Chñ ®Ò VII §8.CHỨNG MINH HAI TAM GIÁC ĐỒNG DẠNG HỆ THỨC HÌNH HỌC A.KIẾN THỨC CƠ BẢN 1.Tam giác đồng dạng ∠A = ∠A '; ∠B = ∠B'; ∠C = ∠C' -Khái niệm: ∆ABC : ∆A 'B'C' AB AC BC = = A 'B' A 'C' B'C' -Các trường hợp đồng dạng hai tam giác: c – c – c; c – g – c; g – g -Các trường hợp đồng dạng hai tam giác vuông: góc nhọn; hai cạnh góc vuông; cạnh huyền - cạnh góc vuông… *Tính chất: Hai tam giác đồng dạng tỉ số hai đường cao, hai đường phân giác, hai đường trung tuyến tương ứng, hai chu vi tỉ số đồng dạng; tỉ số hai diện tích bình phương tỉ số đồng dạng 2.Phương pháp chứng minh hệ thức hình học -Dùng định lí Talet, tính chất đường phân giác, tam giác đồng dạng, hệ thức lượng tam giác vuông, … Giả sử cần chứng minh MA.MB = MC.MD -Chứng minh hai tam giác MAC MDB đồng dạng hai tam giác MAD MCB -Trong trường hợp điểm nằm đường thẳng cần chứng minh tích tích thứ ba Nếu cần chứng minh MT2 = MA.MB chứng minh hai tam giác MTA MBT đồng dạng so sánh với tích thứ ba Ngoài cần ý đến việc sử dụng hệ thức tam giác vuông; phương tích điểm với đường tròn ***************************************************