Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
1,78 MB
Nội dung
Công ty TNHH Trung Tâm Hoa Tử - 08/286 Đội Cung – P Trƣờng Thi – TP Thanh Hóa Chuyên đề Đọc nhanh đồ thị hàm điều hòa Phương pháp chung Để đọc đồ thị hàm điều hòa ta dựa nguyên tắc sau đây: Trước hết đọc biên độ dựa vào khoảng cách từ đỉnh đồ thị đến đường cân (trục đối xứng đồ thị) - Nếu đường biên song song với đường cân biên độ khoảng cách từ đường biên đến đường cân (hoặc nửa khoảng cách đường biên) biên độ số - Nếu đường biên không song song với đường cân phải xác định hàm đường biên, hàm biên độ theo biến Tiếp theo đọc pha ban đầu - Xác định tọa độ giao điểm đồ thị với trục tung (0; x0) 𝑥 - Áp dụng công thức: cos = 𝐴 - Nếu đồ thị bắt đầu lên (v dương) lấy âm ngược lại Xác định chu kỳ - Nhận dạng thời điểm trạng thái lặp lại từ suy chu kỳ - Dựa vào thời gian ghi đồ thị pha ban đầu, vẽ lại đường tròn Fresnel để xác định góc quét tương ứng với thời gian sau áp dụng ∆𝜑 công thức: 𝜔= t Bài tập lời giải minh họa VD1: đọc đồ thị hàm điều hòa thông thường Một dao động điều hòa mô tả đồ thị hình 2.1 Hãy xác định phương trình dao động vật Giải: Xác định biên độ Ta có đường biên đồ thị x = 2 Đường cân đồ thị trục hoành x = biên độ A = 2cm Xác định pha ban đầu Tại thời điểm t = có x = 3 Hình 2.1 đồ thị hàm điều hòa cos = = /6 rad Mặt khác: thời điểm t = đồ thị xuống (đang xuống dốc) nên v âm suy dương ta lấy giá trị = /6 rad Tính tần số góc Ta có: Tại thời điểm t = 0,2s trạng thái dao động lặp lại cũ (đồ thị trở độ cao cũ xuống ban đầu) Như T = 0,2rad = 10 rad/s Kết luận: phương trình dao động là: x = cos(10t + /6)cm TRUNG TÂM HOA TỬ - THẦY VŨ DUY PHƢƠNG – 0984 666 104 Tài liệu luyện thi trực tuyến http://hoatuphysics.com VD 2: Đọc đồ thị hàm điều hòa thông thường (mức 2) Một dao động điều hòa mô tả đồ thị hình 2.2 Hãy xác định phương trình dao động vật Giải: Tương tự ví dụ ta xác định được: A = 3cm, = 5/6 rad Bây ta xác định tần số góc dao động Ta có: Tại thời điểm t = 1/6s đồ thị có tung độ lên tức vật qua li độ x = theo chiều Hình 2.2 đồ thị hàm điều hòa dương, ta mô tả trình từ t = (có t = 5/6) đến t = 1/6 hình vẽ 2.3 Theo hình 2.3 ta có véc tơ quay quét góc ∆𝜑 2𝜋.6 = 2/3 𝜔 = = = 4 t 3.1 Vậy phương trình dao động vật là: x = 3cos(4t + 5/6)cm VD Đọc đồ thị hàm tuần hoàn dạng sin Hình 2.3 Một vật dao động điều hòa mô tả đồ thị dạng cos hình 2.4 Hãy xác định phương trình dao động vật Giải: Trước hết ta thấy đồ thị dao động vật dạng chuẩn: x = Acos(t + ) đường biên Hình 2.4 x = biên x = -3 không đối Đồ thị hàm tuần hoàn dạng sin xứng qua trục hoành phương trình dao động có dạng: x = Acos(t + ) + x0 Xác định biên độ Ta có biên độ nửa khoảng cách đường biên A = 8:2 = 4cm Xác định x0 Ta có: biên có tọa độ x = x0 + A thay số ta có: = x0 + x0 = Xác định , Ta thấy chu kỳ dao động 1s = 2 rad/s Để xác định ta đổi hệ tọa độ Oxt sang hệ O’xt trục O’X hệ tọa độ Oxt có dạng x = tức X = x – (*) Khi đồ thị hệ tọa độ “hạ” 1cm hình 2.5 Công ty TNHH Trung Tâm Hoa Tử - 08/286 Đội Cung – P Trƣờng Thi – TP Thanh Hóa ví dụ trước ta đọc đồ thị hình 2.5 có phương trình: X = 4cos(2t + 3/4)cm Thay vào (*) ta phương trình ban đầu vật: x = 4cos(2t + 3/4) + (cm) Các ví dụ vừa xem ví dụ hàn lâm, gần không tồn thực tiễn Hình 2.5 có người đặt câu hỏi, học hàm điều hòa thực chất giải vấn đề gì? Câu hỏi ta thong thả trả lời sau Nhưng ta thấy ứng dụng hàm điều hòa thực tiễn qua ví dụ VD 4: Hàm tuần hoàn thực tiễn – điện tâm đồ Trong y học có phương pháp gọi “điện tâm đồ” Điện tâm đồ cho phép ghi hoạt động co bóp tim, tim co bóp hình thành máy ghi hiệu điện thế, trình co bóp có tính tuần hoàn nên hiệu điện biến thiên tuần hoàn Hiệu điện thực dao động cưỡng lên bút ghi, làm cho bút ghi dao động tuần hoàn với tần số co bóp tim Bút ghi tì lên băng giấy chuyển động thẳng theo phương vuông góc với quỹ đạo bút ghi, hình ảnh ta thu băng Hình 2.6 Điện tâm đồ giấy điện tâm đồ Điện tâm đồ bệnh nhân mô tả hình 2.6 Do máy cũ nên điện băng giấy chuyển động với vận tốc 20mm/s Mỗi ô lớn băng giấy gồm ô nhỏ, ô nhỏ rộng 1mm Xác định nhịp tim bệnh nhân (bao nhiêu lần phút) Giải: Ta thấy đồ thị có tính tuần hoàn, cách số ô dạng đồ thị lại lặp lại cũ (trạng thái dao động lặp lại cũ) Trên đồ thị, ta thấy đỉnh (R) liên tiếp lần trạng thái lặp lại, khoảng thời gian lần đồ thị đạt đỉnh ( R) chu kỳ Theo đồ thị đỉnh cách ô lớn + 2,5 ô nhỏ tương đương với + 2,5 = 17,5 ô nhỏ mà ô nhỏ tương ứng 1mm khoảng cách đỉnh = 17,5mm Mặt khác băng chuyển động với vận tốc v quãng đường băng trượt sau chu kỳ T khoảng cách đỉnh: = v.T T = :v = 17,5:20 = 0,875s ∆𝑡 60 số lần tim đập phút: n = = 69 lần/phút 𝑇 0,875 TRUNG TÂM HOA TỬ - THẦY VŨ DUY PHƢƠNG – 0984 666 104 Tài liệu luyện thi trực tuyến http://hoatuphysics.com Chú ý: Trong y học có công thức tính nhịp tim số trang web trình bày Tuy nhiên người học vật lý phải hiểu chất vấn đề, dùng máy móc công thức Bởi lẽ máy điện tâm đồ thường cho băng chuyển động với vận tốc 25mm/s em dùng công thức trang web cho thất bại, cần phải có óc suy luận cách mạch lạc, chất vật lý Để đơn đáp ứng nhiệm vụ thi đại học, thầy miễn cưỡng cung cấp cho em công thức nhịp tim điện tâm đồ 𝟔𝟎.𝒗 n= 𝝀 Trong v đồng đơn vị, ví dụ v có đơn vị mm/s phải có đơn vị mm Chú ý ô nhỏ 1mm ô lớn 5mm VD Đồ thị hàm tuần hoàn - nhạc lý Crossover Lương Sơn Bá – Chúc Anh Đài, tác phẩm kinh điển âm nhạc phương đông Một thầy giáo vật lý soạn nhạc phần mềm proshow producer Khi thấy nhạc chạy đến nốt ĐÔ đồ thị máy tính đoạn đồ thị tuần hoàn với hàng trăm chu kỳ Với kinh nghiệm mình, thầy giáo xác định thời gian nốt đô vừa kéo dài 1,5s với tần số khoảng 510 Hz từ thầy giáo ước lượng nốt đô đàn rung lên n chu kỳ Bạn có biết n mà thầy giáo tính không? Hình 2.7 – Lương Sơn Bá – Chúc Anh Đài Giải: Khi đọc loại này, thông tin dài dòng có tính chất làm cho vấn đề thêm sinh động, ta làm vật lý quan tâm đến số liệu chất Trong ta xác định thời gian dao động (của nốt đô) 1,5s, tần số dao động 510 Hz Ta nhớ rằng, nhạc cụ (kể quản người) phát nốt nhạc có nghĩa vật thực xung dao động tắt dần, dao động gồm nhiều chu kỳ dao động Ta tính theo cách dao động tự (với sai số không đáng kể) Δ𝑡 Số chu kỳ xung là: n = = Δ𝑡 𝑓 = 1,5.510 = 765Hz 𝑇 Trong đề thi cho đáp án, đáp án gần với giá trị đáp án Công ty TNHH Trung Tâm Hoa Tử - 08/286 Đội Cung – P Trƣờng Thi – TP Thanh Hóa Bài tập đề nghị Đọc hàm điều hòa – pha ban đầu Đây tập chủ yếu yêu cầu em đọc pha ban đầu Việc đọc biên độ tần số góc đề đơn giản Xác định phương trình dao động đồ thị từ hình 2.8 đến 2.17: Hình 2.8 23 Hình 2.8 A x = 4cos(5t + ) cm C x = 4cos(10t + /2)cm 24 Hình 2.9 A x = 3cos(5t - ) cm C x = 3cos(5t - /2)cm Hình 2.10 25 Hình 2.10 A x = 4cos(5t + /4) cm C x = 4cos(10t + /2)cm 26 Hình 2.11 A x = 5cos(t - /3) cm C x = 4cos(2t – /6)cm Hình 2.12 Hình 2.9 B x = 4cos(10t)cm D x = 4cos(5t) cm B = 4cos(10t)cm D = 4cos(5t) cm Hình 2.11 B x = 4cos(5t )cm D x = 4cos(5t – /4) cm B x = 5cos(5t)cm D x = 5cos(t + /3) cm Hình 2.13 TRUNG TÂM HOA TỬ - THẦY VŨ DUY PHƢƠNG – 0984 666 104 Tài liệu luyện thi trực tuyến 27 Hình 2.12 A x = 4cos(4t - 5/6) cm C x = 4cos(t + 5/6)cm 28 Hình 2.13 A x = 4cos(t - /3) cm C x = 4cos(2t - 2/3)cm Hình 2.14 29 Hình 2.14 A x = 4cos(10t - /6) cm 3𝜋 C x = 4cos( t + )cm 30 Hình 2.15 A x = 3cos(5t - /3) cm C x = 4cos(10t + 2/3)cm Hình 2.16 http://hoatuphysics.com B x = 4cos(4t + 5/6)cm D x = 4cos(4t - /6) cm B x = 4cos(2t +2 /3)cm D x = 3cos(t - /6) cm Hình 2.15 B x = 2cos(t + 3/4)cm D x = 2cos( t - ) cm B x = 2cos(5t + /3)cm D x = 3cos(5t - 2/3) cm Hình 2.17 31 Hình 2.16 A x = 4cos(1,5t - /6) cm B x = 2cos(t + 3/4)cm 5𝜋 5𝜋 C x = 4cos( t + )cm D x = 4cos( t - ) cm 6 32 Hình 2.17 A x = 2cos(5t - /6) cm B x = 4cos(4t -3 /4)cm C x = 4cos(10t + /2)cm D x = 4cos(4t - /4) cm Trên em vừa làm quen với việc đọc đồ thị đơn giản Để rèn luyện thêm kỹ đọc đồ thị em cần phải biết vẽ đồ thị, sau lập thành nhóm – em đề thử thách lẫn đạt hiệu tốt Công ty TNHH Trung Tâm Hoa Tử - 08/286 Đội Cung – P Trƣờng Thi – TP Thanh Hóa Đọc đồ thị hàm điều hòa đầy đủ Đây yêu cầu em phải xác định tần số góc Xác định phương trình dao động đồ thị từ hình 2.18 đến 2.21 Hình 2.18 33 Hình 2.18 A x = 4cos(3t - /6) cm 2𝜋 C x = 4cos(10t + )cm 34 Hình 2.19 A x = 4cos(9t - /4) cm C x = 4cos(4t + 2𝜋 )cm Hình 2.20 35 Hình 2.20 10 5𝜋 A x = 4cos( t + ) cm 2𝜋 C x = 4cos(4,5t + )cm 36 Hình 2.21 10 A x = 4cos( t +/3) cm 2𝜋 Hình 2.19 B x = 4cos(4t -/3)cm 2𝜋 D x = 4cos(4t – ) cm 3𝜋 B x = 4cos(4t + )cm D x = 2cos(4,5t + 2𝜋 ) cm Hình 2.21 3𝜋 B x = 4cos(0,3t + )cm D x = 2cos(4t + 3𝜋 ) cm 20 B x = 4cos( t – /3)cm 3𝜋 C x = 4cos(4,5t + )cm D x = 2cos(4t + ) cm Ở trình độ em làm câu thời gian 40s coi đạt Để nâng cao trình độ, em phải sử dụng thường xuyên đường tròn Fresnel, phối hợp tốt phương pháp đồ thị với phương pháp véc tơ quay để xác định góc quét cách linh hoạt, từ tính nhanh tần số góc theo giá trị thời gian có ghi đồ thị, từ em sáng tạo cách cho thời điểm t1; t2 thay cho thời điểm TRUNG TÂM HOA TỬ - THẦY VŨ DUY PHƢƠNG – 0984 666 104 Tài liệu luyện thi trực tuyến http://hoatuphysics.com Đọc độ lệch pha đồ thị Đây dạng tập giúp làm quen đọc đồ thị hình vẽ để chuẩn bị cho việc làm khó chương sau Trong hình vẽ từ 2.22 đến 2.25, biểu diễn dao động điều hòa Hãy xác định độ lệch pha dao động (1) với dao động (2) Hình 2.22 37 Hình 2.22 A –/4 38 Hình 2.23 A -2/3 Hình 2.23 B /4 C 3/4 D -3/4 B.0 C /3 D 2/3 Hình 2.24 Hình 2.25 39 Hình 2.24 A – B /2 C 2/3 40 Hình 2.25 A /3 B.2/3 C –/3 Sau hoàn thiện kỹ đọc góc lệch pha giữ dao động, em đọc liên hệ giá trị tức thời dao động với ví dụ sau đây: 41 Tìm biểu thức li độ dao động mô tả đồ thị hình 2.26 x x x x A = ± B ( )2 + ( )2 = C A1 x1 A1 = − A2 x2 A2 A1 x1 A2 x2 A1 A2 D -2/3 D.-/6 Hình 2.26 D ( ) − ( ) = Công ty TNHH Trung Tâm Hoa Tử - 08/286 Đội Cung – P Trƣờng Thi – TP Thanh Hóa Đọc đồ thị hàm tuần hoàn 42 Một vật dao động điều hòa, tọa độ vật phụ thuộc thời gian theo đồ thị hình 2.27 Xác định phương trình tọa độ theo thời gian A x = 5cos(10t – /2)cm B x = 4cos(12 + /3)cm Hình 2.27 C x= 4cos(20t + 2/3) + 2cm D x = 6cos(20t -2/3) + 2cm 43 điện tâm đồ người ghi lại hình 2.28 Biết băng truyền chuyển động với vận tốc 24mm/s Biết ô nhỏ có bề rộng 1mm Hỏi phút tim người đập lần Hình 2.28 A 94 lần B 100 lần C 102 lần D 60 lần 44 Một người ghi âm đoạn sau “đoạt điểm trở bàn tay” Đồ thị mô tả dao động âm theo thời gian ghi lại hình 2.29 Xác định thời điểm người bắt đầu phát âm “đoạt” A Thời điểm (1) B Thời điểm (2) Hình 2.29 C Thời điểm (3) D trước thời điểm (1) Các tập vừa chủ yếu nói li độ x Ngoài đại lượng vận tốc, gia tốc biến thiên điều hòa Các đại lượng khác lực đàn hồi, lực hồi phục, động năng, động lượng biểu diễn theo biến số thời gian, li độ, vận tốc Các em tự khai thác vấn đề Sau thầy giới thiệu qua đồ thị để tiện cho việc tự phát triển lực Các đồ thị theo thời gian - Vận tốc gia tốc theo thời gian Hình 2.30 đồ thị vận tốc theo thời gian Hình 2.31 – Đồ thị gia tốc theo thời gian TRUNG TÂM HOA TỬ - THẦY VŨ DUY PHƢƠNG – 0984 666 104 Tài liệu luyện thi trực tuyến http://hoatuphysics.com - Động lượng động (hoặc năng) theo thời gian Hình 2.32 động lượng theo thời gian Hình 2.33 động theo thời gian - Lực kéo (giá trị đại số) theo thời gian Hình 2.34- Đồ thị lực kéo theo thời gian Liên hệ đại lượng - Liên hệ v theo x Hình 2.34 – Đồ thị vận tốc theo li độ - Liên hệ a theo v Hình 2.35 – Đồ thị gia tốc theo vận tốc 10 Công ty TNHH Trung Tâm Hoa Tử - 08/286 Đội Cung – P Trƣờng Thi – TP Thanh Hóa - Liên hệ a theo x Hình 2.36- Đồ thị gia tốc theo li độ Năng xung lượng theo đại lượng động học - Động dao động vận tốc dao động theo li độ Hình 2.37 động theo vận tốc Hình 2.38 theo li độ Hình 2.39 Động lượng theo vận tốc Hình 2.40 Lực hồi phục theo li độ - Động lượng theo vận tốc giá trị đại số theo li độ Đáp án tập đề nghị 23D 24C 25D 26A 34C 35A 36B 37B 27A 38D 28B 39A 29C 40C 30D 42B 31D 42C 32B 43A 33D 44B Vũ Duy Phƣơng Công ty TNHH Trung Tâm Hoa Tử ĐT: 0984 666 104 Đ/c: 08/286 Đội Cung – Phường Trường Thi – TP Thanh Hoá Web: http://hoatuphysics.com Email: hoatutiensinh@gmail.com Facebook: http://facebook.com/hoatutiensinh http://facebook.com/trungtamhoatu TRUNG TÂM HOA TỬ - THẦY VŨ DUY PHƢƠNG – 0984 666 104 11 [...]... Đội Cung – P Trƣờng Thi – TP Thanh Hóa - Liên hệ a theo x Hình 2.36- Đồ thị gia tốc theo li độ Năng xung lượng theo các đại lượng động học - Động năng dao động vận tốc và thế năng dao động theo li độ Hình 2.37 động năng theo vận tốc Hình 2.38 thế năng theo li độ Hình 2.39 Động lượng theo vận tốc Hình 2.40 Lực hồi phục theo li độ - Động lượng theo vận tốc giá trị đại số theo li độ Đáp án bài tập đề ... phương trình dao động vật là: x = 3cos(4t + 5/6)cm VD Đọc đồ thị hàm tuần hoàn dạng sin Hình 2.3 Một vật dao động điều hòa mô tả đồ thị dạng cos hình 2.4 Hãy xác định phương trình dao động vật... tuyến http://hoatuphysics.com VD 2: Đọc đồ thị hàm điều hòa thông thường (mức 2) Một dao động điều hòa mô tả đồ thị hình 2.2 Hãy xác định phương trình dao động vật Giải: Tương tự ví dụ ta xác... thấy đồ thị có tính tuần hoàn, cách số ô dạng đồ thị lại lặp lại cũ (trạng thái dao động lặp lại cũ) Trên đồ thị, ta thấy đỉnh (R) liên tiếp lần trạng thái lặp lại, khoảng thời gian lần đồ thị