trình bày về áp dụng quá trình oxi hóa nâng cao xử lý rỉ rác
PHẦN MỞ ĐẦU 1- Thông tin chung về đề tài : - Tên đề tài : Áp dụng các quá trình oxi hóa nâng cao (AOPs) để xử lý nước rỉ rác đã qua xử lý sinh học ở nhà máy xử lý Gò Cát, thực hiện trên hệ pilot 15-20 m 3 /ngày. - Chủ nhiệm đề tài : GS. TSKH. Trần Mạnh Trí - Cơ quan chủ trì : Trung tâm Công nghệ Hóa học và Môi trường (ECHEMTECH) - Thời gian thực hiện : bắt đầu : 1/12/2006 ; kết thúc : 1/04/2007 - Kinh phí được duyệt : 275.000.000 đ - Kinh phí đã cấp : 200.000.000 đ theo TB số 195/TB-SKHCN ngày 13/11/2006 2- Mục tiêu : Xây dựng công nghệ xử lý nước rỉ rác hợp lý nhằm nâng cao công suất, chất lượng và giảm chi phí vận hành của nhà máy xử lý nước rỉ rác Gò Cát hiện tại 3- Nội dung : (1) Khảo sát, phân tích, đánh giá chất lượng nước rỉ rác đã qua xử lý sinh học ở nhà máy xử lý Gò Cát. (2) Thử nghiệm kiểm tra một số quá trình chính sẽ áp dụng trong quy mô phòng thí nghiệm để xác định công nghệ xử lý. (3) Tính toán, thiết kế, chế tạo các thiết bị công nghệ cho hệ pilot công suất 10- 20 m 3 /ngày. (4) Lắp đặt hệ pilot 10-20 m 3 /ngày tại Công trường Gò Cát. 1 (5) Vận hành, đo đạc các thông số công nghệ, công suất và chất lượng nước xử lý. (6) Đánh giá chi phí vận hành (chủ yếu là năng lượng, hoá chất) cho 1 m 3 nước sau xử lý. (7) Kết luận và đánh giá tính khả thi của công nghệ đề xuất. 4- Sản phẩm của đề tài : (1) Hệ pilot công suất 10-20 m3/ngày (2) Công nghệ xử lý nước rỉ rác theo đề xuất của ECHEMTECH, bảo đảm chất lượng nước sau xử lý phải đạt các mức sau: - pH 5.5-9 - COD , mg/L 100 - BOD, mg/L 50 - SS, mg/L 100 - N tổng số , mg/L 60 - P tổng số , mg/L 6 - Coliform, MPN/100mL 10.000 - Màu, Pt-Co 50 (3) Báo cáo tổng kết của đề tài 2 CHƯƠNG I TỔNG QUAN VỀ ĐỀ TÀI NGHIÊN CỨU 1.1- Rác và các công trường xử lý rác ở thành phố Hồ Chí Minh Vì là một thành phố lớn nên lượng rác thải hàng ngày của thành phố Hồ Chí Minh cũng rất lớn, mỗi ngày có trên 7.000 tấn rác các loại thải ra, từ rác sinh hoạt đến rác thải công nghiệp. Phần lớn rác được tập trung về các bãi rác ở ngoại thành để xử lý, cho đến nay chủ yếu vẫn bằng phương pháp chôn lấp, tuy biết rằng giải pháp này không lâu dài và căn cơ đối với quỹ đất hạn hẹp của một thành phố lớn. Thành phố đang phấn đấu giảm dần tỷ lệ chôn lấp từ 98% hiện nay xuống còn 50% vào năm 2010 và còn 30% vào năm 2015. Tuy vậy, mục tiêu này không phải dễ dàng đạt được như mong muốn nếu không có quyết tâm cao. Để giải quyết vấn nạn rác của thành phố, trong những năm vừa qua thành phố Hồ Chí Minh đã triển khai xây dựng 4 công trường chôn lấp rác khá quy mô sau đây để tiếp nhận rác hàng ngày: - Bãi chôn lấp Gò Cát (quận Bình Tân) với tổng diện tích công trường 25 ha, công suất thiết kế 3,6 triệu tấn, mỗi ngày có thể tiếp nhận 2.000 tấn theo thiết kế. Tuy nhiên, do một số công trường chôn lấp rác khác bị sự cố nên buộc phải nâng công suất tiếp nhận hàng ngày lên 3.000-3.500 tấn, cá biệt có lúc lên đến gần 5.000 tấn. làm cho tổng lượng rác đã tiếp nhận hiện nay đã lên đến 4,3 triệu tấn ! - Bãi chôn lấp rác Phước Hiệp (huyện Củ Chi) với tổng diện tích công trường 43 ha, công suất thiết kế 3 triệu tấn rác, mỗi ngày có thể tiếp nhận 3.000 tấn rác theo thiết kế (bãi chôn lấp 1A). Tuy nhiên, bãi chôn lấp rác này đang bị sự cố, phía đông bắc công trường nền đất bị chuồi trượt rất nghiêm trọng. Vì vậy, lượng rác tiếp nhận hàng ngày còn khoảng 1.100-1.200 tấn. Đáng chú ý là công trường xử lý rác Phước Hiệp (xã Tam tân) được quy hoạch mở rộng để trở thành khu xử lý liên 3 hợp chất thải rắn lớn của thành phố với diện tích tổng cộng đến 822 ha, thời gian hoạt động dự kiến là 23 năm, hiện nay vẫn trong quá trình xây dựng. - Bãi chôn lấp rác Đa Phước (huyện Bình Chánh) với tổng diện tích công trường 128ha, đang triển khai san lấp mặt bằng dự kiến đầu năm 2007 sẽ tiếp nhận rác, nhưng cho đến nay công trường vẫn chưa hoàn thành công tác xây dựng. - Bãi chôn lấp rác Đông Thạnh (huyện Hóc Môn) với diện tích 70 ha, hoạt động từ năm 1991 đến 2002, hiện nay đã đóng cửa không tiếp nhận rác, chỉ nhận xà bần với lượng 900 tấn/ngày. Khối lượng rác tồn đọng khoảng 7,6 triệu tấn. 1.2- Nước rỉ từ các công trường chôn lấp rác ở thành phố Hồ Chí Minh Ở các công trường chôn lấp rác trên địa bàn thành phố Hồ Chí Minh, nước rỉ ra từ các bãi chôn lấp rác đã và đang nổi lên thành vấn đề lớn, được toàn xã hội lo lắng và quan tâm hàng ngày. Nguyên nhân một mặt vì trong nước rỉ rác này chứa nhiều mầm bệnh nguy hiểm, chứa nhiều chất ô nhiễm độc hại, khi tích đọng lại sẽ gây nguy cơ ô nhiễm nguồn nước, đất và không khí quanh khu vực công trường chôn lấp, nước rỉ rác lại có mùi hôi thối, độc hại, lan toả thường trực trong không khí với một bán kính đến vài cây số, nên dân cư quanh những công trường chôn lấp rác không chịu nổi, nhiều lần yêu cầu chính quyền tìm giải pháp khắc phục. Mặt khác, vì lượng nước rỉ rác thoát ra hàng ngày khá nhiều, (trung bình cứ 10 tấn rác chôn lấp trong 1 ngày đêm sinh ra 1 m 3 nước rỉ rác), về mùa mưa, lượng nước rỉ rác sinh ra càng nhiều hơn, nếu không có giải pháp xử lý kịp thời và hiệu quả, nguy cơ ô nhiễm do nước rỉ rác phá vỡ bờ bao các công trình hồ chứa, tràn vào khu dân cư hoặc ra nguồn nước bên ngoài là không tránh khỏi. Hiện thành phố tồn đọng khoảng 500.000 m 3 nước rỉ rác chưa được xử lý trước mùa mưa năm nay. Ở công trường chôn lấp rác Gò Cát, hiện nay lượng nước rỉ rác tồn đọng trong hai hồ chứa khoảng 60.000 m 3 , mỗi ngày mỗi phát sinh thêm. Ở công trường chôn lấp rác Phước Hiệp, hiện tồn đọng khoảng trên 300.000 m 3 và mỗi ngày phát sinh 4 thêm khoảng 1.000 m 3 . Công trường chôn lấp rác Phước Hiệp đang trở thành một túi chứa nước rác khổng lồ và tình trạng vỡ bờ bao như đã xảy ra năm 2003 có thể tái diễn. Ngay cả công trường chôn lấp rác Đông Thạnh tuy đã đóng cửa từ nhiều năm nay nhưng hiện vẫn còn tồn đọng khoảng 50.000 m 3 nước rỉ rác chưa được xử lý. 1.3- Những giải pháp xử lý nước rỉ rác ở thành phố Hồ Chí Minh 1.3.1- Giải pháp xử lý nước rỉ rác ở công trường chôn lấp rác Đông Thạnh- Ở công trường chôn lấp rác Đông Thạnh, ngay từ đầu những năm 2000, rất nhiều đơn vị tham gia nghiên cứu xử lý nước rỉ rác như Công ty Quốc Việt, Trung tâm Công nghệ và quản lý môi trường CENTEMA, Công ty TNHH Đức Lâm, Trung tâm tư vấn công nghệ và môi trường CTA, Công ty Cổ phần nước và phát triển NUPHACO, Hội Hóa học Việt Nam. Công nghệ xử lý chủ yếu dựa vào phương pháp phân hủy sinh học nhưng nói chung hoạt động không ổn định, luôn gặp trục trặc, thậm chí như Công ty Đức Lâm, cho đến nay vẫn chưa xả thải được mét khối nước rỉ rác nào đạt yêu cầu (!). Tuy vậy, hiện nay hệ thống này phải tiếp nhận thêm nước rỉ rác 700-700 m 3 /ngày chở từ công trường Gò Cát về để xử lý tạm thời để hỗ trợ nhà máy xử lý nước Gò Cát trong thời gian bị sự cố kỹ thuật. 1.3.2- Giải pháp xử lý nước rỉ rác ở công trường chôn lấp rác Gò Cát Hệ thống xử lý nước rỉ rác ở công trường chôn lấp rác Gò Cát được xem là hệ thống xử lý nước rỉ rác hoàn chỉnh và quy mô nhất hiện nay ở TP Hồ Chí Minh Hệ thống xử lý do Công ty Vemier (Hà Lan) thiết kế, đầu tư thiết bị với công suất thiết kế 400 m 3 /ngày, với chất lượng nước sau khi xử lý phải đạt cột B theo TCVN 5945-1995, đã được Trung tâm Công nghệ môi trường ECO xây dựng. Công trình bắt đầu tiến hành xây dựng từ năm 2003, đưa vào hoạt động từ năm 2003, nhưng 5 nước xả thải không đạt yêu cầu so với thiết kế nên đã thay đổi công nghệ, bổ sung thiết bị để hoàn chỉnh. Các giai đoạn xây dựng bổ sung đã thực hiện lần lượt như sau: - Giai đoạn đầu (2003) : hệ thống xử lý được thiết kế chỉ dựa theo theo công nghệ phân chia vật lý trực tiếp nguồn nước rỉ rác thông qua hai cấp lọc : lọc cát và lọc tinh (micro và ultra) kết hợp với lọc nano (hình I-1): Nước rỉ rác thô Lọc thô qua cát Lọc tinh qua lõi lọc : micro và ultra Lọc nano Nước đã xử lý Hình I.1: Sơ đồ công nghệ xử lý nước rỉ rác giai đoạn đầu ở Gò Cát Tuy nhiên, thực tế hoạt động đã cho thấy công nghệ nói trên không phù hợp với đối tượng nước rỉ rác chứa nhiều tạp chất lơ lửng, nhiều chất ô nhiễm hữu cơ phức tạp nên chưa mang lại kết quả mong muốn, công suất nước sạch sau khi ra hệ thống lọc nano đạt rất thấp tuy chất lượng đạt tốt. Điều này cho thấy không thể xử lý trực tiếp nước rỉ rác chỉ thông qua quá trình phân chia vật lý mà không có những quá trình chuẩn bị trước đó. - Giai đoạn hai – bổ sung (2004) : đã lắp bổ sung bể lên men kỵ khí dung chứa 1000m 3 trước khi vào hệ thống lọc nói trên nhằm xử lý phân hủy các chất hữu cơ bằng sinh học (hình I-2). Kết quả cũng không cải thiện được chất lượng và 6 số lượng nước xử lý như mong muốn, đặc biệt chưa giải quyết được hàm lượng amoniac rất cao trong nước rỉ rác. Nước rỉ rác thô Lên men kỵ khí Lắng Lọc thô qua cát Lọc tinh qua lõi lọc : micro và ultra Lọc nano Nước đã xử lý Hình I.2 – Sơ đồ công nghệ xử lý nước rỉ rác giai đoạn hai ở Gò Cát - Giai đoạn ba – nâng cấp chất lượng (2005) : xây dựng thêm bể phản ứng sinh học kỵ khí với dòng chảy ngược UASB do LeAF (Hà Lan) thiết kế để xử lý trực tiếp nước đầu vào (xử lý bậc 1), trong khi đó thiết bị lên men kỵ khí đã xây dựng ở giai đoạn 2 được cải tạo lại, bỏ bộ phận nắp thu gom khí biogas, lắp thêm hệ thống sục khí biến thành hệ thống xử lý sinh học hiếu khí bằng bùn hoạt tính kết hợp với khử Nitơ trong 2 bể tiền và hậu khử Nitơ, được bố trí đặt trước và sau bể làm thoáng hiếu khí (xử lý bậc 2). Sau đó, nước tiếp tục được đưa qua hệ thống xử lý hoàn thiện (xử lý hoá lý) bằng quá trình keo tụ với FeCl 3 , tạo bông bằng 7 Polymer, lắng, trung hòa, lọc cát. Sau 3 bậc xử lý, nước thu được dự kiến sẽ thải trực tiếp ra môi trường. Tuy việc đưa thêm bể sinh học kỵ khí UASB có hiệu quả cao nhưng các công đoạn kế tiếp hiệu quả xử lý lại thấp, không đạt đúng như thiết kế nên chất lượng nước sau xử lý cuối cùng vẫn không đạt, COD, BOD, TKN vẫn còn cao, ngoài ra vẫn còn màu và mùi hôi, nên phải cho tiếp tục vào hệ lọc nano của giai đoạn thiết kế ban đầu để xử lý tiếp. Sơ đồ công nghệ của hệ thống xử lý nước rỉ rác sau khi đã nâng cấp cuối cùng như sau (hình I-3): 8 Xử lý tiền khử Nitơ trong bể anoxic Phân hủy sinh học hiếu khí trong bể Aerotank Lọc nano Lắng Thải ra môi trường Xử lý hậu khử Nitơ trong bể anoxic Keo tụ bằng FeCl 3 và tạo bông bằng polyme Trung hòa Lọc thô qua cát Thải ra môi trường Lọc tinh qua lõi lọc (Micro và Ultra) Lắng Phân hủy sinh học kỵ khí trong hệ UASB Nước rỉ rác thô Hình I.3- Sơ đồ công nghệ hệ thống xử lý nước rỉ rác ở Gò Cát sau khi nâng cấp giai đoạn 3 9 Khi vận hành xử lý các thành phần ô nhiễm trong nước rỉ rác theo sơ đồ công nghệ mô tả trên đây, kết quả về chất lượng nước xử lý và hiệu quả của từng công đoạn trong dây chuyền công nghệ ghi nhận được trong thời gian tháng 3/2006 và tháng 7/2006 thu được như sau (bảng I-1): Bảng I.1- Chất lượng nước xử lý qua từng thiết bị công nghệ Vị trí lấy mẫu Thời điểm lấy mẫu Chỉ tiêu, mg/L Đầu vào Sau UASB Sau tiền khử Nitơ Sau bể Aerotank Sau hậu khử Nitơ Sau bể lắng Sau xử lý hóalý Sau lọc cát Sau lọc nano COD 16.814 5.424 2.712 9.220 8.678 2.712 2.215 2.079 350 BOD 9.200 2.280 840 3.120 3.560 788 1.245 1.237 308 N tổng 2.427 2.376 989 1.331 1.334 975 870 860 480 N- NH 3 2.887 2.436 954 919,2 937 937 721 715 470 N- NO 3 6,2 4,3 51,8 41,2 23,5 33,5 16,7 14,5 7,3 N- NO 2 0 0 596 768 613 460 233,6 228,1 91,7 Ptổng 19,8 17,5 21,3 143,9 135,8 46,1 9,8 10,3 11,7 SS 700 1.440 1.660 22.780 31.740 1.100 372 462 37 pH 7,6 8,26 8,53 8,49 8,53 8,59 8,07 8,04 7,59 Tháng 3/2006 Cảm quang Đục, đen, Đục, đen, Đục, đen, Đục, đen, Đục, đen, Đục, đen, Đục, có màu Đục, có màu Trong, màusáng COD 13.655 7.376 3.596 7.986 8.351 3.078 3.048 2.987 161 BOD 6.272 4.112 1.992 1.544 1.712 1.342 1.116 789,6 13,5 N tổng 1.821 1.636 1.389 1.625 1.513 1.345 1.317 1.294 868,6 N- NH 3 1.680 1.608 1.337 1.336 1.323 1.281 1.261 1.233 861 N- NO 3 0 0 0 0 0 0 0 0 0 N- NO 2 0 0 1,59 0,62 0 0 0 0,61 0,48 Ptổng 10,3 6,6 7,5 99,2 215 4,7 0 0 0 SS 2.020 640 220 6.860 9.500 300 60 1.120 0 pH 7,42 7,88 8,66 8,62 8,71 8,70 8,37 8,43 8,61 Tháng 7/2006 Cảm quang Đục, đen, Đục, đen, Đục, đen, Đục, đen, Đục, đen, Đục, đen, Đục, đen, Đục, nâu đen Trong, màusáng Nguồn : Số liệu của Công ty Môi trường đô thị TP HCM cung cấp Như vậy, nhà máy xử lý nước rỉ rác Gò Cát từ sau khi đưa vào vận hành đến nay đã gặp phải những vấn đề tồn tại sau: - Về công suất xử lý để xả thải: không đạt công suất xả thải 400 m 3 /ngày, chỉ đạt được khoảng 40 m 3 /ngày (tức chỉ đạt khoảng 10% thiết kế), thậm chí từ 10 [...]... nước rỉ rác Gò Cát 2.2.1- Giải pháp phân hủy hóa học dựa vào các q trình Oxi hóa nâng cao (Advanced Oxidation Processes – AOPs) Để xử lý thành phần ơ nhiễm hữu cơ khó hoặc khơng thể bị phân hủy sinh học, áp dụng phương pháp phân hủy hố học bằng các q trình Oxi hóa nâng cao (Advanced Oxidation Processes – AOPs) Đây là phương pháp đặc hiệu để xử lý những thành phần ơ nhiễm hữu cơ mà các phương pháp xử lý. .. THIỆN XỬ LÝ SINH HỌC KỴ KHÍ TRONG THÁP LỌC SINH HỌC KỴ KHÍ VÀ LỌC SINH HỌC NHỎ GIỌT TỔ HỢP KEO TỤ – TẠO PHỨC - FENTON LẮNG CẶN BÙN PHÂN HỦY HĨA HỌC OXI HĨA NÂNG CAO – PEROXON XỬ LÝ NITƠ Ở pH CAO TRONG THÁP TƯỚI NHỎ GIỌT TRÊN GÍA THỂ XỬ LÝ NITƠ TRONG THÁP NITRAT HỐ XỬ LÝ NITƠ TRONG THÁP DENITRAT HĨA XỬ LÝ NITƠ TRONG THIẾT BỊ SỤC OZON NƯỚC RỈ RÁC ĐÃ XỬ LÝ Hình III.4 Sơ đồ khối cơng nghệ xử lý nước rỉ rác. .. sinh học) dựa vào q trình oxi hóa mạnh hơn bình thường (tức q trình oxi hóa nâng cao- AOP), để đủ khả năng phá hủy các liên kết hóa học bền vững trong các chất ơ nhiễm Q trình oxi hóa nâng cao dựa vào tác nhân oxi hóa mạnh là gốc tự do Hydroxyl (*OH), khả năng oxi hóa cao cao hơn tất cả những tác nhân oxi hóa thường sử dụng trong cơng nghiệp hóa học như Ozon, Clo hoặc Hydrogen peroxit, đồng thời khi... hủy, bền vững và độc hại trong nước rỉ rác Trong khi đó, các cơng nghệ xử lý đã triển khai lại chưa cập nhật được những q trình xử lý mới, hiện đại, điển hình là cơng nghệ xử lý dựa vào các q trình oxi hóa nâng cao AOPs Các q trình Oxi hóa nâng cao AOPs ngày nay được xem là nền tảng của cơng nghệ xử lý nước và nước thải ở thế kỷ 21 [11,12,13] Do đó, việc nghiên cứu áp dụng các thành tựu khoa học mới trong... Giải pháp xử lý loại bỏ NH3 này bắt buộc phải có Ozon, đồng thời phải sử dụng hóa chất KBr hoặc NaBr Lượng Br cho q trình xác định bằng phương trình hóa học trên Do trong giải pháp xử lý những thành phần ơ nhiễm hữu cơ khó phân hủy sinh học đã áp dụng các q trình oxi hóa nâng cao trong đó có sử dụng Ozon, nên giải pháp này thực hiện rất thuận lợi Hơn nữa, vì là phương pháp dựa trên các phản ứng hóa học... Sài Gòn [14] hoặc cơng trình xử lý nước thải sản xuất bột giấy của nhà máy Giấy Tân Mai [15]), Trung tâm cơng nghệ hóa học và mơi trường (ECHEMTECH) đăng ký đề tài với nội dung : Nghiên cứu áp dụng các q trình oxi hóa nâng cao (AOPs) để xử lý nước rỉ rác (đã qua xử lý sinh học) ở nhà máy xử lý Gò Cát trên hệ pilot 15-20 m3/ngày chính là nhằm tìm kiếm một giải pháp cơng nghệ mới áp ứng u cầu cấp bách... Minh, việc xử lý nước rỉ rác vẫn còn bế tắc, cơng nghệ xử lý dựa vào phân hủy sinh học là chính, có kết hợp thêm khâu xử lý keo tụ hóa lý hoặc khâu lọc tinh và lọc nano Nói chung chưa có một cơng nghệ nào được đánh giá là thích hợp, ổn định và hiệu quả [1,2,3,4] 1.4- Những giải pháp xử lý nước rỉ rác ở nước ngồi Ở nước ngồi, vấn đề xử lý nước rỉ rác đã được đề cập nghiên cứu trong rất nhiều cơng trình cơng... học tác dụng với nhau Q trình oxi hóa nâng cao bằng tác nhân oxi hóa là gốc tự do *OH được sử dụng cho xử lý nước rỉ rác Gò Cát là q trình PEROXON (Peroxone Process) Trường hợp này cho các tác nhân Ozon O3 và Hydrogen Peroxit H2O2 tác dụng trực tiếp với nhau trong thiết bị, sẽ tạo ra gốc *OH ngay tức khắc theo phản ứng sau: H2O2 + 2O3 2*OH + 3O2 21 (II.1) 2.2.2- Giải pháp xử lý các chất humic (axit... vực mơi trường để xây dựng cơng nghệ xử lý nước rỉ rác cho các cơng trường chơn lấp rác ở TP Hồ Chí Minh là cấp bách và cần thiết Dựa trên kinh nghiệm đã áp dụng các q trình oxi hóa nâng cao vào xử lý nước thải chứa nhiều chất ơ nhiễm hữu cơ độc hại, khó phân hủy do Trung tâm cơng nghệ hóa học và mơi trường (ECHEMTECH) thực hiện (như cơng trình xây dựng hệ thống xử lý nước thải sản xuất thuốc bảo vệ... mg/L nghĩa là phải xử lý loại bỏ 98-99% trong nước rác Nếu có giải pháp cơng nghệ xử lý được hai vấn đề nêu trên, việc xử lý những phần ơ nhiễm còn lại trong nước rỉ rác (Ptổng số, SS, màu, mùi, mầm bệnh) cũng sẽ được giải quyết theo, và do đó, việc xử lý tồn bộ nước rỉ rác Gò Cát xem như đã giải quyết được một cách cơ bản và triệt để 2.2- Nghiên cứu giải pháp xử lý hàm lượng COD cao, đặc biệt hàm lượng