Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 79 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
79
Dung lượng
850,84 KB
Nội dung
Nội dung giảng Lý thuyết xác suất thống kê toán học Phạm Đình Tùng Đại Học Khoa Học Tự Nhiên 15/1/2010 Phạm Đình Tùng Bài giảng Xác suất thống kê Nội dung giảng Lý thuyết xác suất Thống kê ứng dụng Tài liệu Tài liệu bắt buộc Đặng Hùng Thắng, Mở đầu lý thuyết xác suất ứng dụng, NXB Giáo Dục 2005 Đặng Hùng Thắng, Bài tập xác suất, NXB Giáo Dục 2008 Đào Hữu Hồ, Xác suất thống kê, NXB ĐHQG Hà Nội 2004 Tài liệu tham khảo Nguyễn Viết Phú, Nguyễn Duy Tiến, Cơ sở lý thuyết xác suất, NXB ĐHQG Hà Nội 2004 Đặng Hùng Thắng,Thống kê ứng dụng, NXB Giáo Dục 2008 Đào Hữu Hồ, Hướng dẫn giải toán xác suất thống kê , NXB ĐHQG Hà Nội 2007 Phạm Đình Tùng Bài giảng Xác suất thống kê Nội dung giảng Lý thuyết xác suất Thống kê ứng dụng Lý thuyết xác suất I Biến cố xác suất biến cố Phép thử ngẫu nhiên không gian mẫu Biến cố quan hệ biến cố Xác suất biến cố quy tắc tính Xác suất có điều kiện Công thức xác suất đầy đủ công thức Bayes Phép thử lặp công thức Bernoulli Đại lượng ngẫu nhiên rời rạc Phân bố xác suất hàm phân bố Các đại lượng đặc trưng đại lượng ngẫu nhiên rời rạc Phân bố đồng thời hệ số tương quan Hàm đại lượng ngẫu nhiên Một số phân bố rời rạc thường gặp Phạm Đình Tùng Bài giảng Xác suất thống kê Nội dung giảng Lý thuyết xác suất Thống kê ứng dụng Lý thuyết xác suất II Đại lượng ngẫu nhiên liên tục Hàm mật độ hàm phân bố xác suất Các đặc trưng đại lượng ngẫu nhiên liên tục Hàm đại lượng ngẫu nhiên Một số phân phối liên tục thường gặp Luật số lớn định lý giới hạn Hội tụ theo xác suất dãy đại lượng ngẫu nhiên Luật số lớn Định lý giới hạn trung tâm tổng quát dạng đặc biệt Phạm Đình Tùng Bài giảng Xác suất thống kê Nội dung giảng Lý thuyết xác suất Thống kê ứng dụng Thống kê ứng dụng Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố xác suất biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn định lý giới hạn Phần I Lý thuyết xác suất Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố xác suất biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn định lý giới hạn Phép thử ngẫu nhiên không gian mẫu Biến cố quan hệ biến cố Xác suất biến cố quy tắc tính Xác suất có điều kiện Công thức xác suất đầy đủ công thức Bayes Phép thử lặp công thức Bernoulli Phép thử ngẫu nhiên không gian mẫu Định nghĩa Trong thực tế ta gặp nhiều hành động mà trước kết Tất hành động phép thử ngẫu nhiên Phép thử ngẫu nhiên thường ký hiệu ξ Tập hợp tất kết ξ kí hiệu Ω Khi Ω gọi không gian mẫu phép thử ξ Ví dụ Phép thử ξ: thực tung xúc xắc lên, sau quan sát mặt xuất xúc sắc Không gian mẫu Ω = {’mặt 1’,’mặt 2’,’mặt 3’,’mặt 4’,’mặt 5’,’mặt 6’ } Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố xác suất biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn định lý giới hạn Phép thử ngẫu nhiên không gian mẫu Biến cố quan hệ biến cố Xác suất biến cố quy tắc tính Xác suất có điều kiện Công thức xác suất đầy đủ công thức Bayes Phép thử lặp công thức Bernoulli Biến cố quan hệ biến cố Biến cố Biến cố kết phép thử ngẫu nhiên Ký hiệu biến cố chữ in hoa : A,B,C, Ví dụ : A=’mặt 1’, Phân loại biến cố Biến cố xảy ra, kí hiệu: ∅ Biến cố chắn xảy ra, kí hiệu: Ω Biến cố ngẫu nhiên biến cố xảy không Biến cố sơ cấp biến cố phân chia thành biến cố nhỏ Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố xác suất biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn định lý giới hạn Phép thử ngẫu nhiên không gian mẫu Biến cố quan hệ biến cố Xác suất biến cố quy tắc tính Xác suất có điều kiện Công thức xác suất đầy đủ công thức Bayes Phép thử lặp công thức Bernoulli Quan hệ biến cố Hợp hai biến cố A B biến cố xảy có hai biến cố A B xảy Kí hiệu A ∪ B hay A+B Giao hai biến cố A B biến cố xảy hai biến cố A B xảy Kí hiệu A ∩ B hay AB Biến cố A gọi kéo theo B A xảy thi B xảy Kí hiệu A ⊂ B ¯ = Ω \ A Biến cố đối biến cố A A Biến cố xung khắc: A B hai biến cố xung khắc A ∩ B = ∅ Biến cố độc lập : A B hai biến cố độc lập A xảy không ảnh hưởng đến việc B xảy ngược lại Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố xác suất biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn định lý giới hạn Phép thử ngẫu nhiên không gian mẫu Biến cố quan hệ biến cố Xác suất biến cố quy tắc tính Xác suất có điều kiện Công thức xác suất đầy đủ công thức Bayes Phép thử lặp công thức Bernoulli Ví dụ Tung xúc sắc, đặt biến cố sau A=" xuất mặt 1"; B="xuât mặt chẵn" Khi A ∪ B="Xuất mặt chẵn mặt 1" A ∩ B = ∅ , hay A B hai biến cố xung khắc ¯ = "không xuất mặt 1" A ¯ ∩ B = B A ¯ B biến cố kéo theo với A Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố xác suất biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn định lý giới hạn Hàm mật độ hàm phân bố xác suất Các đặc trưng đại lượng ngẫu nhiên liên tục Hàm đại lượng ngẫu nhiên Một số phân phối liên tục thường gặp Tính chất ≤ F (x) ≤ P(a ≤ X < b) = F (b) − F (a) F(x) hàm không giảm liên tục trái có giới hạn từ bên phải limx→+∞ F (x) = 1, limx→−∞ F (x) = Để ngắn gọn ta viết F (−∞) = 0; F (+∞) = Nếu f(x) hàm liên tục F(x) khả vi liên tục F (x) = f (x) Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố xác suất biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn định lý giới hạn Hàm mật độ hàm phân bố xác suất Các đặc trưng đại lượng ngẫu nhiên liên tục Hàm đại lượng ngẫu nhiên Một số phân phối liên tục thường gặp Các đặc trưng ĐLNN liên tục Cho X ĐLNN liên tục với hàm mật độ f(x) Khi đại lượng đặc trưng X : +∞ −∞ xf Kỳ vọng : µ = EX = Phương sai: DX = E (X − EX )2 = EX − (EX )2 = √ Độ lệch tiêu chuẩn: σ = DX (x)dx +∞ −∞ x f (x)dx − µ2 Mode: ModX = c với f (c) = maxx f (x) Median (Trung vị): MedianX=m P(Xm) (hoặc F(m)=1/2 với F(x) liên tục) Moment cấp k: EX k = +∞ k −∞ x f Phạm Đình Tùng (x)dx Bài giảng Xác suất thống kê Biến cố xác suất biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn định lý giới hạn Hàm mật độ hàm phân bố xác suất Các đặc trưng đại lượng ngẫu nhiên liên tục Hàm đại lượng ngẫu nhiên Một số phân phối liên tục thường gặp Ví dụ Cho ĐLNN liên tục X với hàm mật độ f (x) = 81 x với ≤ x ≤ với x ∈ / [0, 3] Tính đại lượng đặc trưng X? Lời giải: Kỳ vọng : µ = EX = Phương Suy DX +∞ −∞ xf (x)dx +∞ sai: EX = −∞ x f (x)dx = EX − µ2 = 25 σ = Phạm Đình Tùng 12 x 81 x dx = x dx = = x 81 √ 6 25 = = Bài giảng Xác suất thống kê Biến cố xác suất biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn định lý giới hạn Hàm mật độ hàm phân bố xác suất Các đặc trưng đại lượng ngẫu nhiên liên tục Hàm đại lượng ngẫu nhiên Một số phân phối liên tục thường gặp Mode : Với x ∈ / [0, 3] f(x)=0, suy giá trị lớn hàm f đạt nằm [0,3] Mặt khác, f(0)=0, f (3) = 34 hàm f(x) hàm tăng từ tới Suy giá trị lớn hàm f đạt x=3 Do ModX =3 Median: Giả sử m=MedianX Khi : m 1 P(X < m) = ⇔ f (x)dx = 2 −∞ ⇔ m ∈ [0, 3] m 81 x dx = Giải phương trình thứ hai ta m4 81 = 2 ⇔m= thỏa mãn điều kiện Do MedianX = 81 Phạm Đình Tùng Bài giảng Xác suất thống kê 81 Giá trị Biến cố xác suất biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn định lý giới hạn Hàm mật độ hàm phân bố xác suất Các đặc trưng đại lượng ngẫu nhiên liên tục Hàm đại lượng ngẫu nhiên Một số phân phối liên tục thường gặp Hàm ĐLNN Định nghĩa Giả sử X ĐLNN g(x) hàm cho trước Xét ĐLNN Y xác định Y=g(X) Khi Y hàm ĐLNN X Câu hỏi: Cho hàm mật độ (phân bố) X, tìm hàm mật độ (phân bố) Y? Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố xác suất biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn định lý giới hạn Hàm mật độ hàm phân bố xác suất Các đặc trưng đại lượng ngẫu nhiên liên tục Hàm đại lượng ngẫu nhiên Một số phân phối liên tục thường gặp Ví dụ X ĐLNN liên tục có hàm phân 0 FX (x) = x2 bố x ≤ 0[...]... sang Đây là bài toán về công thức dạng Bayes nhưng không phải với biến cố trong hệ đầy đủ mà là biến cố khác Do đó cách giải quyết bài toán sẽ bao gồm hai bước : Bước 1: Ta xác định các biến cố và xác suất cần tìm là xác suất có điều kiện Bước 2: Tính các xác suất trong công thức xác suất có điều kiện bằng công thức xác suất đầy đủ Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố và xác suất của... tồn tại 2 Xác suất có điều kiện P(B|A) có thể tính trực tiếp từ bài toán bằng công thức xác suất cổ điển Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố và xác suất của biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn và các định lý giới hạn Phép thử ngẫu nhiên và không gian mẫu Biến cố và quan hệ giữa các biến cố Xác suất của biến cố và các quy tắc tính Xác suất có... xác suất bằng tần suất Thực hiện phép thử ngẫu nhiên ξ n lần, k là số lần xuất hiện A trong n phép thử Kí hiệu f (n) = k n là tần suất xuất hiện A trong n phép thử Khi n → ∞ thì f(n) tiến đến một giới hạn không đổi chính là xác suất xuất hiện A Kí hiệu P(A) = lim f (n) n→∞ Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố và xác suất của biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên... cố Xác suất của biến cố và các quy tắc tính Xác suất có điều kiện Công thức xác suất đầy đủ và công thức Bayes Phép thử lặp và công thức Bernoulli Xác suất có điều kiện Định nghĩa xác suất có điều kiện Cho A , B là hai biến cố Xác suất để B xảy ra trong điều kiện biết rằng A đã xảy ra được gọi là xác suất có điều kiện của B với điều kiện A và được kí hiệu là P(B|A) Ví dụ : Phạm Đình Tùng Bài giảng Xác. .. Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố và xác suất của biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn và các định lý giới hạn Phép thử ngẫu nhiên và không gian mẫu Biến cố và quan hệ giữa các biến cố Xác suất của biến cố và các quy tắc tính Xác suất có điều kiện Công thức xác suất đầy đủ và công thức Bayes Phép thử lặp và công thức Bernoulli Xác suất của biến... đúng thì bỏ ra) Tính xác suất để mở được cửa ở lần thử thứ ba Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố và xác suất của biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn và các định lý giới hạn Phép thử ngẫu nhiên và không gian mẫu Biến cố và quan hệ giữa các biến cố Xác suất của biến cố và các quy tắc tính Xác suất có điều kiện Công thức xác suất đầy đủ và công... sản phẩm hỏng Tính xác suất để sản phẩm hỏng đó là của phân xưởng A Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố và xác suất của biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn và các định lý giới hạn Phép thử ngẫu nhiên và không gian mẫu Biến cố và quan hệ giữa các biến cố Xác suất của biến cố và các quy tắc tính Xác suất có điều kiện Công thức xác suất đầy đủ và... Đình Tùng Bài giảng Xác suất thống kê Phép thử ngẫu nhiên và không gian mẫu Biến cố và quan hệ giữa các biến cố Xác suất của biến cố và các quy tắc tính Xác suất có điều kiện Công thức xác suất đầy đủ và công thức Bayes Phép thử lặp và công thức Bernoulli Biến cố và xác suất của biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn và các định lý giới hạn Công thức xác suất... lên rất đơn giản nhờ phép quy nạp Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố và xác suất của biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn và các định lý giới hạn Phép thử ngẫu nhiên và không gian mẫu Biến cố và quan hệ giữa các biến cố Xác suất của biến cố và các quy tắc tính Xác suất có điều kiện Công thức xác suất đầy đủ và công thức Bayes Phép thử lặp và... thức xác suất đầy đủ Nếu B1 , · · · , Bn là hệ biến cố đầy đủ, thì với mỗi biến cố A ta có n P(A) = P(Bi )P(A|Bi ) i=1 Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố và xác suất của biến cố Đại lượng ngẫu nhiên rời rạc Đại lượng ngẫu nhiên liên tục Luật số lớn và các định lý giới hạn Phép thử ngẫu nhiên và không gian mẫu Biến cố và quan hệ giữa các biến cố Xác suất của biến cố và các quy tắc tính Xác ... dẫn giải toán xác suất thống kê , NXB ĐHQG Hà Nội 2007 Phạm Đình Tùng Bài giảng Xác suất thống kê Nội dung giảng Lý thuyết xác suất Thống kê ứng dụng Lý thuyết xác suất I Biến cố xác suất biến... gặp Phạm Đình Tùng Bài giảng Xác suất thống kê Nội dung giảng Lý thuyết xác suất Thống kê ứng dụng Lý thuyết xác suất II Đại lượng ngẫu nhiên liên tục Hàm mật độ hàm phân bố xác suất Các đặc trưng... định biến cố xác suất cần tìm xác suất có điều kiện Bước 2: Tính xác suất công thức xác suất có điều kiện công thức xác suất đầy đủ Phạm Đình Tùng Bài giảng Xác suất thống kê Biến cố xác suất biến