx - 1) Suy r a : F'(x) = [x(lnx - 1)]' = Inx - + - X = Inx Vay theo d i n h nghIa cua nguyen h a m , nguyen h a m ciia f(x) = Inx c h i n h la F(x) = x l n x - x + C ~2\h dao h a m ciia F(x) = x^lnx, r o i suy nguyen h a m ciia f(x) = 2xlnx Gidi T a CO : Vay ' F(x) = x^lnx nen F'(x)dx= F'(x) = 2xlnx + — x^ = 2xlnx + x = f(x) + x f (x)dx + dx 2 ff(x)dx = F(x) - — + C = x^lnx - — + C J 2 =:> V a y mo t nguyen h a m ciia f(x) la F(x) = x l l n x ~3\h nguyen h a m ciia f(x) - x V x + biet F(0) = Gidi Ta CO : f(x) = x V x + = (x + - l ) V x + = (X + l ) V x + - Vx + = (X + 1)2 - (X + 1)2 Vay f(x)dx = 1^ f{x + l ) d x - ("(x + l ) d x (X + I ) d ( x + ) - = - F(x) f(X + l ) d ( x + l ) - - ( X + l ) - - ( X + 1)2 Hay Vi +C - ( x + l ) V x + - - ( x + 1) Vx + + C = - ( x + l ) V x + l - - ( x + l)Vx + l + C = F(0) = nen t a CO : + - - (0 + 1)V0 + + C - (0 + 1)^ Vo 2= 3 15 F ( x ) = - ( x + D^Vx + l - - ( x + l ) V x + l + — 15 V4y U Cho F(x) = x h i x va Chufng to r a n g : f(x) g(x) = x^ I n = ; x > - g \ x ) - - X 2 Suy r a mot nguyen h a m F(x) ciia f(x) Gidi Ta CO : g'(x) = x l n ^x^ Suy r a : 2xhi Vay f(x) = - g ' ( x ) 4) (do + X = g'(x) - X > 0) xhi X - - X = igXx)-ix (*) Tix (*) t a suy r a : J f(x)dx = - ("g'(x)dx - J J xdx = - g ' ( x ) - — x^ + C = - x^ h i^1 4 Vay m o t nguyen h a m cua f(x) la : F(x) = - x I n + C v4y ~5\ Chufng m i n h r a n g F(x) = + (x - ) " la mot nguyen h a m ciia {(x) = (x- l)e\ Chufng m i n h r k n g G(x) = - ( + x)e"'' la m o t nguyen h a m cua g(x) = x.e'" Roi suy r a nguyen h a m cua k(x) = (x - De"" Gidi Ta CO : F'(x) = e" + e^Cx - ) = e^lx - 1) = f(x) V a y F(x) l a m o t nguyen h a m cua f(x) Ta CO : G(x) = - ( + x)e"'' Suy r a : G'(x) = -e"" + (1 + x)e-'' = e"\ = g(x) Vay G(x) la mot nguyen h a m ciia g(x) Suy r a nguyen h a m cua k(x) = (x - l)e~'' = xe"" - e"'' = g(x) - e" Nen k(x)dx = Jg(x)dx - je-^dx = G(x) + e"" + C = - ( + x)e-'' + e " + C = - x e " + C V a y nguyen h a m cua k(x) \k K(x) = -xe"" + C ~G\h dao hkm cua (p(x) = (ax + b)e'' Roi suy nguyen ham cua fix) = -xe" Gidi (p'(x) = (a + ax + b)e'' Suy : (p(x) = (ax + b)e'' TiX gia thiet De tinh nguyen ham ciia f(x) = -xe" ta chon a = - , b = Thi t^ = - x^ => tdt = - xdx 121 267 D o i can Vay 1= I = Tinh I = t =1 X = t = X = f1 Cx^yll - x^dx = f ^ x ^ V l - x ^ x d x = rl '\t2 - t ' ' ) d t = JO rl f (l-t^H.C-tdt) 15 [3 " s j 2^ ft' Vl-x^dx Gidi Dat x = sint I = Vay I = Vay dx - costdt vi t e "1 71 x = l D o i can X = f V l - x^dx = f Vl - sin^ t cos t d t = cos^ t d t t = t = 0 I cos t| costdt t h i cost > _ 7t - + cos 2t dt = — t + — sin 2t ^4 268| T i n h I = 'VT^dx^^ f ^ x V l - xdx DH Y duac TP.HCM - 1997 Gidi I = Vay I Ta CO : ^ x V l - xdx = [ ^ [ ( x - l ) + l ] V l - x d x t^dt vdi t = t2dt- ,1 ^2 (t2 - t ) d t = - t Jo - X -it2 _ x V l - xdx = — 122 269 Tinh I = DH Thuy Igi - 1997 Gidi Dat X = 2sint Doi can Vay dx = 2costdt X = 2 X = I = 270 1= Tinh I = - x = 4(1 - Sinn) = c o s n sin^ t.2 cos t.2 cos tdt I = sin^ 2tdt = Vay va t = 2(l-cos4t)dt = t - — s i n 4t = n f x^ V4 - x^dx - n f2V3 dx DH Kiwi A - 2003 Gidi T a CO : I = ^ Dat dx 2V3 2V3 xVx2+4 -"^ xdx x^VZTI t2 - = x^ t = Vx^ + => dt = xdx Vx^+4 Doi can I = X = 2V3 X = V5 =:> t = r" dt t2 - t = -In 44 t -2 ^ t + 3^4 n in - - In - = — In V 5j ( Gtdi Dat X = cost, < X < — n e n ta chon —< t < — 123 272 X = K h i t a c6 V2 X = I = = t = => - ^ va dx = - s i n t d t n t = — f T l + COSt •7 l l + cos t sS iI n t d t = - ^1 Sin t d t sint V1 - COS t - = -14 Vay Tinh I = (1 + cos t ) d t = - ( t + s i n t) Vl-x X + ^ ^x + dx = - + 4 7r , = - + A/2 2 dx 6t - A/2005 Gidi D a t t = VxTT =>t^ = x + l = > x= t ^ - l = > x + = t^ + l => d x = 3t^dt Doi can I = I273I t = t = x = X = x + *^x + l f2(t^ + l ) t ^ dx = f2 dt = h i (t^ + t ) d t = ft' [5^ t'' 2) 231 10 dx Tinh I = Dii bi - B/2008 Gidi Dat V4 - t = Doi can x^ t^ = X^ - t = Vs X = t = X = •1 I = x^ dx = - Jo -> xdx = - t d t r/3(4-t2)tdt r = 4tI t(4-t2)dt V3 J2 t^i — 3^ V3 1^-3V3 124 74 Tinh I = •1 2x^ - 2x + dx •"^ Vx^ - 2x + Gidi Xet ham F(x) = (ax + b)Vx^ - x + 2, ta CO : X n — (ax + bXx - D 2ax^ + (b - 3a)x + 2a - b F (x) = aVx - 2x + + = Vx^ - 2x + Vx^ - 2x + T-v 2x^ - 2x + 2ax^ + (b - 3a)x + 2a - b Vx^ - 2x + Vx^ - 2x + —= Cho F(x) = (x + Vay 1= r I DVX^ ^f" , ta a = 1, b = 2x + - -9.^ ^ ^ Hv = ( V ^ ^9.' * Vx^ - 2x + 275| T i n h I = CO =9.-^ » V2x + + DHkhoi D -2011 Gidi Dat t = V2x + + => dt = 2V2x + V2x + V x + Idt = dx Ta CO : Doi can Vay 1= t - = V2x + o X = t = X = t = [-4 "3 4x-l V2x + + dx = dx J :dx = o (t - 2)dt = dx 2t^ - 8t + = 4x - •6 (2t^ - 8t + 5)(t - 2)dt t 2t2 - t + - ^ j d t = 2t^ -6t^ +21t-101nt 3 Tinh I = dx Da bi -D/2008 125 I = Jo xe 2x X - dx = Gidi •0 xe^^dx + 'xd(e2'') = i xe^^ Jo =-(e" = -e'^^{2x-li l2 = Vay I •1 - x d x Jo -t Jo V4x + ^ •1 - x d x Jo Jo +1) =A/3-2 = ^|4-x^ xe^" - •2 x + 277) T i n h I = dx = V3 + 6^-7 dx Gidi Bat t = V4x + D o i can X = X = => = 4x + => X dx = = tdt t =1 t = •2 x + I = Jo V x + 278| T i n h I = dx = fSt^ Ji 't' + dt 24 16 n 3t [^Vx^ + I d x Gidi Dat u = Vx^ + => = x^ + 2xdx du = 2udu = 2xdx dv = dx V = ^ X 2Vx2 + Ta CO : I = f W x ^ + I d x = xVx^ + Jo :.d(Vx2 + 1) = V2- dx V77 126 Jo J( •1 X + A/X^ +1 dx (x + A / ^ ^ ~ ; ^ ) V X ^ T T 21 = V2 + I d x = A^ + •id(x + V x ^ +1) ° Dat t = x+ ^f: =i> 21 = V2 + f ^ * " ^ — = V2 + I n d + A ^ ) Ji t 1= Vay f^Vx^Tldx = — + i l n ( l +V2) Jo 2 x^+l 279 T i n h I = X + Vx^ + -2 dx xVx^ + HV Buu chinh Vi&n thong - 1997 Gidi T a CO : Dat I I, = lo = x^+l = -2 xylx^ + -V2 xdx -2 x^ +1 xdx -2 ->/2 -2 dx = -V2 f-V2 -2 Vx^ +1 XA/X" + 1 r - V d ( x +1) -2 x'+l xVx^Tl dx x^ +1 x' +1 dx XA/X^ + -2 X^ +1 = ln I2 = In -2 A/3-1 A/2 1+ , VS-l -In- A/3-1 , I = r ^ - i ^ d x = V§-V^.lni5_l_in J-2 XA/X^ „ J „ + 11 = A/3-V5 '2 dx -V2 Vay dx -2 A/5-1 A^ Jo 127 |28o| T i n h I = •2 x + •0 ^3x dx +2 DH Sa pham Quy Nhan - 1999 Gidi Dat t= ^3x +2 = x+2 X D o i can I = Vay I = Vay ^ X = _ X = X+ ^3x X+ i(t^ at^dt = d x - 2) + = - (t^ + 1) 3P (t^ + Dt^dt J +1 = t = t = +2 E81 3V2 10 15 ^ 42 15 ^/3772 10 x^dx Tinh I = €77 DH Thuang mai - 1997 Giai Dat t D o i can Vay = = x + x^ t = X = 't = V7 x = fV7 x ^ d x _ => 3t^dt = 2xdx x^.xdx 141 f^l^.3t2dt =^ r••^t^-Ddta t 2 J 20 Ji E82 Tinh I = XA/2-x^dx Jo DH khoi B - 2013 128 Gidi Dat t = V2-x^ o Doi can X = X = = - t = t = 1= J^^xV2-x2dx = 283 Tinh I = \ ^ V l + x^dx Vay « tdt = -xdx ^ -t.tdt = V2 rf2 -1 2V2 DH Quoc gia Hd Noi - B/1998 Gidi Dat t = V l + x^ Doi can X = X = Vay I = t^ = + x^ => t d t = 2xdx t = V2 t = f ' x ^ V l + x^dx = f ^ ( t ^ - D t ^ d t = Jo Ji V ] 15 15 J 284 Tinh I = ^ dx ;^xVx2-l BH Bach khoa Hd Noi - 1995 Gidi Dat t = Vx^ -1 ^ x = V2 Doi can Vay = X = ^ t^ = x^ t = 2 t d t = 2xdx t = dx •"vf x V x ^ - l L a i dat t = tanu vdi u e tdt fct^+Dt •1 12' •1 dt dt = (tan^u + l)du t^ + = tan^u + 129 _6_ 08 x - ^ = x/^xc3 - = mi xp ^ + ^ T - I = - = I J t9 = X= T= ^ c=: : OD I + 7/ ^7 = ^ xp = ;p^59 X = c= X X xy^ J x/^x + x/^ J (X-x) -.}) OSI Bx = I uto l o g = * =1^"''!' = x T= ^ = = ^ x/^x + xA-^ - = :>p dx = - d t -fc Vln(3 + t) + V l n O - t) =I = ^ f4 V l n O - xj Suy : I = I , dx = •"2 V l n O - X ) + Vln(3 + x) Gidi Ta CO : tan I= cos '4 XA/I X + cos^ tan :dx = X COS^ X / l + X :dx ^ COS^ X tan u = V2 + tan^ X n Doi can :dx cos^ xV2 + tan^ x Dat X => = + tan^x 2udu = 2tanx —^-— dx cos X "u = Vs X = — n u = Vs X = — Vay = 289 Tinh I = udu >/3 U V5 =u = Vs-Vs V3 'V(r^:77dx £)i? y Hdi Phong - 2000 131 290 Dat X = cost D o i can Vay 1= I = X = X = Gidi dx = - s i n t d t vdi t e 0; t =0 t = ^ f V ( l - x ^ ) ^ d x = [ V d - c o s ^ t)^ s i n t d t = f Vsin^ t s i n t d t f s i n " t d t = - f (1 - cos 2t)2dt Jo JO J It r - C O S t + - (1 + cos t ) d t J 2 cos t + — cos t d t ' ^ — t - sin 2t + — sin t Vay = _ 37t CjoT7fdx=^ 16 Jo x^dx Tinh I = + Vx^ + X HVNgdn hang TP.HCM -2000 Gidi Ta CO : fi I = x^dx X t = Vx^ + => x^(x-Vx^ +l)d> x^-lx^+l) f'x^Vx^ + l d x = - — t^ = x^ + => x^ Vx^ + l.xdx t d t = 2xdx t = V2 X = + Vx^ + '-xMx+ Dat x =1 D o i can t =1 132 Vay I i = f^x^Vx^ + Ixdx = >/2 Vay (t^ - D t t d t = 4V2_2V2_1 x^dx I= rV5 fV2 t^Ct^ - l ) d t _ l , ^ _ V _ l ^ l ^ J _ ^ ^ ^ 15 dx 29ll T i n h I = -J (2x + 3)V4x2 + 12x + DH Bach khoa Ha Noi - 1986 Gidi Dat t = V4x2 +12X + = 4x^ + 12x + => => 2tdt = (8x + 12)dx tdt = 2(2x + 3)dx X = — CO Vay — (2x + 3)^ = 4x^ + 12x + = 4x^ +12x + + = 1^ + : I t = X = Ta t = 2A/3 Doi can dx (2x + 3)dx = 1A (2x + 3)V4x^ + 12x + 2S I = J0 L a i dat tdt t = 2tanu v d i u e D d i can t =0 Vay I= - Nen I= dt Jo {t^+4)t t = 2V3 f2>/3 •' (2x + 3)^ V4x^ + 12x + n n { d t = 2(1 + tan^u)du 2' 2) 71 U = — u = f 2(tan^ u + Ddu _ du = — u _ 7t ^12 4(tan^ u + 1) J0 •\x n_ " i (2x + 3)V4x^ + 12x + 12 133 I I [...]... CO : F'(x) = +1 2V2(x2 - 1) x^ + 2 A / X + 1 x^ + 2V^ + 1 (x^ + 2V^ + 1) 2 ' x^ - 2 A / i + 1 x^ + 2Vx + 1 2V2(x2 - 1) 2^{x'^ - 1) = 2V2f(x) x^ + 1 f(x)dx = Vay x^-l x^ +1 16 x^ - 2 7 ^ + 1^ ^ : F ( x ) = i l n 2A/2 2V2 x^ + 2A/X + 1 dx = In fx2-2>^ + l x^ + 2Vx + 1 T i m ho nguyen h a m cua f(x) = max ( 1 , x^) Gidi Ta CO : f i x ) = max ( 1 , x^) = 'x^ neu 1 X < neu - 1 - 1 V 1 < X < < X 1 Vay: j x ^... 1 < X < < X 1 Vay: j x ^ d x neu x < - 1 v 1 < x + C neu m a x ( l , x2)dx = Idx neu - 1 < x < 1 17 I T i m ho nguyen h a m ciia f i x ) = | l + x| - X +C x < - l v l < x neu - 1 < X < 1 |l-x| Gidi Ta CO : vay 1 +x - j ;1 + x - l +x dx = -2dx neu x < - 1 2xdx neu - 1 < x < 1 2dx neu x > 1 -2x + C vdi l +x dx = x^ + C 2x + C X < -1 vdi - 1 < X < vdi 1 X > 1 11 18 I T i m ho nguyen h a m ciia f(x) =... f(x)dx = 1 + xlnx 1 + xlnx rd(l + xlnx) Inex.dx f (x)dx = I n 1 + x l n x + C 3o] T i m ho nguyen h a m cua f(x) = x ( l - x)-° DH Quoc gia Ha Ngi - 19 98 Gidi Ta CO : fix) = [(x - 1) +1] (1 - x)^" = (x - 1) ^' + (x - 1) ^° 14 f(x)dx= Nen (x-l)2Mx + (x-l)^M(x-l) + (x-l)2°dx (x-l)2°d(x-l) = (X -1) 22 (x-l) 21 22 21 + C ,20 01 31 I Tim ho nguyen ham cua f(x) = (1 + X2 )10 02 DH Quoc gia Ha Ngi - 2000 Gidi 20 01 Ta... - 1 — cos t + — sin t + C 16 4 cost + 1 cos r I 7t^ X + — cos -1 1 — cos 4 3;\ / 16 4 71 ' X + — + I X + — I 1 3^ V3 / + — sin X 4 V + A 3j + c 3; 68 I T i m ho nguyen ham ciia f(x) = ^ sin 2x - 2 sin x BH Hang Hdi - 19 99 Giai Ta CO : « x ) = 2 sin x(cos x - 1) sin x 2 sin^ x(cos x - 1) sinx -sinx 2 (1 - cos^ x)(cos X - 1) 2(cos x - 1) ^ (cos x + 1) A Dat (t-l)2(t + l) it-if B • + C + • t -1 t +1 1 =... + 10 = x + 3 (x + 3 ) ' ^ ^ ^ j-(u_ +10 )' (x-7)^ ^ u^ du THLT VIcNTIf^HBiNHTHUAN 17 5-k k=0 k =0 " k =0 -1- k 5 T i m ho nguyen h a m ciia f(x) = 5 k=0 -1- k -1- k + c x^-l (x^ + 5x + IXx^ - 3x + 1) ' DH Quoc gia Hd Ngi - A/20 01 Giai Ta CO : F(x)= x^-l 2x + 5 1 2x-3 • + - + 5x + 1 8 • - 3x + 1 1 (x^ + 5x + IXx^ - 3x + 1) - 8 X 2x + 5 J 1 •dx + 5x + 1 + 39 i T i m ho nguyen h a m cua f(x) = X 2x - 3 , 1. .. 20 01 J f (x)dx = (1^ ^2 )10 02 2 a) Dat x = tana X 10 00 NIOOO X •(l + x^)^ \10 00 dx 2 1 ^ 1 + x^ 1 + x' ^ 1 + x^ 1 + x^ ^ 32 1 Tinh tich phan , ' dx = 2 2002 1 + C + X ^ x^dx — bang hai each bien ddi sau : (x^ + if b) Dat u = x^ + 1 So sanh hai ket qua t i m ducfc Dai hoc Tong hap TP.HCM ~ A /19 77 Gidi Ta CO a) Dat : X = tana II = => dx = (tan^a + l)da, x^^dx rtan^ a(tan^ a + l)da (x^ +1) ^ (tan^ a +1) ^... Dat u = X+ — , ta x'^ + — + 4 x^ J 1^ dx = X+ — Xy 1 X+ — V \ X+ — X X + — X CO : X f (x)dx = r du u^ + u u ^ + l - u ^ du = fdu udu u(u'' + 1) 2 , I I 1 fd(u' +1) , 1 1 1, , 2 ^ = In I u I -2- J — := In I u I ln(u + 1) + C ^ X + 1 u^ + 1 2 Xy + C = - l n x^ + 2 x ^ + 1 + C 2 2 x^ + 3 x ^ + 1 X+ i +1 u ^ + l X/ 48 I Tim hp nguyen h a m cua f(x) = x' + 3 x ^ + 2 21 Ta CO : f(x)dx = Gidi (x^ + IXx^... [(x^ - 5x + 1) - (x^ - 5x)](x'' - Ddx (x* - l ) d x x(x'' - 5)(x^ - 5x + 1) r (x"* - Ddx (x^ - 5x)(x^ - 5x + 1) 1 f d(x^ - 5x) (x^ - 5x + D 5J 1 fd(x^ - 5 x + D x^ - 5x + 1 x" - 5 x x^ - 5 x = i I n I x*^ - 5x I - i I n I x^- 5x + 11 + C = - I n + C 5 5 5 x^ - 5x + 1 5 1 I T i m ho nguyen h a m cua f(x) = x +X + 1 - D^ (X Gidi Ta CO : X + X + (x-lf x^ + X + B 1 (x-lf x -1 (x-lf 1 = A + B(x + 1) + C(x -... = x^ - 3x + 2 -3 x -1 + 21n| X Ux -1) 2 - l l + Inl X 45 1 T i m ho nguyen h a m cua f(x) = + • + x+2 x -1 1 2 + • ix 2| + C x"^ + x^ DH Dagc Ha Ngi - 19 97 Gidi Ta CO : fix) = (l + x2)-x2 X ^ d + X^) x^+x^ 1 fix) = — ( l+ x2)-x2 X^ Vay X(l+ x^ fdx 1 J X^ 1 x2) 1 X^ •dx fdx f (x)dx = fdx X(l + +• X l + x2) x2 • xdx X2 +1 X d(x2 +1) = J _ - I n l x l + i l n ( x 2 + 1) + x2+l 2x2 2 x +1 46 I T i m hp nguyen... t -1 t +1 1 = A(t + 1) + B(t - l ) ( t + 1) + C(t - 1) ^ 1 = (B + C)t^ + (A - 2C)t + A - B + C A = i 2 B +C=0 A - 2C = 0 B = - i 4 A-B+C=l c=l 4 Vay Hay 1 ( t - i f (t + 1) f(x) = - 2(t-l)2 1 sin 2x - 2 sin x 1 4 ( t - l ) • + 4(t • + l) - sm X sin x + • 4(cos x - 1) ^ 8(cos x - 1) sin X 8(cos x + 1) 29 Nen f (x)dx = dx sin 2x - 2 sin 4(cosx-l) x - — I n I cosx - 1 1 + — I n I cosx + 1 1 + C 8 69 ] T i