On thi vao 10 Chu de Chung minh tu giac noi tiep.doc

25 531 4
On thi vao 10 Chu de Chung minh tu giac noi tiep.doc

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Chủ đề Đ10.CHNG MINH T GIC NI TIP A.KIN THC CƠ BẢN Phương pháp chứng minh -Chứng minh bốn đỉnh tứ giác cách điểm -Chứng minh tứ giác có hai góc đối diện bù -Chứng minh hai đỉnh nhìn đoạn thẳng tạo hai điểm cịn lại hai góc -Chứng minh tổng góc ngồi đỉnh với góc đối diện bù -Nếu MA.MB = MC.MD NA.ND = NC.NB tứ giác ABCD nột tiếp (Trong M = AB ∩ CD; N = AD ∩ BC ) -Nếu PA.PC = PB.PD tứ giác ABCD nội tiếp (Trong P = AC ∩ BD ) -Chứng minh tứ giác hình thang cân; hình chữ nhật; hình vng; … Nếu cần chứng minh cho nhiều điểm thuộc đường trịn ta chứng minh điểm lúc Song cần ý tính chất “Qua điểm khơng thẳng hàng xác định nht mt ng trũn Dạng V Bài tập Hình tổng hợp Câu IV(3,5đ): HN Cho đờng tròn (O;R) điểm A nằm bên đờng tròn Kẻ tiếp tuyến AB, AC với đờng tròn (B, C tiếp điểm) 1/ Chứng minh ABOC tứ giác nội tiếp 2/ Gọi E giao điểm BC OA Chứng minh BE vuông góc với OA OE.OA = R2 3/ Trên cung nhỏ BC đờng tròn (O;R) lấy điểm K (K khác B C) Tiếp tuyến K đờng tròn (O;R) cắt AB, AC theo thø tù t¹i P, Q Chøng minh tam giác APQ có chu vi không đổi K chuyển động cung nhỏ BC 4/ Đờng thẳng qua O vuông góc với OA cắt đờng thẳng AB, AC theo thứ tự điểm M, N Chứng minh PM + QN MN Câu V: (4,0đ) C tho Cho tam giác ABC vuông A, có AB = 14, BC = 50 Đờng phân giác góc ABC đờng trung trực cạnh AC cắt E Chứng minh tứ giác ABCE nội tiếp đợc đờng tròn Xác định tâm O đờng tròn Tính BE Vẽ đờng kính EF đờng tròn tâm (O) AE BF cắt P Chứng minh đờng thẳng BE, PO, AF đồng quy Tính diện tích phần hình tròn tâm (O) nằm ngũ giác ABFCE Bài 4: (2,75đ) hue Cho đờng tròn (O) đờng kính AB = 2R Vẽ tiếp tuyến d với đờng tròn (O) B Gọi C D hai điểm tuỳ ý tiếp tuyến d cho B nằm C D Các tia AC AD cắt (O) lần lợt E F (E, F khác A) Chứng minh: CB2 = CA.CE Chøng minh: tø gi¸c CEFD nội tiếp đờng tròn tâm (O) Chứng minh: tích AC.AE AD.AF số không đổi Tiếp tuyến (O) kẻ từ A tiếp xúc với (O ) T Khi C D di động d điểm T chạy đờng thẳng cố định nào? Câu V: HCM Cho tam giác ABC (AB CD Câu IV: (3,0đ) Nghệ An Cho đờng tròn (O;R), đờng kính AB cố định CD đờng kính thay đổi không trùng với AB Tiếp tuyến đờng tròn (O;R) B cắt đờng thẳng AC AD lần lợt E vµ F Chøng minh r»ng BE.BF = 4R2 Chứng minh tứ giác CEFD nội tiếp đờng tròn Gọi I tâm đờng tròn ngoại tiếp tứ giác CEFD Chứng minh tâm I nằm đờng thẳng cố định Bài (3,0 điểm) QUNG NINH Cho điểm M nằm đờng tròn (O;R) Từ M kẻ hai tiếp tuyến MA , MB đến đờng tròn (O;R) ( A; B hai tiếp điểm) a) Chứng minh MAOB tứ giác nội tiếp b) Tính diện tích tam giác AMB cho OM = 5cm R = cm c) KỴ tia Mx n»m góc AMO cắt đờng tròn (O;R) hai điểm C D ( C nằm M D ) Gọi E giao điểm AB OM Chứng minh EA tia phân giác góc CED Bài : (3 điểm) HẢI PHÒNG Cho tam giác ABC vng A Một đường trịn (O) qua B C cắt cạnh AB , AC tam giác ABC D E ( BC khơng đường kính đường trịn tâm O).Đường cao AH tam giác ABC cắt DE K · · 1.Chứng minh ADE = ACB 2.Chứng minh K trung điểm DE 3.Trường hợp K trung điểm AH Chứng minh đường thẳng DE tiếp tuyến chung ngồi đường trịn đường kính BH đường trịn đường kính CH Bài 4: (3,5 điểm) KIÊN GIANG Cho đường trịn (O) có đường kính AB = 2R Trên tia đối AB lấy điểm C cho BC = R, đường tròn lấy điểm D cho BD = R, đường thẳng vng góc với BC C cắt tia AD M a) Chứng minh tứ giác BCMD tứ giác nội tiếp b) Chứng minh tam giác ABM tam giác cân c) Tính tích AM.AD theo R d) Cung BD (O) chia tam giác ABM thành hai hần Tính diện tích phần tam giác ABM nằm (O) Bài : (3,5 điểm) AN GIANG Cho đường tròn (O ; R) đường kính AB dây CD vng góc với (CA < CB) Hai tia BC DA cắt E Từ E kẻ EH vng góc với AB H ; EH cắt CA F Chứng minh : 1/ Tứ giác CDFE nội tiếp đường tròn 2/ Ba điểm B , D , F thẳng hàng 3/ HC tiếp tuyến đường tròn (O) Bài (3,5 điểm) THÁI BÌNH Cho đường trịn (O; R) A điểm nằm bên đường tròn Kẻ tiếp tuyến AB, AC với đường tròn (B, C tiếp điểm) 1)Chứng minh ABOC tứ giác nội tiếp 2)Gọi E giao điểm BC OA Chứng minh BE vng góc với OA OE.OA=R2 3)Trên cung nhỏ BC đường trịn (O; R) lấy điểm K (K khác B C) Tiếp tuyến K đường tròn (O; R) cắt AB, AC theo thứ tự điểm P Q Chứng minh tam giác APQ có chu vi không đổi K chuyển động cung nhỏ BC 4)Đường thẳng qua O, vng góc với OA cắt đường thẳng AB, AC theo thứ tự điểm M, N Chứng minh PM + QN ≥ MN Bài (3,5 điểm) THÁI BÌNH Cho hình vng ABCD, điểm M thuộc cạnh BC (M khác B, C) Qua B kẻ đường thẳng vng góc với DM, đường thẳng cắt đường thẳng DM DC theo thứ tự H K Chứng minh: Các tứ giác ABHD, BHCD nội tiếp đường tròn; · Tính CHK ; Chứng minh KH.KB = KC.KD; 1 = + Đường thẳng AM cắt đường thẳng DC N Chứng minh 2 AD AM AN Câu 8:( 3,0 điểm) VĨNH PHÚC Trên đoạn thẳng AB cho điểm C nằm A B Trên nửa mặt phẳng có bờ AB kẻ hai tia Ax By vng góc với AB Trên tia Ax lấy điểm I, tia vuông góc với CI C cắt tia By K Đường trịn đường kính IC cắt IK P ( P khác I) a, Chứng minh tứ giác CPKB nội tiếp đường tròn, rõ đường tròn · · b, Chứng minh CIP = PBK c, Giả sử A, B, I cố định Hãy xác định vị trí điểm C cho diện tích tứ giác ABKI lớn Bài (3,5 điểm) THANH HÓA Cho nửa đương trịn tâm O đường kính AB = 2R Trên tia đối tia BA lấy điểm G (khác với điểm B) Từ điểm G; A; B kẻ tiếp tuyến với đường tròn (O) Tiếp tuyến kẻ từ G cắt hai tiếp tuyến kẻ từ A avf B C D Gọi N tiếp điểm tiếp tuyến kẻ từ G tới nửa đường tròn (O) Chứng minh tứ giác BDNO nội tiếp Chứng minh tam giác BGD đồng dạng với tam giác AGC, từ suy CN DN = CG DG · Đặt BOD = α Tính độ dài đoạn thẳng AC BD theo R α Chứng tỏ tích AC.BD phụ thuộc R, không phụ thuộc α Bài ( 3,5 điểm ) ĐÀ NẲNG Cho đường tròn (O), đường kính AB cố định, điểm I nằm A O cho AI = AO Kẻ dây MN vng góc với AB I Gọi C điểm tùy ý thuộc cung lớn MN cho C không trùng với M, N B Nối AC cắt MN E a) Chứng minh tứ giác IECB nội tiếp đường tròn b) Chứng minh ∆AME ∆ACM AM2 = AE.AC c) Chứng minh AE.AC - AI.IB = AI2 d) Hãy xác định vị trí điểm C cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME nhỏ Câu : PHÚ YÊN ( 2,5 điểm ) Cho hình bình hành ABCD có đỉnh D nằm đường trịn đường kính AB = 2R Hạ BN DM vng góc với đường chéo AC a) Chứng minh tứ giác : CBMD nội tiếp b) Chứng minh : DB.DC = DN.AC c) Xác định vị trí điểm D để diện tích hình bình hành ABCD có diện tích lớn tính din tớch trng hp ny Bài 4: (3,0 điểm) hng yên Cho A điểm đờng tròn tâm O, bán kính R Gọi B điểm đối xứng với O qua A Kẻ đờng thẳng d qua B cắt đờng tròn (O) C D (d không qua O, BC < BD) Các tiếp tuyến đờng tròn (O) C D cắt E Gọi M giao điểm OE CD Kẻ EH vuông góc với OB (H thuộc OB) Chøng minh r»ng: a) Bèn ®iĨm B, H,M, E thuộc đờng tròn b) OM.OE = R2 c) H trung điểm OA Bi (3,5 im) QUẢNG TRỊ Cho tam giác ABC có góc A 60 0, góc B, C nhọn vẽ đường cao BD CE tam giác ABC Gọi H giao điểm BD CE a/ Chứng minh tứ giác ADHE nội tiếp b/ Chứng minh tam giác AED đồng dạng với tam giác ACB c/ Tính tỉ số DE BC d/ Gọi O tâm đường trịn ngoại tiếp tam giác ABC Chứng minh OA vng góc với DE Câu (3,5 điểm) QUẢNG TRỊ Cho điểm A nằm ngồi đường trịn tâm O bán kính R Từ A kẻ đường thẳng (d) không qua tâm O, cắt đường tròn (O) B C ( B nằm A C) Các tiếp tuyến với đường tròn (O) B C cắt D Từ D kẻ DH vng góc với AO (H nằm AO), DH cắt cung nhỏ BC M Gọi I giao điểm DO BC Chứng minh OHDC tứ giác nội tiếp Chứng minh OH.OA = OI.OD Chứng minh AM tiếp tuyến đường tròn (O) Cho OA = 2R Tính theo R diện tích phần tam giác OAM nằm ngồi đường trịn (O) C©u IV : (3,0 điểm) Hải d ơng Cho đờng tròn (O), dây AB không qua tâm Trên cung nhỏ AB lấy điểm M (M không trùng với A, B) Kẻ dây MN vuông góc với AB H Kẻ MK vu«ng gãc víi AN ( K ∈ AN ) 1) Chøng minh: Bèn ®iĨm A, M, H, K thc đờng tròn 2) Chứng minh: MN phân giác cđa gãc BMK 3) Khi M di chun trªn cung nhỏ AB Gọi E giao điểm HK BN Xác định vị trí điểm M để (MK.AN + ME.NB) có giá trị lớn Cõu 4:(3 im) Hải Dơng thức Cho tam giỏc MNP cõn ti M có cậnh đáy nhỏ cạnh bên, nội tiếp đường tròn ( O;R) Tiếp tuyến N P đường tròn cắt tia MP tia MN E D a) Chứng minh: NE2 = EP.EM b) Chứng minh tứ giác DEPN kà tứ giác nội tiếp c) Qua P kẻ đường thẳng vng góc với MN cắt đường tròn (O) K ( K không trùng với P) Chứng minh rằng: MN2 + NK2 = 4R2 Bài 4: Hà Giang (3,0 điểm ) Cho tam gi¸c ABC cã ba gãc nhän néi tiÕp đờng tròn tâm O, ba đờng cao AD, BE, CF tam giác ABC cắt H Kéo dài AO cắt đờng tròn M, AD cắt đờng tròn O ë K ( K kh¸c A, M kh¸c A) Chøng minh r»ng : a, MK song song BC b, DH = DK c, HM ®i qua trung ®iĨm I cđa BC Bài 4: (3 điểm) BÌNH THUẬN Cho tam giác ABC vng A có cạnh AB = 4,5 cm; AC = cm 1/ Tính độ dài đường cao AH diện tích hình trịn ngoại tiếp tam giác ABC 2/ Trên cạnh AC lấy điểm M vẽ đường trịn (O) đường kính MC, BM cắt (O) D; DA cắt (O) S; (O) cắt BC N Chứng minh: a/ Các tứ giác ABCD, ABNM nội tiếp b/ CA phân giác góc SCB Câu 4: (3đ) Long An Cho đường tròn (O) đường kính AB, C điểm nằm O A Đường thẳng qua C vng góc với AB cắt (O) P,Q.Tiếp tuyến D cung nhỏ BP, cắt PQ E; AD cắt PQ F Chứng minh: a/ Tứ giác BCFD tứ giác nội tiếp b/ED=EF c/ED2=EP.EQ Câu 6: (3,0 điểm) Bắc Ninh Cho nửa đờng tròn tâm O đờng kính AB Từ điểm M tiếp tuyến Ax nửa đờng tròn vẽ tuyếp tuyến thứ hai MC(C tiếp điểm) Hạ CH vuông góc với AB, đờng thẳng MB cắt đờng tròn (O) Q cắt CH N Gọi giao ®iĨm cđa MO vµ AC lµ I Chøng minh r»ng: a/ Tø gi¸c AMQI néi tiÕp b/ ·AQI = ·ACO c/ CN = NH Câu V:(3,0 điểm) Bắc giang 1/ Cho tam giác ABC nhọn nội tiếp đờng tròn tâm O Các đờng cao BH CK tam giác ABC cắt điểm I Kẻ đờng kính AD đờng tròn tâm O, đoạn thẳng DI BC cắt M.Chứng minh a/Tứ giác AHIK nội tiếp đợc đờng tròn b/OM BC 2/Cho tam giác ABC vuông A,các đờng phân giác goác B góc C cắt cạnh AC AB lần lợt D E Gọi H giao điểm BD CE, biết AD=2cm, DC= cm tính độ dài đoạn thẳng HB Câu V:(3,0 điểm) Bắc giang Cho đờng tròn tâm O đờng kính AB cố định H thuộc đoạn thẳng OA( H khác A;O trung điểm OA) Kẻ dây MN vuông góc với AB H MN cắt AK E Chøng minh tø gi¸c HEKB néi tiÕp Chøng minh tam giác AME đồng dạng với tam giác AKM Cho điểm H cố định, xác định vị trí K để khoảng cách từ N đến tâm đờng tròn ngoại tiếp tam giác MKE nhỏ Bi 4: (3,5 điểm) ĐĂK LĂK Cho tam giác vuông cân ADB ( DA = DB) nội tiếp đường tròn tâm O Dựng hình bình hành ABCD ; Gọi H chân đường vng góc kẻ từ D đến AC ; K giao điểm AC với đường tròn (O) Chứng minh rằng: 1/ HBCD tứ giác nội tiếp · · 2/ DOK = 2.BDH 3/ CK CA = 2.BD Bài (3,5điểm) BìNH DƯƠNG Cho đờng tròn tâm O đờng kính AB có bán kính R, tiếp tuyến Ax Trên tiếp tuyến Ax lấy điểm F cho BF cắt đờng tròn C, tia phân giác góc ABF cắt Ax E cắt đờng tròn D a) Chứng minh OD // BC b) Chøng minh hÖ thøc : BD.BE = BC.BF c) Chøng minh tø gi¸c CDEF néi tiÕp d) Xác định số đo góc ABC để tứ giác AOCD hình thoi Tính diện tích hình thoi AOCD theo R Bài (3,0 điểm): quảng bình Cho tam giác PQR vuông cân P Trong góc PQR kẻ tia Qx cắt PR D (D không trùng với P D không trùng với R) Qua R kẻ đờng thẳng vuông góc với Qx E Gọi F giao điểm PQ RE d) e) f) g) Chøng minh tø gi¸c QPER nội tiếp đợc đờng tròn Chứng minh tia EP tia phân giác góc DEF Tính số đo góc QFD Gọi M trung điểm đoạn thẳng QE Chứng minh điểm M nằm cung tròn cố định tia Qx thay đổi vị trí nằm hai tia QP QR Bi 4: (4,0 điểm) ÐẠI HỌC TÂY NGUYÊN Cho tam giác ABC ( AB < AC) có góc nhọn Vẽ đường trịn tâm O đường kính BC cắt cạnh AB, AC theo thứ tự E D 1/ Chứng minh AD.AC = AE.AB 2/ Gọi H giao điểm DB CE Gọi K giao điểm AH BC Chứng minh AH ⊥ BC 3/ Từ A kẻ tiếp tuyến AM , AN với đường tròn (O) (M,N tiếp điểm).Chứng · · minh ANM = AKN 4/ Chứng minh ba điểm M, H, N thẳng hàng Bµi Cho tam giác ABC có ba góc nhọn nội tiếp đờng tròn (O) Các đờng cao AD, BE, CF cắt H cắt đờng tròn (O) lần lợt M,N,P Chøng minh r»ng: Tø gi¸c CEHD, néi tiÕp Bốn điểm B,C,E,F nằm đờng trßn AE.AC = AH.AD; AD.BC = BE.AC H M đối xứng qua BC Xác định tâm đờng tròn nội tiếp tam giác DEF Lời giải: XÐt tø gi¸c CEHD ta cã: ∠ CEH = 900 ( Vì BE đờng cao) CDH = 900 ( Vì AD đờng cao) => CEH + ∠ CDH = 1800 Mµ ∠ CEH vµ ∠ CDH hai góc đối tứ giác CEHD , Do CEHD tứ giác nội tiếp Theo giả thiết: BE đờng cao => BE AC => BEC = 900 CF đờng cao => CF AB => ∠BFC = 900 Nh vËy E vµ F cïng nhìn BC dới góc 900 => E F nằm đờng tròn đờng kính BC Vậy bốn điểm B,C,E,F nằm đờng tròn Xét hai tam giác AEH ADC ta có: AEH = ADC = 900 ;  góc chung AE AH = => ∆ AEH ∼ ∆ADC => => AE.AC = AH.AD AD AC * XÐt hai tam gi¸c BEC vµ ADC ta cã: ∠ BEC = ∠ ADC = 900 ; ∠C lµ gãc chung BE BC = => ∆ BEC ∼ ∆ADC => => AD.BC = BE.AC AD AC Ta cã ∠C1 = ∠A1 ( v× cïng phụ với góc ABC) C2 = A1 ( hai gãc néi tiÕp cïng ch¾n cung BM) => ∠C1 = C2 => CB tia phân giác gãc HCM; l¹i cã CB ⊥ HM => ∆ CHM cân C => CB đơng trung trực HM H M đối xứng qua BC Theo chứng minh bốn điểm B,C,E,F nằm đờng tròn => C1 = E1 ( hai góc nội tiếp chắn cung BF) Cũng theo chứng minh CEHD tứ giác nội tiếp C1 = E2 ( hai góc néi tiÕp cïng ch¾n cung HD) ∠E1 = ∠E2 => EB tia phân giác góc FED Chứng minh tơng tự ta có FC tia phân giác góc DFE mà BE CF cắt H H tâm đờng tròn nội tiếp tam giác DEF Bài Cho tam giác cân ABC (AB = AC), đờng cao AD, BE, cắt H Gọi O tâm đờng tròn ngoại tiếp tam gi¸c AHE Chøng minh tø gi¸c CEHD néi tiÕp Bèn ®iĨm A, E, D, B cïng nằm đờng tròn Chứng minh ED = BC Chøng minh DE lµ tiÕp tuyÕn đờng tròn (O) Tính độ dài DE biết DH = Cm, AH = Cm Lêi gi¶i: XÐt tø gi¸c CEHD ta cã: ∠ CEH = 900 ( Vì BE đờng cao) CDH = 900 ( Vì AD đờng cao) => CEH + ∠ CDH = 1800 Mµ ∠ CEH vµ ∠ CDH hai góc đối tứ giác CEHD , Do CEHD tứ giác nội tiếp Theo giả thiết: BE đờng cao => BE AC => BEA = 900 AD đờng cao => AD BC => ∠BDA = 900 Nh vËy E vµ D nhìn AB dới góc 900 => E D nằm đờng tròn đờng kính AB Vậy bốn điểm A, E, D, B nằm đờng tròn Theo giả thiết tam giác ABC cân A có AD đờng cao nên ®êng trung tun => D lµ trung ®iĨm cđa BC Theo trªn ta cã ∠BEC = 900 VËy tam giác BEC vuông E có ED trung tuyến => DE = BC Vì O tâm đờng tròn ngoại tiếp tam giác AHE nên O trung ®iĨm cđa AH => OA = OE => tam giác AOE cân O => E1 = A1 (1) Theo DE = BC => tam giác DBE cân D => E3 = B1 (2) Mà ∠B1 = ∠A1 ( v× cïng phơ víi gãc ACB) => ∠E1 = ∠E3 => ∠E1 + ∠E2 = ∠E2 + ∠E3 Mµ ∠E1 + ∠E2 = ∠BEA = 900 => ∠E2 + ∠E3 = 900 = ∠OED => DE OE E Vậy DE tiếp tuyến đờng tròn (O) E Theo giả thiết AH = Cm => OH = OE = cm.; DH = Cm => OD = cm ¸p dụng định lí Pitago cho tam giác OED vuông E ta cã ED2 = OD2 – OE2  ED2 = 52 – 32  ED = 4cm Bµi Cho nửa đờng tròn đờng kính AB = 2R Từ A B kẻ hai tiếp tuyến Ax, By Qua điểm M thuộc nửa đờng tròn kẻ tiếp tuyến thứ ba cắt tiếp tuyến Ax , By lần lợt C D Các đờng thẳng AD BC cắt N Chứng minh AC + BD = CD Chøng minh OC // BM Chøng minh AB lµ tiÕp tuyÕn Chøng minh ∠COD = 900 đờng tròn đờng kính CD AB Chøng minh AC BD = Chøng minh MN AB 10 Xác định vị trí M để chu vi tứ giác ACDB đạt giá trị nhá nhÊt Lêi gi¶i: Theo tÝnh chÊt hai tiÕp tuyÕn c¾t ta cã: CA = CM; DB = DM => AC + BD = CM + DM Mµ CM + DM = CD => AC + BD = CD Theo tÝnh chÊt hai tiÕp tuyÕn c¾t ta cã: OC tia phân giác góc AOM; OD tia phân giác góc BOM, mà AOM BOM lµ hai gãc kỊ bï => ∠COD = 900 Theo COD = 900 nên tam giác COD vuông O cã OM ⊥ CD ( OM lµ tiÕp tuyÕn ) áp dụng hệ thức cạnh đờng cao tam giác vuông ta có OM2 = CM DM, AB Mµ OM = R; CA = CM; DB = DM => AC BD =R2 => AC BD = Theo trªn ∠COD = 900 nªn OC ⊥ OD (1) Theo tÝnh chÊt hai tiÕp tuyÕn c¾t ta cã: DB = DM; l¹i cã OM = OB =R => OD lµ trung trùc cđa BM => BM ⊥ OD (2) Tõ (1) Vµ (2) => OC // BM ( Vì vuông góc với OD) Gọi I trung điểm CD ta có I tâm đờng tròn ngoại tiếp tam giác COD đờng kính CD có IO bán kính Theo tính chất tiếp tuyến ta cã AC ⊥ AB; BD ⊥ AB => AC // BD => tứ giác ACDB hình thang Lại có I trung điểm CD; O trung điểm AB => IO đờng trung bình hình thang ACDB => IO // AC , mà AC ⊥ AB => IO ⊥ AB t¹i O => AB tiếp tuyến O đờng tròn đờng kính CD CN AC CN CM = = Theo trªn AC // BD => , mµ CA = CM; DB = DM nªn suy BN BD BN DM => MN // BD mµ BD ⊥ AB => MN ⊥ AB ( HD): Ta cã chu vi tø gi¸c ACDB = AB + AC + CD + BD mµ AC + BD = CD nªn suy chu vi tứ giác ACDB = AB + 2CD mà AB không đổi nên chu vi tứ giác ACDB nhỏ CD nhá nhÊt , mµ CD nhá nhÊt CD khoảng cách giữ Ax By tức CD vuông góc với Ax By Khi CD // AB => M phải trung điểm cung AB Bài Cho tam giác cân ABC (AB = AC), I tâm đờng tròn nội tiếp, K tâm đờng tròn bàng tiếp góc A , O trung ®iĨm cđa IK Chøng minh B, C, I, K nằm đờng tròn Chứng minh AC tiếp tuyến đờng tròn (O) Tính bán kính đờng tròn (O) Biết AB = AC = 20 Cm, BC = 24 Cm Lời giải: (HD) Vì I tâm đờng tròn nội tiếp, K tâm đờng tròn bàng tiếp góc A nên BI BK hai tia phân giác hai góc kề bù ®Ønh B Do ®ã BI ⊥ BK hay∠IBK = 900 T¬ng tù ta cịng cã ∠ICK = 900 nh B C nằm đờng tròn đờng kÝnh IK ®ã B, C, I, K cïng n»m đờng tròn Ta có C1 = C2 (1) ( CI phân giác góc ACH C2 + ∠I1 = 900 (2) ( v× ∠IHC = 900 ) I1 = ICO (3) ( tam giác OIC cân O) 11 Từ (1), (2) , (3) => ∠C1 + ∠ICO = 900 hay AC ⊥ OC Vậy AC tiếp tuyến đờng tròn (O) Từ gi¶ thiÕt AB = AC = 20 Cm, BC = 24 Cm => CH = 12 cm AH2 = AC2 – HC2 => AH = 20 − 12 = 16 ( cm) CH 12 CH = AH.OH => OH = = (cm) = AH 16 OC = OH + HC = + 12 = 225 = 15 (cm) Bµi Cho đờng tròn (O; R), từ điểm A (O) kẻ tiếp tuyến d với (O) Trên đờng thẳng d lấy điểm M ( M khác A) kẻ cát tuyến MNP gọi K trung điểm NP, kẻ tiếp tuyến MB (B tiếp ®iĨm) KỴ AC ⊥ MB, BD ⊥ MA, gäi H giao điểm AC BD, I giao điểm OM AB Chứng minh tứ giác AMBO nội tiếp Chứng minh năm điểm O, K, A, M, B nằm đờng tròn Chøng minh OI.OM = R2; OI IM = IA2 Chứng minh OAHB hình thoi Chứng minh ba điểm O, H, M thẳng hàng Tìm quỹ tích điểm H M di chuyển đờng thẳng d Lời giải: (HS tự làm) Vì K trung điểm NP nên OK NP ( quan hệ đờng kính Và dây cung) => OKM = 900 Theo tÝnh chÊt tiÕp tuyÕn ta cã ∠OAM = 900; ∠OBM = 900 nh vËy K, A, B cïng nh×n OM dới góc 900 nên nằm đờng tròn đờng kính OM Vậy năm điểm O, K, A, M, B nằm đờng tròn Ta có MA = MB ( t/c hai tiÕp tuyÕn c¾t nhau); OA = OB = R => OM lµ trung trùc cđa AB => OM ⊥ AB t¹i I Theo tÝnh chÊt tiÕp tuyÕn ta cã ∠OAM = 900 nªn tam giác OAM vuông A có AI đờng cao áp dụng hệ thức cạnh đờng cao => OI.OM = OA2 hay OI.OM = R2; vµ OI IM = IA2 Ta cã OB ⊥ MB (tÝnh chÊt tiÕp tuyÕn) ; AC ⊥ MB (gt) => OB // AC hay OB // AH OA ⊥ MA (tÝnh chÊt tiÕp tuyÕn) ; BD ⊥ MA (gt) => OA // BD hay OA // BH => Tø gi¸c OAHB hình bình hành; lại có OA = OB (=R) => OAHB hình thoi Theo OAHB hình thoi => OH AB; theo OM AB => O, H, M thẳng hàng( Vì qua O có đờng thẳng vuông góc với AB) (HD) Theo OAHB hình thoi => AH = AO = R Vậy M di động d H di động nhng cách A cố định khoảng R Do quỹ tích điểm H M di chuyển đờng thẳng d nửa đờng tròn tâm A bán kính AH = R Bài Cho tam giác ABC vuông A, đờng cao AH Vẽ đờng tròn tâm A bán kính AH Gọi HD đờng kính đờng tròn (A; AH) Tiếp tuyến đờng tròn D cắt CA E Chứng minh tam giác BEC cân Gọi I hình chiếu A BE, Chøng minh r»ng AI = AH Chøng minh r»ng BE tiếp tuyến đờng tròn (A; AH) Chøng minh BE = BH + DE Lêi gi¶i: (HD) ∆ AHC = ∆ADE (g.c.g) => ED = HC (1) AE = AC (2) Vì AB CE (gt), ®ã AB võa lµ ®êng cao võa lµ ®êng trung tuyến BEC => BEC tam giác cân => B1 = B2 12 Hai tam giác vuông ABI ABH có cạnh huyền AB chung, B1 = B2 => ∆ AHB = ∆AIB => AI = AH AI = AH BE AI I => BE tiếp tuyến (A; AH) I DE = IE vµ BI = BH => BE = BI+IE = BH + ED Bài Cho đờng tròn (O; R) đờng kính AB Kẻ tiếp tuyến Ax lấy tiếp tuyến điểm P cho AP > R, tõ P kỴ tiÕp tun tiÕp xóc với (O) M Chứng minh tứ giác APMO nội tiếp đợc đờng tròn Chứng minh BM // OP Đờng thẳng vuông góc với AB O cắt tia BM N Chứng minh tứ giác OBNP hình bình hành Biết AN cắt OP K, PM cắt ON I; PN OM kéo dài cắt J Chứng minh I, J, K thẳng hàng Lời giải: (HS tự làm) Ta cã ∠ ABM néi tiÕp ch¾n cung AM; ∠ AOM góc tâm AOM chắn cung AM => ABM = (1) OP tia phân giác AOM ∠AOM ( t/c hai tiÕp tuyÕn c¾t ) => ∠ AOP = (2) Tõ (1) vµ (2) => ∠ ABM = ∠ AOP (3) Mµ ∠ ABM AOP hai góc đồng vị nên suy BM // OP (4) XÐt hai tam gi¸c AOP OBN ta có : PAO=900 (vì PA tiếp tuyÕn ); ∠NOB = 900 (gt NO⊥AB) => ∠PAO = ∠NOB = 900; OA = OB = R; ∠AOP = ∠OBN (theo (3)) => ∆AOP = ∆OBN => OP = BN (5) Từ (4) (5) => OBNP hình bình hành ( có hai cạnh đối song song nhau) Tứ giác OBNP hình bình hành => PN // OB hay PJ // AB, mµ ON ⊥ AB => ON ⊥ PJ Ta còng cã PM ⊥ OJ ( PM lµ tiÕp tuyÕn ), mµ ON PM cắt I nên I trực tâm tam giác POJ (6) Dễ thấy tứ giác AONP hình chữ nhật có PAO = AON = ONP = 900 => K trung điểm PO ( t/c đờng chéo hình chữ nhật) (6) AONP hình chữ nhật => APO = NOP ( so le) (7) Theo t/c hai tiÕp tuyÕn c¾t Ta có PO tia phân giác APM => APO = MPO (8) Từ (7) (8) => IPO cân I có IK trung tuyến đông thời đờng cao => IK ⊥ PO (9) Tõ (6) vµ (9) => I, J, K thẳng hàng Bài Cho nửa đờng tròn tâm O đờng kính AB điểm M nửa đờng tròn ( M khác A,B) Trên nửa mặt phẳng bờ AB chứa nửa đờng tròn kẻ tiếp tuyến Ax Tia BM cắt Ax I; tia phân giác góc IAM cắt nửa đờng tròn E; cắt tia BM F tia BE cắt Ax H, cắt AM K 1) Chứng minh rằng: EFMK tứ giác nội tiếp 2) Chứng minh r»ng: AI2 = IM IB 3) Chøng minh BAF tam giác cân 4) Chứng minh : Tứ giác AKFH hình thoi 5) Xác định vị trí M để tứ giác AKFI nội tiếp đợc đờng tròn Lời giải: Ta có : AMB = 900 ( nội tiếp chắn nửa đờng tròn ) => KMF = 900 (vì hai góc kề bù) AEB = 900 ( nội tiếp chắn nửa đờng tròn ) => KEF = 900 (vì hai góc kề bù) => ∠KMF + ∠KEF = 1800 Mµ ∠KMF vµ ∠KEF hai góc đối tứ giác EFMK EFMK tứ giác nội tiếp 13 Ta có IAB = 900 ( AI tiếp tuyến ) => AIB vuông A có AM IB ( theo trên) áp dụng hệ thức cạnh đờng cao => AI2 = IM IB Theo gi¶ thiÕt AE tia phân giác góc IAM => IAE = MAE => AE = ME (lÝ ……) => ∠ABE =∠MBE ( hai gãc néi tiÕp ch¾n hai cung b»ng nhau) => BE tia phân giác góc ABF (1) Theo trªn ta cã ∠AEB = 900 => BE ⊥ AF hay BE đờng cao tam giác ABF (2) Từ (1) (2) => BAF tam giác cân B BAF tam giác cân B có BE đờng cao nên đồng thời đơng trung tuyến => E trung điểm AF (3) Tõ BE ⊥ AF => AF ⊥ HK (4), theo AE tia phân giác góc IAM hay AE tia phân giác HAK (5) Từ (4) (5) => HAK tam giác cân A có AE đờng cao nên đồng thời đơng trung tuyến => E trung điểm HK (6) Từ (3) , (4) (6) => AKFH hình thoi ( có hai đờng chéo vuông góc với trung điểm đờng) (HD) Theo AKFH h×nh thoi => HA // FH hay IA // FK => tứ giác AKFI hình thang Để tứ giác AKFI nội tiếp đợc đờng tròn AKFI phải hình thang cân AKFI hình thang cân M trung điểm cung AB Thật vậy: M trung điểm cung AB => ABM = MAI = 450 (t/c gãc néi tiÕp ) (7) Tam gi¸c ABI vuông A có ABI = 450 => AIB = 450 (8) Tõ (7) vµ (8) => ∠IAK = AIF = 450 => AKFI hình thang cân (hình thang có hai góc đáy nhau) Vậy M trung điểm cung AB tứ giác AKFI nội tiếp đợc đờng tròn Bài Cho nửa đờng tròn (O; R) đờng kính AB Kẻ tiếp tuyến Bx lấy hai điểm C D thuộc nửa đờng tròn Các tia AC AD cắt Bx lần lợt E, F (F B E) Chứng minh AC AE không đổi Chứng minh ∠ ABD = ∠ DFB Chøng minh r»ng CEFD tứ giác nội tiếp Lời giải: C thuộc nửa đờng tròn nên ACB = 900 ( nội tiếp chắn nửa đờng tròn ) => BC AE ABE = 900 ( Bx tiếp tuyến ) => tam giác ABE vuông B có BC đờng cao => AC AE = AB2 (hệ thức cạnh đờng cao ), mà AB đờng kính nên AB = 2R không đổi AC AE không đổi ADB cã ∠ADB = 900 ( néi tiÕp ch¾n nưa đờng tròn ) => ABD + BAD = 900 (vì tỉng ba gãc cđa mét tam gi¸c b»ng 1800)(1) ∆ ABF cã ∠ABF = 900 ( BF lµ tiÕp tuyÕn ) => ∠AFB + ∠BAF = 900 (v× tỉng ba gãc cđa mét tam gi¸c b»ng 1800) (2) Tõ (1) vµ (2) => ∠ABD = ∠DFB ( cïng phơ víi ∠BAD) Tø gi¸c ACDB néi tiÕp (O) => ∠ABD + ∠ACD = 1800 ∠ECD + ∠ACD = 1800 ( Vì hai góc kề bù) => ECD = ABD ( cïng bï víi ∠ACD) Theo trªn ∠ABD = ∠DFB => ∠ECD = ∠DFB Mµ ∠EFD + ∠DFB = 1800 ( Vì hai góc kề bù) nên suy ECD + EFD = 1800, mặt khác ECD EFD hai góc đối tứ giác CDFE tứ giác CEFD tứ giác nội tiếp Bài 10 Cho đờng tròn tâm O đờng kính AB điểm M nửa đờng tròn cho AM < MB Gọi M điểm đối xứng M qua AB S giao điểm hai tia BM, MA Gọi P chân đơng vuông góc từ S ®Õn AB Chøng minh ®iĨm A, M, S, P nằm đờng tròn 14 Gọi S giao điểm MA SP Chứng minh tam giác PSM cân Chứng minh PM tiếp tuyến đờng tròn Lời giải: Ta cã SP ⊥ AB (gt) => ∠SPA = 900 ; AMB = 900 ( nội tiếp chắn nửa đờng trßn ) => ∠AMS = 900 Nh vËy P M nhìn AS dới góc 900 nên nằm đờng tròn đờng kính AS Vậy bốn điểm A, M, S, P nằm đờng tròn Vì Mđối xứng M qua AB mà M nằm đờng tròn nên M nằm đờng tròn => hai cung AM AM có số ®o b»ng => ∠AMM’ = ∠AM’M ( Hai gãc nội tiếp chắn hai cung nhau) (1) Cũng Mđối xứng M qua AB nên MM AB H => MM’// SS’ ( cïng vu«ng gãc víi AB) => ∠AMM’ = ∠AS’S; ∠AM’M = ∠ASS’ (v× so le trong) (2) => Tõ (1) vµ (2) => ∠AS’S = ASS Theo bốn điểm A, M, S, P nằm đờng tròn => ASP=AMP (nội tiếp chắn AP ) => ASP = AMP => tam giác PMS cân P Tam giác SPB vuông P; tam giác SMS vuông M => B1 = S1 (cùng phụ với S) (3) Tam giác PMS cân P => S1 = M1 (4) Tam giác OBM cân O ( có OM = OB =R) => ∠B1 = ∠M3 (5) Tõ (3), (4) vµ (5) => ∠M1 = ∠M3 => ∠M1 + ∠M2 = ∠M3 + ∠M2 mµ ∠M3 + ∠M2 = ∠AMB = 900 nªn suy ∠M1 + ∠M2 = ∠PMO = 900 => PM OM M => PM tiếp tuyến đờng tròn M Bài 11 Cho tam giác ABC (AB = AC) Cạnh AB, BC, CA tiếp xúc với đờng tròn (O) điểm D, E, F BF cắt (O) I , DI cắt BC M Chứng minh : Tam giác DEF cã ba gãc nhän BD BM = DF // BC Tø gi¸c BDFC néi tiÕp CB CF Lời giải: (HD) Theo t/c hai tiếp tuyến cắt ta cã AD = AF => tam gi¸c ADF cân A => ADF = AFD < 900 => s® cung DF < 1800 => ∠DEF < 900 ( góc DEF nội tiếp chắn cung DE) Chứng minh t¬ng tù ta cã ∠DFE < 900; ∠EDF < 900 Nh vËy tam gi¸c DEF cã ba gãc nhän AD AF = Ta cã AB = AC (gt); AD = AF (theo trªn) => => DF // BC AB AC DF // BC => BDFC hình thang lại có B = C (vì tam giác ABC cân) => BDFC hình thang cân BDFC nội tiếp đợc đờng tròn Xét hai tam giác BDM CBF Ta có DBM = BCF ( hai góc đáy tam giác cân) BDM = ∠BFD (néi tiÕp cïng ch¾n cung DI); ∠ CBF = ∠BFD (v× so le) => ∠BDM = ∠CBF BD BM = => ∆BDM ∼∆CBF => CB CF Bµi 12 Cho đờng tròn (O) bán kính R có hai đờng kính AB CD vuông góc với Trên đoạn thẳng AB lấy điểm M (M khác O) CM cắt (O) N Đờng thẳng vuông góc với AB M cắt tiếp tuyến N đờng tròn ë P Chøng minh : CM CN kh«ng phơ Tứ giác OMNP nội tiếp thuộc vào vị trí Tứ giác CMPO hình bình hành điểm M 15 Khi M di chuyển đoạn thẳng AB P chạy đoạn thẳng cố định Lời giải: Ta có OMP = 900 ( PM AB ); ONP = 900 (vì NP tiếp tuyến ) Nh M N nhìn OP díi mét gãc b»ng 900 => M vµ N nằm đờng tròn đờng kính OP => Tứ gi¸c OMNP néi tiÕp Tø gi¸c OMNP néi tiÕp => ∠OPM = ∠ ONM (néi tiÕp ch¾n cung OM) Tam giác ONC cân O có ON = OC = R => ∠ONC = ∠OCN => ∠OPM = OCM Xét hai tam giác OMC MOP ta có ∠MOC = ∠OMP = 900; ∠OPM = ∠OCM => ∠CMO = POM lại có MO cạnh chung => OMC = ∆MOP => OC = MP (1) Theo gi¶ thiÕt Ta cã CD ⊥ AB; PM ⊥ AB => CO//PM (2) Từ (1) (2) => Tứ giác CMPO hình bình hành Xét hai tam giác OMC NDC ta cã ∠MOC = 900 ( gt CD ⊥ AB); DNC = 900 (nội tiếp chắn nửa đờng tròn ) => MOC =DNC = 900 lại có C gãc chung => ∆OMC ∼∆NDC CM CO = => => CM CN = CO.CD mµ CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2 CD CN không đổi hay tích CM CN không phụ thuộc vào vị trí điểm M ( HD) DÔ thÊy ∆OMC = ∆DPO (c.g.c) => ∠ODP = 900 => P chạy đờng thẳng cố định vuông góc với CD D Vì M chạy đoạn thẳng AB nên P chạy doạn thẳng A B’ song song vµ b»ng AB Bµi 13 Cho tam giác ABC vuông A (AB > AC), đờng cao AH Trên nửa mặt phẳng bờ BC chứa điển A , Vẽ nửa đờng tròn đờng kính BH cắt AB E, Nửa đờng tròn đờng kính HC cắt AC F Chứng minh AFHE hình chữ nhật BEFC tứ giác nội tiếp AE AB = AF AC Chøng minh EF lµ tiÕp tuyÕn chung hai nửa đờng tròn Lời giải: Ta cã : ∠BEH = 900 ( néi tiÕp ch¾n nửc đờng tròn ) => AEH = 900 (vì hai gãc kÒ bï) (1) ∠CFH = 900 ( néi tiếp chắn nửc đờng tròn ) => AFH = 900 (vì hai góc kề bù).(2) EAF = 900 ( Vì tam giác ABC vuông A) (3) Từ (1), (2), (3) => tứ giác AFHE hình chữ nhật ( có ba góc vuông) Tứ giác AFHE hình chữ nhật nên nội tiếp đợc đờng tròn =>F1=H1 (nội tiếp chắn cung AE) Theo giả thiết AH BC nên AH tiếp tuyến chung hai nửa đờng tròn (O1) (O2) => B1 = ∠H1 (hai gãc néi tiÕp cïng ch¾n cung HE) => ∠B1= ∠F1 => ∠EBC+∠EFC = ∠AFE + ∠EFC mµ ∠AFE + EFC = 1800 (vì hai góc kề bù) => EBC+EFC = 1800 mặt khác EBC EFC hai góc đối tứ giác BEFC BEFC tứ giác nội tiếp Xét hai tam giác AEF vµ ACB ta cã ∠A = 900 lµ gãc chung; ∠AFE = ∠ABC ( theo Chøng AE AF = minh trªn) => ∆AEF ∼∆ACB => => AE AB = AF AC AC AB 16 * HD c¸ch 2: Tam giác AHB vuông H có HE AB => AH2 = AE.AB (*) Tam giác AHC vuông H cã HF ⊥ AC => AH2 = AF.AC (**) Tõ (*) vµ (**) => AE AB = AF AC Tứ giác AFHE hình chữ nhật => IE = EH => IEH cân I => E1 = H1 O1EH cân O1 (vì có O1E vàO1H bán kính) => E2 = H2 => E1 + ∠E2 = ∠H1 + ∠H2 mµ ∠H1 + ∠H2 = ∠AHB = 900 => ∠E1 + ∠E2 = ∠O1EF = 900 => O1E ⊥EF Chøng minh t¬ng tù ta cịng cã O2F ⊥ EF VËy EF lµ tiÕp tun chung hai nửa đờng tròn Bài 14 Cho điểm C thuộc đoạn thẳng AB cho AC = 10 Cm, CB = 40 Cm VÏ vÒ mét phÝa AB nửa đờng tròn có đờng kính theo thứ tự AB, AC, CB có tâm theo thứ tự O, I, K Đờng vuông góc với AB C cắt nửa đờng tròn (O) E Gọi M N theo thứ tự giao điểm EA, EB với nửa đờng tròn (I), (K) Chøng minh EC = MN Chøng minh MN lµ tiếp tuyến chung nửa đờng tròn (I), (K) Tính MN Tính diện tích hình đợc giới hạn ba nửa đờng tròn Lời giải: Ta có: BNC= 900( nội tiếp chắn nửa đờng tròn tâm K) => ENC = 900 (vì hai góc kề bï) (1) ∠AMC = 900 ( néi tiÕp ch¾n nưc đờng tròn tâm I) => EMC = 900 (vì hai gãc kỊ bï).(2) ∠AEB = 900 (néi tiÕp ch¾n nửa đờng tròn tâm O) hay MEN = 900 (3) Từ (1), (2), (3) => tứ giác CMEN hình chữ nhật => EC = MN (tính chất đờng chéo hình chữ nhật ) Theo giả thiết EC AB C nên EC tiếp tuyến chung hai nửa đờng tròn (I) (K) => B1 = C1 (hai góc nội tiếp chắn cung CN) Tứ giác CMEN hình chữ nhật nên => C1= N3 => B1 = N3.(4) Lại có KB = KN (cùng bán kính) => tam giác KBN cân K => ∠B1 = ∠N1 (5) Tõ (4) vµ (5) => ∠N1 = ∠N3 mµ ∠N1 + ∠N2 = ∠CNB = 900 => ∠N3 + ∠N2 = ∠MNK = 900 hay MN KN N => MN tiếp tuyến (K) N Chứng minh tơng tự ta có MN tiếp tuyến (I) M, Vậy MN tiếp tuyến chung nửa đờng tròn (I), (K) Ta cã ∠AEB = 900 (néi tiÕp ch¾n nửc đờng tròn tâm O) => AEB vuông A cã EC ⊥ AB (gt) => EC = AC BC  EC2 = 10.40 = 400 => EC = 20 cm Theo trªn EC = MN => MN = 20 cm Theo gi¶ thiÕt AC = 10 Cm, CB = 40 Cm => AB = 50cm => OA = 25 cm Ta cã S(o) = π OA2 = π 252 = 625 π ; S(I) = π IA2 = π 52 = 25 π ; S(k) = π KB2 = π 202 = 400 π Ta có diện tích phần hình đợc giới hạn ba nửa đờng tròn S = ( S(o) - S(I) - S(k)) 1 S = ( 625 π - 25 π - 400 π ) = 200 π = 100 π ≈ 314 (cm2) 2 Bài 15 Cho tam giác ABC vuông A Trên cạnh AC lấy điểm M, dựng đờng tròn (O) có đờng kính MC đờng thẳng BM cắt đờng tròn (O) D đờng thẳng AD cắt đờng tròn (O) S Chứng minh ABCD tứ giác nội tiếp Chứng minh CA tia phân giác góc SCB Gọi E giao điểm BC với đờng tròn (O) Chứng minh đờng thẳng BA, EM, CD đồng quy Chứng minh DM tia phân giác góc ADE Chứng minh điểm M tâm đờng tròn nội tiếp tam giác ADE 17 Lêi gi¶i: Ta cã ∠CAB = 900 ( tam giác ABC vuông A); MDC = 900 ( góc nội tiếp chắn nửa đờng tròn ) => CDB = 900 nh D A nhìn BC dới góc 900 nên A D nằm đờng tròn đờng kính BC => ABCD tứ giác nội tiếp ABCD tứ giác néi tiÕp => ∠D1= ∠C3( néi tiÕp cïng ch¾n cung AB) ¼ = EM ¼ => ∠C2 = ∠C3 (hai góc nội tiếp đờng tròn (O) chắn hai cung nhau) D1= C3 => SM => CA tia phân gi¸c cđa gãc SCB XÐt ∆CMB Ta cã BA⊥CM; CD ⊥ BM; ME ⊥ BC nh vËy BA, EM, CD ba đờng cao tam giác CMB nên BA, EM, CD đồng quy ẳ = EM ẳ => D1= D2 => DM tia phân giác góc ADE.(1) Theo trªn Ta cã SM Ta cã MEC = 900 (nội tiếp chắn nửa đờng tròn (O)) => ∠MEB = 900 Tø gi¸c AMEB cã ∠MAB = 900 ; ∠MEB = 900 => ∠MAB + ∠MEB = 1800 mà hai góc đối nên tứ giác AMEB nội tiếp đờng tròn => A2 = B2 Tứ giác ABCD tứ giác nội tiếp => ∠A1= ∠B2( néi tiÕp cïng ch¾n cung CD) => ∠A1= A2 => AM tia phân giác góc DAE (2) Từ (1) (2) Ta có M tâm đờng tròn nội tiếp tam giác ADE TH2 (Hình b) C©u : ∠ABC = ∠CME (cïng phơ ∠ACB); ∠ABC = ∠CDS (cïng bï ∠ADC) => ∠CME = ∠CDS » = CS » => SM ¼ = EM ¼ => SCM = ECM => CA tia phân giác góc SCB => CE Bài 16 Cho tam giác ABC vuông A.và điểm D nằm A B Đờng tròn đờng kính BD cắt BC E Các đờng thng CD, AE lần lợt cắt đờng tròn F, G Chứng minh : Tam giác ABC đồng dạng với tam giác EBD Tứ giác ADEC vµ AFBC néi tiÕp AC // FG Các đờng thẳng AC, DE, FB đồng quy Lời giải: Xét hai tam giác ABC EDB Ta có BAC = 900 ( tam giác ABC vuông A); ∠DEB = 900 ( gãc néi tiÕp ch¾n nưa ®êng trßn ) => ∠DEB = ∠BAC = 900 ; lại có ABC góc chung => DEB CAB Theo trªn ∠DEB = 900 => ∠DEC = 900 (v× hai gãc kỊ bï); ∠BAC = 900 ( ABC vuông A) hay DAC = 900 => DEC + DAC = 1800 mà hai góc đối nên ADEC tứ giác nội tiếp 18 * BAC = 900 ( tam giác ABC vuông A); DFB = 900 ( góc nội tiếp chắn nửa đờng tròn ) hay BFC = 900 nh F A nhìn BC dới góc 900 nên A F nằm đờng tròn đờng kính BC => AFBC tứ giác nội tiếp Theo ADEC tứ giác nội tiếp => ∠E1 = ∠C1 l¹i cã ∠E1 = ∠F1 => F1 = C1 mà hai góc so le nªn suy AC // FG (HD) DƠ thấy CA, DE, BF ba đờng cao tam giác DBC nên CA, DE, BF đồng quy S Bài 17 Cho tam giác ABC có đờng cao AH Trên cạnh BC lấy điểm M ( M kh«ng trïng B C, H ) ; tõ M kẻ MP, MQ vuông góc với cạnh AB AC Chứng minh APMQ tứ giác nội tiếp hÃy xác định tâm O đờng tròn ngoại tiếp tứ giác Chứng minh MP + MQ = AH Chøng minh OH ⊥ PQ Lêi gi¶i: Ta cã MP ⊥ AB (gt) => ∠APM = 900; MQ ⊥ AC (gt) => ∠AQM = 900 nh P Q nhìn BC dới góc 900 nên P Q nằm đờng tròn đờng kính AM => APMQ tứ giác nội tiếp * Vì AM đờng kính đờng tròn ngoại tiếp tứ giác APMQ tâm O đờng tròn ngoại tiếp tứ giác APMQ trung điểm AM Tam giác ABC có AH đờng cao => SABC = BC.AH Tam gi¸c ABM có MP đờng cao => SABM = AB.MP Tam giác ACM có MQ đờng cao => SACM = AC.MQ 1 Ta cã SABM + SACM = SABC => AB.MP + AC.MQ = BC.AH => AB.MP + AC.MQ = BC.AH 2 Mµ AB = BC = CA (vì tam giác ABC đều) => MP + MQ = AH » = HQ ¼ ( tính Tam giác ABC có AH đờng cao nên đờng phân giác => HAP = ∠HAQ => HP chÊt gãc néi tiÕp ) => ∠HOP = HOQ (t/c góc tâm) => OH tia phân giác góc POQ Mà tam giác POQ cân O ( OP OQ bán kính) nên suy OH đờng cao => OH PQ 19 Bài 18 Cho đờng tròn (O) đờng kính AB Trên đoạn thẳng OB lấy điểm H ( H không trùng O, B) ; đờng thẳng vuông góc với OB H, lấy điểm M đờng tròn ; MA MB thứ tự cắt đờng tròn (O) C D Gọi I giao điểm AD BC Chứng minh MCID tứ giác nội tiếp Chứng minh đờng thẳng AD, BC, MH đồng quy I Gọi K tâm đờng tròn ngoại tiếp tứ giác MCID, Chứng minh KCOH tứ giác nội tiÕp Lêi gi¶i: Ta cã : ∠ACB = 900 ( nội tiếp chắn nửc đờng tròn ) => MCI = 900 (vì hai góc kề bù) ADB = 900 ( nội tiếp chắn nửc đờng tròn ) => MDI = 900 (vì hai góc kề bù) => MCI + MDI = 1800 mà hai góc đối tứ giác MCID nên MCID tứ giác nội tiếp Theo Ta có BC MA; AD MB nên BC AD hai đờng cao tam giác MAB mà BC AD cắt I nên I trực tâm tam giác MAB Theo giả thiết MH AB nên MH đờng cao tam giác MAB => AD, BC, MH đồng quy I OAC cân O ( OA OC bán kính) => A1 = C4 KCM cân K ( KC KM bán kính) => M1 = ∠C1 Mµ ∠A1 + ∠M1 = 900 ( tam giác AHM vuông H) => C1 + C4 = 900 => ∠C3 + ∠C2 = 900 ( v× gãc ACM lµ gãc bĐt) hay ∠OCK = 900 XÐt tø gi¸c KCOH Ta cã ∠OHK = 900; ∠OCK = 900 => ∠OHK + ∠OCK = 1800 mµ ∠OHK OCK hai góc đối nên KCOH tứ giác nội tiếp Bài 19 Cho đờng tròn (O) đờng kính AC Trên bán kính OC lấy điểm B tuỳ ý (B khác O, C ) Gọi M trung điểm đoạn AB Qua M kẻ dây cung DE vuông góc với AB Nối CD, Kẻ BI vuông góc víi CD Chøng minh tø gi¸c BMDI néi tiÕp Chứng minh tứ giác ADBE hình thoi Chøng minh BI // AD Chøng minh I, B, E thẳng hàng Chứng minh MI tiếp tun cđa (O’) Lêi gi¶i: ∠BIC = 900 ( nội tiếp chắn nửa đờng tròn ) => BID = 900 (vì hai góc kề bù); DE AB t¹i M => ∠BMD = 900 => ∠BID + ∠BMD = 1800 mà hai góc đối tứ giác MBID nên MBID tứ giác nội tiếp Theo giả thiết M trung điểm AB; DE AB M nên M trung điểm DE (quan hệ đờng kính dây cung) => Tứ giác ADBE hình thoi có hai đờng chéo vuông góc với trung điểm ®êng ∠ADC = 900 ( néi tiÕp ch¾n nửa đờng tròn ) => AD DC; theo BI ⊥ DC => BI // AD (1) Theo giả thiết ADBE hình thoi => EB // AD (2) Từ (1) (2) => I, B, E thẳng hàng (vì qua B có đờng thẳng song song với AD mà thôi.) I, B, E thẳng hàng nên tam giác IDE vuông I => IM trung tuyến ( M trung điểm DE) =>MI = ME => MIE cân M => I1 = E1 ; OIC cân O ( OC OI bán kính ) => I3 = ∠C1 mµ ∠C1 = ∠E1 ( Cïng phơ víi gãc EDC ) => ∠I1 = ∠I3 => ∠I1 + ∠I2 = ∠I3 + ∠I2 Mµ ∠I3 + ∠I2 = ∠BIC = 900 => ∠I1 + ∠I2 = 900 = ∠MIO’ hay MI ⊥ O’I t¹i I => MI tiếp tuyến (O) 20 Bài 20 Cho đờng tròn (O; R) (O; R) có R > R tiếp xúc C Gọi AC BC hai đờng kính qua điểm C (O) (O) DE dây cung (O) vuông góc với AB trung điểm M AB Gọi giao ®iĨm thø hai cđa DC víi (O’) lµ F, BD cắt (O) G Chứng minh rằng: Tứ giác MDGC néi tiÕp Bèn ®iĨm M, D, B, F nằm đờng tròn Tứ giác ADBE hình thoi B, E, F thẳng hàng DF, EG, AB ®ång quy MF = 1/2 DE MF tiếp tuyến (O) Lời giải: BGC = 900 ( nội tiếp chắn nửa đờng tròn ) => CGD = 900 (vì hai góc kề bù) Theo giả thiết DE AB M => ∠CMD = 900 => ∠CGD + ∠CMD = 1800 mà hai góc đối tứ giác MCGD nên MCGD tứ giác nội tiếp BFC = 900 ( nội tiếp chắn nửa đờng tròn ) => ∠BFD = 900; ∠BMD = 900 (v× DE ⊥ AB M) nh F M nhìn BD dới góc 900 nên F M nằm đờng tròn đờng kính BD => M, D, B, F nằm đờng tròn Theo giả thiết M trung điểm AB; DE AB M nên M trung điểm DE (quan hệ đờng kính dây cung) => Tứ giác ADBE hình thoi có hai đờng chéo vuông góc với trung điểm ®êng ∠ADC = 900 ( néi tiÕp ch¾n nửa đờng tròn ) => AD DF ; theo tứ giác ADBE hình tho => BE // AD mà AD DF nên suy BE DF Theo trªn ∠BFC = 900 ( néi tiÕp chắn nửa đờng tròn ) => BF DF mà qua B có đờng thẳng vuông góc với DF đo B, E, F thẳng hàng Theo DF BE; BM DE mà DF BM cắt C nên C trực tâm tam giác BDE => EC đờng cao => ECBD; theo CGBD => E,C,G thẳng hàng Vậy DF, EG, AB đồng quy Theo DF BE => DEF vuông F có FM trung tuyến (vì M trung điểm DE) suy MF = 1/2 DE ( tam giác vuông trung tun thc c¹nh hun b»ng nưa c¹nh hun) (HD) theo trªn MF = 1/2 DE => MD = MF => MDF cân M => D1 = F1 OBF cân O ( OB OF bán kính ) => F3 = B1 mà B1 = ∠D1 (Cïng phơ víi ∠DEB ) => ∠F1 = ∠F3 => ∠F1 + ∠F2 = ∠F3 + ∠F2 Mµ ∠F3 + ∠F2 = ∠BFC = 900 => ∠F1 + ∠F2 = 900 = ∠MFO’ hay MF ⊥ O’F F => MF tiếp tuyến (O) Bài 21 Cho đờng tròn (O) đờng kính AB Gọi I trung điểm OA Vẽ đờng tron tâm I qua A, (I) lấy P bất kì, AP cắt (O) Q Chứng minh đờng tròn (I) (O) tiếp xúc A Chøng minh IP // OQ Chøng minh r»ng AP = PQ Xác định vị trí P ®Ĩ tam gi¸c AQB cã diƯn tÝch lín nhÊt Lêi giải: Ta có OI = OA IA mà OA IA lần lợt bán kính đờng tròn (O) đờng tròn (I) Vậy đờng tròn (O) đờng tròn (I) tiếp xúc A OAQ cân O ( OA OQ bán kính ) => A1 = Q1 IAP cân I ( IA IP bán kính ) => A1 = P1 => P1 = Q1 mà hai góc đồng vị nªn suy IP // OQ 21 ∠APO = 900 (nội tiếp chắn nửa đờng tròn ) => OP AQ => OP đờng cao OAQ mà OAQ cân O nên OP đờng trung tuyến => AP = PQ (HD) KỴ QH ⊥ AB ta có SAQB = AB.QH mà AB đờng kính không đổi nên SAQB lớn QH lớn nhÊt QH lín nhÊt Q trïng víi trung ®iĨm cđa cung AB §Ĩ Q trïng víi trung ®iĨm cung AB P phải trung điểm cung AO Thật P trung điểm cung AO => PI AO mà theo PI // QO => QO AB O => Q trung điểm cung AB H trung với O; OQ lớn nên QH lớn Bài 22 Cho hình vuông ABCD, điểm E thuộc cạnh BC Qua B kẻ đờng thẳng vuông góc với DE, đờng thẳng cắt đờng thẳng DE DC theo thø tù ë H vµ K Chøng minh BHCD tứ giác nội tiếp Tính góc CHK Chøng minh KC KD = KH.KB Khi E di chuyển cạnh BC H di chuyển đờng nào? Lời giải: Theo giả thiết ABCD hình vuông nên BCD = 900; BH DE H nên BHD = 900 => nh H C nhìn BD dới góc 900 nên H C nằm đờng tròn đờng kính BD => BHCD tứ giác nội tiếp BHCD tứ giác nội tiếp => BDC + BHC = 1800 (1) BHK góc bẹt nên KHC + BHC = 1800 (2) Tõ (1) vµ (2) => ∠CHK = BDC mà BDC = 450 (vì ABCD hình vuông) => ∠CHK = 450 XÐt ∆KHC vµ ∆KDB ta cã ∠CHK = ∠BDC = 450 ; ∠K lµ gãc chung KC KH = => ∆KHC ∼ ∆KDB => => KC KD = KH.KB KB KD (HD) Ta có BHD = 900 BD cố định nên E chuyển động cạnh BC cố định H chuyển động cung BC (E B H ≡ B; E ≡ C th× H ≡ C) Bài 23 Cho tam giác ABC vuông A Dựng miền tam giác ABC hình vuông ABHK, ACDE Chứng minh ba điểm H, A, D thẳng hàng Đờng thẳng HD cắt đờng tròn ngoại tiếp tam giác ABC F, chứng minh FBC tam giác vuông cân Cho biết ABC > 450 ; gọi M giao điểm BF ED, Chứng minh ®iĨm b, k, e, m, c cïng n»m đờng tròn Chứng minh MC tiếp tuyến đờng tròn ngoại tiếp tam giác ABC Lời giải: Theo giả thiết ABHK hình vuông => BAH = 450 Tứ giác AEDC hình vuông => CAD = 450; tam giác ABC vuông A => ∠BAC = 900 => ∠BAH + ∠BAC + ∠CAD = 450 + 900 + 450 = 1800 => ba ®iĨm H, A, D thẳng hàng Ta có BFC = 900 (nội tiếp chắn nửa đờng tròn ) nên tam giác BFC vuông F (1) FBC = FAC ( nội tiếp chắn cung FC) mà theo CAD = 450 hay ∠FAC = 450 (2) Tõ (1) vµ (2) suy FBC tam giác vuông cân F Theo trªn ∠BFC = 900 => ∠CFM = 900 ( hai góc kề bù); CDM = 900 (t/c hình vuông) 22 => CFM + CDM = 1800 mà hai góc đối nên tứ giác CDMF nội tiếp đờng tròn suy CDF = CMF , mà CDF = 450 (vì AEDC hình vu«ng) => ∠CMF = 450 hay ∠CMB = 450 Ta có CEB = 450 (vì AEDC hình vuông); BKC = 450 (vì ABHK hình vuông) Nh K, E, M cïng nh×n BC díi mét gãc b»ng 450 nªn cïng n»m trªn cung chøa gãc 450 dùng BC => điểm b, k, e, m, c nằm đờng tròn CBM có B = 450 ; ∠M = 450 => ∠BCM =450 hay MC BC C => MC tiếp tuyến đờng tròn ngoại tiếp tam giác ABC Bài 24 Cho tam gi¸c nhän ABC cã ∠B = 450 Vẽ đờng tròn đờng kính AC có tâm O, đờng tròn cắt BA BC D E A Chøng minh AE = EB Gäi H giao điểm CD AE, Chứng minh ®êng trung D trùc cđa ®o¹n HE ®i qua trung ®iĨm I cđa BH F Chøng minh OD tiếp tuyến đờng tròn ngoại tiếp tam giác O H / _ BDE _K Lời giải: / I ∠AEC = 90 (néi tiÕp chắn nửa đờng tròn ) B E C => AEB = 900 ( hai góc kề bù); Theo giả thiết ABE = 450 => AEB tam giác vuông cân E => EA = EB Gọi K trung điểm HE (1) ; I trung điểm HB => IK đờng trung bình tam giác HBE => IK // BE mà AEC = 900 nên BE HE E => IK HE K (2) Từ (1) (2) => IK lµ trung trùc cđa HE VËy trung trùc đoạn HE qua trung điểm I BH theo trªn I thc trung trùc cđa HE => IE = IH mà I trung điểm BH => IE = IB ∠ ADC = 900 (néi tiÕp chắn nửa đờng tròn ) => BDH = 900 (kề bù ADC) => tam giác BDH vuông D có DI trung tuyến (do I trung điểm BH) => ID = 1/2 BH hay ID = IB => IE = IB = ID => I tâm đờng tròn ngoại tiếp tam giác BDE bán kính ID Ta có ODC cân O (vì OD OC bán kính ) => D1 = C1 (3) IBD cân I (vì ID IB bán kính ) => ∠D2 = ∠B1 (4) Theo trªn ta có CD AE hai đờng cao tam giác ABC => H trực tâm tam giác ABC => BH đờng cao tam giác ABC => BH ⊥ AC t¹i F => ∆AEB cã ∠AFB = 900 Theo trªn ∆ADC cã ∠ADC = 900 => ∠B1 = ∠C1 ( cïng phô ∠BAC) (5) Tõ (3), (4), (5) =>∠D1 = ∠D2 mµ ∠D2 +∠IDH =∠BDC = 900=> ∠D1 +∠IDH = 900 = ∠IDO => OD ID D => OD tiếp tuyến đờng tròn ngoại tiếp tam giác BDE Bài 25 Cho đờng tròn (O), BC dây (BC< 2R) Kẻ tiếp tuyến với đờng tròn (O) B C chúng cắt A Trên cung nhỏ BC lấy điểm M kẻ đờng vuông góc MI, MH, MK xuống cạnh tơng ứng BC, AC, AB Gọi giao điểm BM, IK P; giao điểm CM, IH Q Chứng minh tam giác ABC cân Các tứ giác BIMK, CIMH néi tiÕp Mµ ∠B1 = ∠C1 ( = 1/2 sđ ẳ ) => I1 = H1 (2) Chøng minh MI = MH.MK Chøng minh PQ MI BM Lời giải: Từ (1) (2) => ∆MKI Theo tÝnh chÊt hai tiÕp tuyÕn c¾t ta có AB = AC => ABC cân A MI MK = ∆MIH => => Theo gi¶ thiÕt MI ⊥ BC => ∠MIB = 900; MK ⊥ AB => ∠MKB = 900 MH MI => ∠MIB + ∠MKB = 1800 mà hai góc đối => tứ gi¸c BIMK néi tiÕp MI2 = MH.MK * ( Chøng minh tứ giác CIMH nội tiếp tơng tự tứ giác BIMK ) Theo tứ giác BIMK nội tiếp => ∠KMI + ∠KBI = 1800; tø gi¸c CHMI néi tiÕp => ∠HMI + ∠HCI = 1800 mµ ∠KBI = HCI ( tam giác ABC cân A) => KMI = HMI (1) Theo tứ giác BIMK nội tiÕp => ∠B1 = ∠I1 ( néi tiÕp cïng ch¾n cung KM); tø gi¸c CHMI néi tiÕp => ∠H1 = ∠C1 ( néi tiÕp cïng ch¾n cung IM) 23 Theo trªn ta cã ∠I1 = ∠C1; cịng chøng minh tơng tự ta có I2 = B2 mà C1 + ∠B2 + ∠BMC = 1800 => ∠I1 + ∠I2 + ∠BMC = 1800 hay ∠PIQ + ∠PMQ = 1800 mµ hai góc đối => tứ giác PMQI nội tiÕp => ∠Q1 = ∠I1 mµ ∠I1 = ∠C1 => ∠Q1 = ∠C1 => PQ // BC ( v× cã hai góc đồng vị nhau) Theo giả thiết MI BC nên suy IM PQ Bài 26 Cho đờng tròn (O), đờng kính AB = 2R Vẽ dây cung CD AB H Gọi M điểm cung CB, I giao điểm CB OM K giao điểm AM vµ CB Chøng minh : KC AC = AM tia phân giác CMD Tứ giác OHCI nội tiếp KB AB Chứng minh đờng vuông góc kẻ từ M đến AC tiếp tuyến đờng tròn M ằ = MC ẳ ằ Lời giải: Theo giả thiết M trung điểm cña BC => MB => ∠CAM = ∠BAM (hai gãc nội tiếp chắn hai cung nhau) => AK tia KC AC = phân giác góc CAB => ( t/c tia phân giác tam giác ) KB AB » => ∠CMA = ∠DMA => MA lµ tia phân (HD) Theo giả thiết CD AB => A trung điểm CD giác góc CMD ằ (HD) Theo giả thiết M trung điểm cđa BC => OM ⊥ BC t¹i I => ∠OIC = 900 ; CD ⊥ AB t¹i H => ∠OHC = 900 => OIC + OHC = 1800 mà hai góc đối => tứ giác OHCI nội tiếp KỴ MJ ⊥ AC ta cã MJ // BC ( vuông góc với AC) Theo OM ⊥ BC => OM ⊥ MJ t¹i J suy MJ tiếp tuyến đờng tròn M Bài 27 Cho đờng tròn (O) điểm A đờng tròn Các tiếp tuyến với đờng tròn (O) kẻ từ A tiếp xúc với đờng tròn (O) B C Gọi M điểm tuỳ ý đờng tròn ( M khác B, C), từ M kỴ MH ⊥ BC, MK ⊥ CA, MI ⊥ AB Chøng minh : Tø gi¸c ABOC néi tiÕp ∠BAO = ∠ BCO ∆MIH ∼ ∆MHK MI.MK = MH2 Lời giải: 24 (HS tự giải) Tứ giác ABOC néi tiÕp => ∠BAO = ∠ BCO (néi tiÕp cïng chắn cung BO) Theo giả thiết MH BC => ∠MHC = 900; MK ⊥ CA => ∠MKC = 900 => MHC + MKC = 1800 mà hai góc đối => tứ giác MHCK nội tiếp => HCM = ∠HKM (néi tiÕp cïng ch¾n cung HM) Chøng minh tơng tự ta có tứ giác MHBI nội tiếp => MHI = MBI (nội tiếp chắn cung IM) ẳ ) => ∠HKM = ∠MHI (1) Chøng minh t¬ng tù ta cịng cã Mµ ∠HCM = ∠MBI ( = 1/2 sđ BM KHM = HIM (2) Từ (1) (2) => ∆ HIM ∼ ∆ KHM MI MH = Theo trªn ∆ HIM ∼ ∆ KHM => => MI.MK = MH2 MH MK Bài 28 Cho tam giác ABC nội tiếp (O) Gọi H trực tâm tam giác ABC; E điểm đối xứng H qua BC; F điểm đối xứng H qua trung điểm I BC Chứng minh tứ giác BHCF hình bình hành E, F nằm đờng tròn (O) Chứng minh tứ giác BCFE hình thang cân Gọi G giao điểm AI OH Chứng minh G trọng tâm tam giác ABC Lời giải: Theo giả thiết F điểm ®èi xøng cđa H qua trung ®iĨm I cđa BC => I trung điểm BC HE => BHCF hình bình hành có hai đờng chéo cắt trung điểm đờng (HD) Tø gi¸c AB’HC’ néi tiÕp => ∠BAC + ∠B’HC’ = 1800 mà BHC = BHC (đối đỉnh) => BAC + BHC = 1800 Theo BHCF hình bình hành => ∠BHC = ∠BFC => ∠BFC + ∠BAC = 1800 => Tø gi¸c ABFC néi tiÕp => F thuéc (O) * H E đối xứng qua BC => ∆BHC = ∆BEC (c.c.c) => ∠BHC = ∠BEC => ∠ BEC + ∠BAC = 1800 => ABEC néi tiÕp => E thuéc (O) Ta cã H vµ E ®èi xøng qua BC => BC ⊥ HE (1) IH = IE mà I trung điểm cđa HF => EI = 1/2 HE => tam gi¸c HEF vuông E hay FE HE (2) Từ (1) vµ (2) => EF // BC => BEFC lµ hình thang (3) Theo E (O) => CBE = ∠CAE ( néi tiÕp cïng ch¾n cung CE) (4) Theo F (O) FEA =900 => AF đờng kÝnh cña (O) => ∠ACF = 900 => ∠BCF = CAE ( phụ ACB) (5) Từ (4) (5) => ∠BCF = ∠CBE (6) Tõ (3) vµ (6) => tứ giác BEFC hình thang cân Theo AF đờng kính (O) => O trung điểm AF; BHCF hình bình hành => I trung điểm HF => OI đờng trung bình tam giác AHF => OI = 1/ AH 25 Theo giả thiết I trung điểm cđa BC => OI ⊥ BC ( Quan hƯ ®êng kính dây cung) => OIG = HAG GI OI = (vì so le trong); lại có OGI = HGA (đối đỉnh) => OGI HGA => mà OI = AH GA HA GI = mµ AI trung tuyến tam giác ABC (do I trung điểm BC) => G trọng tâm => GA tam giác ABC Bài 29 BC dây cung đờng tròn (O; R) (BC 2R) Điểm A di động cung lớn BC cho O nằm tam giác ABC Các ®êng cao AD, BE, CF cđa tam gi¸c ABC ®ång quy H Chứng minh tam giác AEF đồng dạng với tam giác ABC Gọi A trung ®iĨm cđa BC, Chøng minh AH = 2OA’ Gäi A1 trung điểm EF, Chứng minh R.AA1 = AA’ OA’ Chøng minh R(EF + FD + DE) = 2SABC suy vị trí A để tổng EF + FD + DE đạt giá trị lớn Lời giải: (HD) Tứ giác BFEC nội tiếp => ∠AEF = ∠ACB (cïng bï ∠BFE) ∠AEF = ∠ABC (cïng bï ∠CEF) => ∆ AEF ∼ ∆ ABC VÏ ®êng kÝnh AK => KB // CH ( cïng vu«ng gãc AB); KC // BH (cïng vu«ng gãc AC) => BHKC hình bình hành => A trung điểm HK => OK đờng trung bình AHK => AH = 2OA’ ¸p dơng tÝnh chÊt : hai tam giác đồng dạng tỉ số hia trung tuyến, tỉ số hai bán kính đờng tròn ngoại tiếp tỉ số đồng dạng ta cã : R AA ' = ∆ AEF ∼ ∆ ABC => (1) R bán kính đờng tròn ngoại tiếp ABC; R bán kính đờng R ' AA1 tròn ngoại tiếp AEF; AA trung tun cđa ∆ABC; AA1 lµ trung tun cđa ∆AEF Tø giác AEHF nội tiếp đờng tròn đờng kính AH nên đờng tròn ngoại tiếp AEF AH A 'O Tõ (1) => R.AA1 = AA’ R’ = AA’ = AA’ 2 VËy R AA1 = AA AO (2) Gọi B, Clần lợt trung điểm AC, AB, ta có OBAC ; OCAB (bán kính qua trung điểm dây không qua tâm) => OA, OB, OC lần lợt đờng cao tam giác OBC, OCA, OAB SABC = SOBC+ SOCA + SOAB = ( OA’ BC’ + OB’ AC + OC’ AB ) 2SABC = OA’ BC + OB’ AC’ + OC’ AB (3) AA1 AA1 Theo (2) => OA = R mà tỉ số trung tuyến hai tam giác đồng dạng AEF vµ ABC AA ' AA ' AA1 EF FD ED nên = Tơng tự ta có : OB = R ; OC’ = R Thay vµo (3) ta đợc AA ' BC AC AB EF FD ED BC + AC + AB )  2SABC = R(EF + FD + DE) 2SABC = R ( BC AC AB * R(EF + FD + DE) = 2SABC mà R không đổi nên (EF + FD + DE) đạt gí trị lớn SABC Ta có SABC = AD.BC BC không đổi nên SABC lín nhÊt AD lín nhÊt, mµ AD lín nhÊt A điểm giỡa cung lớn BC 26 Bài 30 Cho tam giác ABC nội tiếp (O; R), tia phân giác góc BAC cắt (O) M Vẽ đờng cao AH bán kính OA Chứng minh AM phân giác góc OAH Gi¶ sư ∠B > ∠C Chøng minh ∠OAH = ∠B - ∠C Cho ∠BAC = 600 vµ ∠OAH = 200 Tính: a) B C tam giác ABC b) Diện tích hình viên phân giới hạn dây BC cung nhỏ BC theo R Lời giải: (HD) ẳ = CM ẳ => M AM phân giác BAC => BAM = CAM => BM trung điểm cung BC => OM BC; Theo gi¶ thiÕt AH ⊥ BC => OM // AH => ∠HAM = ∠OMA ( so le) Mµ ∠OMA = OAM ( tam giác OAM cân O cã OM = OA = R) => ∠HAM = OAM => AM tia phân giác góc OAH 27 VÏ d©y BD ⊥ OA => »AB = »AD => ∠ABD = ∠ACB Ta cã ∠OAH = ∠ DBC ( góc có cạnh tơng ứng vuông góc nhọn) => ∠OAH = ∠ABC ∠ABD => ∠OAH = ∠ABC - ∠ACB hay ∠OAH = ∠B - ∠C a) Theo gi¶ thiÕt ∠BAC = 600 => ∠B + ∠C = 1200 ; theo trªn ∠B ∠C = ∠OAH => ∠B ∠C = 200 ∠B + ∠C = 1200 ∠B = 700 ⇔ =>   0 ∠B − ∠C = 20 ∠C = 50 π R 1202 R π R R R (4π − 3) − R b) Svp = SqBOC - S V BOC = = − = 3600 2 12 ... O).Đường cao AH tam giác ABC cắt DE K · · 1.Chứng minh ADE = ACB 2.Chứng minh K trung điểm DE 3.Trường hợp K trung điểm AH Chứng minh đường thẳng DE tiếp tuyến chung ngồi đường trịn đường kính... tiÕp tun Ax, By Qua ®iĨm M thc nưa ®êng tròn kẻ tiếp tuyến thứ ba cắt tiếp tuyến Ax , By lần lợt C D Các đờng thẳng AD BC cắt N Chøng minh AC + BD = CD Chøng minh OC // BM Chøng minh AB lµ tiÕp tuyÕn... Chứng minh tam giác BEC cân Gọi I hình chiÕu cđa A trªn BE, Chøng minh r»ng AI = AH Chøng minh r»ng BE lµ tiÕp tun cđa ®êng trßn (A; AH) Chøng minh BE = BH + DE Lêi gi¶i: (HD) ∆ AHC = ∆ADE (g.c.g)

Ngày đăng: 17/11/2015, 10:03

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan