hệ thống hóa kiến thức cơ bản về hóa nguyên tố và xây dụng hệ thống bài tập trọng tâm nâng dần mức độ từ dễ đến khó

129 1.9K 1
hệ thống hóa kiến thức cơ bản về hóa nguyên tố và xây dụng hệ thống bài tập trọng tâm nâng dần mức độ từ dễ đến khó

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Lời nói đầu Đã thành thông lệ, cứ đến tháng 8 hàng năm các Thầy, Cô giáo và học sinh các trường chuyên thuộc các tỉnh miền núi phía Bắc lại gặp nhau để giao lưu học hỏi và trao đổi kinh nghiệm về việc dạy và luyện thi HSG các môn học trong trường chuyên. Trường THPT Chuyên Hoàng Văn Thụ rất vinh dự khi là đội chủ nhà của hoạt động trong trại hè năm 2013. Các thành viên của nhóm Hóa trường THPT Chuyên Hoàng Văn Thụ xin được chia sẻ chuyên môn với các đồng nghiệp qua bài viết này. 4 Lý do chọn đề tài: Hoá học vô cơ là một chuyên ngành rất quan trọng trong bộ môn hoá học. Đặc biệt trong các đề thi HSG các cấp hóa đại cương và vô cơ chiếm tới 60% nội dung kiến thức trong đó nội dung về hóa nguyên tố chiếm một dung lượng khá lớn. Việc hệ thống hóa kiến thức cơ bản về hóa nguyên tố và xây dụng hệ thống bài tập trọng tâm nâng dần mức độ từ dễ đến khó là ý tưởng của chúng tôi khi trình bày cuốn kỷ yếu này. Xong với điều kiện thời gian có hạn nên chúng tôi mới tập chung vào chương các nguyên tố phi kim, mặc dù đã cố gắng sắp xếp một cách hệ thống và khoa học xong không tránh khỏi thiếu xót rất mong các Thầy ,cô giáo và các các em học sinh đón nhận và đóng góp bổ sung để nội dung cuốn kỷ yếu được đầy đủ hơn và thực sự hữu ích trong quá trình dạy và học. 5 CHƯƠNG 1 : OXI-OZON LƯU HUỲNH A. OXI I. ĐẶC ĐIỂM CHUNG CỦA OXI I.1. Trạng thái thiên nhiên Oxi là nguyên tố phổ biến nhất ở trong thiên nhiên. Thành phần khối lượng oxi trong khí quyển ~23%; trong nước ~89%, trong cát ~53%. Oxi chiếm khoảng 50% khối lượng vỏ quả đất (~52,3% tổng số nguyên tử). Oxi tự do tập trung hầu hết trong khí quyển. Không khí chứa khoảng 78,1% thể tích nitơ và 21,0% thể tích oxi. I.2. Thành phần đồng vị Oxi có 3 đồng vị thiên nhiên: 16 8 O (99,75%), 17 8 O (0,037%) và 18 8 O (0,204%) tổng số nguyên tử. I.3. Đặc điểm cấu tạo nguyên tử Nguyên tử oxi có cấu hình electron lớp vỏ ngoài cùng là 2s 22p4. Với cấu trúc này, nguyên tử oxi có các khả năng: I.3.1. Nhận thêm 2e biến thành ion O21 O2(k) + 2e 2 → O2- ∆Ho = +900 kJ/mol (~ 6,83 eV) I.3.2. Góp chung 2e tạo thành 1 liên kết đôi hay 2 liên kết đơn I.3.3. Góp chung 2e và tạo một liên kết cho nhận, ví dụ H3O+ I.4 . Đặc điểm cấu tạo phân tử Phân tử O2 có độ dài liên kết bằng 1,21 antron và năng lượng liên kết bằng 494 kJ/mol. Theo thuyết VB, phân tử oxi được hình thành nhờ sự xen phủ của các electron 2p độc thân, tạo thành 1 liên kết σ và 1 liên kết π: Theo thuyết VB, phân tử oxi không có electron độc thân và không có từ tính, điều này mâu thuẫn với thực nghiệm. Theo thuyết MO, sự hình thành phân tử O2 do dự tổ hợp tuyến tính 2 obital 1s II. TÍNH CHẤT LÝ-HÓA CỦA OXI II.1. Tính chất vật lý Ở điều kiện thường, oxi là một khí không màu, không mùi, không vị; nặng hơn không khí. Oxi ở trạng thái khí, lỏng, rắn đều có tính thuận từ. Oxi lỏng và rắn có màu xanh lam. 6 Do phân tử ít bị cực hoá, oxi có nhiệt độ nóng chảy (-218,9 0C) và nhiệt độ sôi (1830) rất thấp. Khí oxi ít tan trong nước: ở 200C, 1 lít nước hòa tan được 31 mL khí O2. Khí O2 có thể tan trong một số kim loại nóng chảy và độ tan cũng giảm khi nhiệt độ tăng. Khi kim loại rắn, khí oxi tan ở trong đó sẽ thoát ra nhanh chóng, nên những kim loại để nguội nhanh ở ngoài kim loại thường bị rỗ trên bề mặt dẫn đến gây khó khăn trong luyện kim II.2. Tính chất hóa học Oxi là nguyên tố phi kim điển hình. Nó có thể tác dụng trực tiếp với hầu hết nguyên tố trừ các halogen, khí trơ và một số kim loại quí (Ag, Au, Pt...) Khả năng phản ứng cao của oxi phân tử được giải thích bằng sự có mặt của 2e ở obital phân tử π phản liên kết. Tuy nhiên một số nguyên tố phản ứng mãnh liệt với oxi ở nhiệt độ cao lại không phản ứng với oxi ở nhiệt độ thấp vì oxi ở trạng thái khí và phân tử oxi có độ bền lớn và nhỏ tiếp xúc với kim loại trên bề mặt. II.2.1. Phản ứng với các đơn chất II.2.1.1.Hidro 2H2 + O2 → 2H2O Phản ứng xảy ra ở 3000C, nhiệt độ tăng thì vận tốc tăng, đến 500 0C phản ứng gần như tức thời gây ra hiện tượng nổ. H2O2 tạo ra khi cho H2 tác dụng trực tiếp với ôxi nguyên tử. II.2.1.2. Nhóm IA - Với Li: tạo Li2O, Li2O2 và LiO2 - Đối Li trong oxi dư: 4Li + O2 → 2Li2O - Khi đốt Li trong dòng oxi còn tạo thêm Li 2O2. Kém bền, bị phân huỷ tạo ra O2 ở 1600C. - Với M = Na, K, Rb, Cs tạo ra M2O, M2O2 và MO2. Khi đun nóng M trong dòng khí O2 tạo ra M2O2 và MO2 2Na + O2 → Na2O2 - Các oxit M2O được tạo ra khi nung peoxit hoặc hiđrôxit với kim loại. Các M2 O là chất rắn màu vàng, cường độ màu tăng từ Na đến Cs. II.2.1.3. Nhóm IIA - Với Be: Khi đốt bột kim loại trong oxi tạo BeO. - Với Mg, Ca, Sr, BA. + Khi đun nóng Mg, Ca trong oxi tạo monôxit 2Mg + O2 → 2MgO 7 2Ca + O2 → 2CaO + Đung nóng Sr trong oxi tạo SrO + SrO2; còn bari tạo peoxit BaO2. II.2.1.4. Nhóm IIIA - Khi nung B trong không khí hoặc trong oxi tạo ra B2O3. - Nhôm phản ứng trực tiếp với oxi, ngay cả ở nhiệt độ thường tạo ra lớp màng mỏng 1.10-5 mm bảo vệ bề mặt nhôm. 4Al + 3O2 → 2Al2O3 II.2.1.5. Nhóm IVA - Với cacbon + Khi đốt cháy C trong điều kiện thiếu không khí tạo CO: 2C + O2 → 2CO Khi đốt cháy C vô định hình ở 350 0C tạo CO2: C + O2 → CO2 - Với silic + Khi cho Si vô định hình cháy ở 6000C tạo SiO2. II.2.1.6. Nhóm VA - Với nitơ Chỉ có NO là tạo ra trực tiếp từ N2 và O2 ở nhiệt độ cao. N2 + O2 → 2NO Ở 20000C chỉ có 1,2% NO theo thể tích; ở 30000C được 5,3%. - Với P P phản ứng trực tiếp với oxi hoặc ôxi không khí. Thiếu oxi: 4P + 3O2 → P4O6 Đủ oxi : 4 P + 5O2 → P4O10 II.2.1.7. Nhóm VIA - Với lưu huỳnh Khí đốt S trong không khí hoặc trong oxi tạo ra SO2: S + O2 → SO2 Các oxit khác đều tạo ra bằng phương pháp gián tiếp. - Với selen và telu. Khi nung nóng Se và Te trong oxi hoặc không khí. Se + O2 → SeO2 và Te + O2 → TeO2 II.2.2. Phản ứng với hợp chất II.2.2.1. Hợp chất chứa hidro 2H2S + 3O2 → 2H2O + 2SO2 4NH3 + 3O2 → 6H2O + 2N2 Chuyển hoá glucô cung cấp năng lượng cơ thể: 8 C6H12O6 + 6O2 → 6CO2+ 6H2O II.2.2.2. Các oxit thấp thành peoxit 2BaO + O2 → BaO2 2CO + O2 → 2CO2 2NO + O2 → 2NO2 II.2.2.3. Oxi của không khí oxi hoá các hiđroxit kim loại chuyển tiếp 2Mn(OH)2 + O2+ 2H2O → 2Mn(OH)4 4Cr(OH)2 + O2 + 2H2O → 4 Cr(OH)3 4Fe(OH)2 + O2 + 2H2O → 4 Fe(OH)3 II.2.2.4. Oxi hoá chất hữu cơ 2CH3 - CHO + O2 → 2CH3COOH II.3. Điều chế oxi - Nguyên tắc: nhiệt phân các hợp chất giàu oxi và kém bền nhiệt. - Phương pháp Phân hủy peoxit: 2H2O2 → O2 + 2H2O (xt: KI, NaOH rắn; FeSO4; MnO2, …) Nhiệt phân muối pemanganat, clorat, nitrat. 2KClO3 → 2KCl + 3O2 (t0 = 3000C; xt: MnO2) 2KMnO4 → K2MnO4 + MnO2 + O2 (t0 = 2000C) Chưng cất phân đoạn không khí lỏng. II.4. Vai trò sinh học của oxi - Oxi giúp duy trì sự sống của động thực vật trong quá trình hô hấp. - Oxi hòa tan duy trì đời sống sinh vật dưới nước. - Cây xanh ban ngày quang hợp, hấp thụ khí CO 2 và thải O2; ban đêm hấp thụ O2 và thải khí CO2. III. CÁC HỢP CHẤT OXIT III.1. Oxit Oxit là hợp chất của oxi với một nguyên tố khác. Oxit của các nguyên tố có bản chất rất khác nhau. Kiểu liên kết hoá học trong oxit biến đổi từ thuần thuý ion đến thuần tuý cộng hoá trị. III.1.1. Oxit ion Bao gồm oxit kim loại kiềm và kiềm thổ. Chúng ta biết rằng sự tạo thành ion O 2- từ oxi nguyên tử tiêu tốn một năng lượng khá lớn là 903 kJ/mol. 1 O2 (k) + 2e 2 → O2- (k) ∆H0 = 903 KJ/mol 9 Muối tạo thành, oxit ion cần tiêu tốn một năng lượng để làm cho nguyên tử kim loại bay hơi và ion hoá. Nhưng mặt khác, nhờ năng lượng mạng lưới của oxit chứa ion O2- có bán kính tương đối bé (1,40 antron) là rất cao cho nên nhiều oxit đều thuần thuý ion và rất bền. Bằng phương pháp Rơnghen người ta đã xác nhận sự tồn tại của O 2- ở trong mạng lưới tinh thể của oxit ion, nhưng ion này không tồn tại trong dung dịch mà bị phân huỷ: O2- + H2O → 2OH- với K > 1022 III.1.2. Oxit cộng hóa trị Các oxit của nguyên tố phí kim và kim loại khác (trừ kiềm và kiềm thổ, là các oxit cộng hoá trị. Khi năng lượng mạng lưới không đủ lớn để có thể ion hoá hoàn toàn nguyên tử kim loại thì oxit tạo nên sẽ có mức độ cộng hoá trị đáng kể. III.1.3. Phân loại các oxit Dựa vào tính chất hoá học người ta phân chia oxit của các nguyên tố ra làm oxit bazơ, oxit axit và oxit lưỡng tính III.1.3.1. Oxit bazơ Là oxit tan được trong nước tạo nên bazơ ví dụ: Na2O, CaO,... Na2O + H2O → 2NaOH Một số oxit không tan trong nước nhưng tan trong dung dịch axit loãng (ví dụ MgO cũng được coi là oxit bazơ). III.1.3.2. Oxit axit Là những oxit tan được trong nước tạo thành axit SO3 + H2O → H2SO4 Một số oxit không tan trong nước nhưng tan trong bazơ cũng được coi là oxit axit, ví dụ Sb2O5 + 2NaOH + 5H2O → 2Na[Sb(OH)6] III.1.3.3. Oxit lưỡng tính Là oxit vừa tan trong axit, vừa tan trong bazơ, ví dụ Al2O3, ZnO, Cr2O3. ZnO + 2HCl → ZnCl2 + H2O ZnO + 2NaOH + H2O → Na2[Zn(OH)4] III.2. Peoxit Peoxit là những oxit có chứa ion O 22− hay [-O-O-]2-. Các kim loại kiềm (trừ Li), kiềm thổ tạo thành các peoxit ion. Trong các peoxit, quan trọng nhất trong thực tế là Na2O2 và BaO2. III.2.1. Natri peoxit 10 Natri peoxit là chất bột màu trắng, nóng chảy ở 460 0C và sôi ở nhiệt độ sôi 660 0C. Na2O2 được tạo thành khi đốt cháy Na trong oxi hoặc trong không khí ở nhiệt độ 1800C. Tính chất của Na2O2: Na2O2 + H2O → 2NaOH + H2O2 Na2O2 + CO2 → Na2CO3 + 1 O2 2 Na2O2 + CO2 + H2O → Na2CO3 + H2O2 Na2O2 là chất oxi hoá mạnh. III.2.2. Bari peoxit Bari peoxit là chất bột màu trắng, nhiệt độ nóng chảy 450 0C, ở 6000C phân huỷ ra BaO và O2 BaO2 khó tan trong nước, rượu và ete nhưng dễ tan trong dung dịch axit. BaO2 + H2SO4 (loãng) → BaSO4 + H2O2 BaO2 + 4HCl (đặc) → BaCl2 + Cl2 + H2O III.3. Supeoxit Các supeoxit tạo thành khi cho khí O2 tác dụng với K, Rb, Cs. Nhìn chung các peoxit và supeoxit của kim loại kiềm khá bền với nhiệt, không phân huỷ khi nóng chảy. Tất cả đều hút ẩm mạnh và chảy rữa khi để trong không khí. Chúng tương tác mạnh với nước ở nhiệt độ thấp giải phóng H 2O2 và O2. Tất cả đều là chất oxi hoá mạnh. Trong các suoeoxit, quan trọng nhất là kali supeoxit. Kali supeoxit là chất bột vàng, nhiệt độ nóng chảy 4400C. 4KO2 + 2CO2 → 2K2CO3 + 3O2 2KO2 + H2SO4 → K2SO4 + H2O2+ O2. III.4. Ozonit Là oxit có chứa ion O3− trong mạng lưới tinh thể, ion này cấu tạo tương tự ozon. Hiện nay người ta chỉ mới biết được các ozonit của kim loại kiềm như KO3, RbO3. Ở nhiệt độ thường, KO3 không bền phân huỷ dần thành KO 2 và O2; còn ở 50- 600C, phân huỷ hoàn toàn. KO3 khi tác dụng với nước giải phóng O2 4KO3 + 2H2O → 4KOH + 5O2. Bởi vậy ozonit là chất oxi hoá mạnh. IV. KHÍ OZON IV.1. Đặc điểm cấu tạo phân tử Trong một thời gian dài trước đáy, phân tử O 3 được coi là có cấu tạo vòng khép kín 11 Nhưng cấu tạo đó không phù hợp với momen lưỡng cực của phân tử; µ = 0,52D. Việc nghiên cứu cấu tạo của phân tử O 3 cho thấy, phân tử O3 không có vòng kín mà là phân tử có góc (giống như phân tử H2O, NO2). Phân tử O3 nghịch từ, góc liên kết OOO = 117 0; độ dài liên kết O-O bằng 1,28 antron, trung gian giữa độ dài liên kết đơn (1,49 antron) và liên kết đôi (1,21 antron). Do đó trong phân tử O3, liên kết O - O có một phần liên kết kép. Trong phân tử O3 có 2 liên kết σ và một liên kiết π không định chỗ. Có thể giải thích: Nguyên tử O trung tâm của O 3 ở trạng thái lai hoá sp 2. Hai trong 3 obital lai hoá sp2 tạo liên kết σ. Obital lai hoá sp2 thứ 3 chứa cặp e không liên kết. Nguyên tử oxi trung tâm còn obital 2p z xen phủ với obital pz của một trong hai nguyên tử oxi tạo thành liên kết π. Do vai trò như nhau của hai nguyên tử oxi nên liên kết π không định chỗ. Độ bội liên kết O-O bằng 1,5. IV.2. Tính chất vật lý Ở điều kiện thường, ozon là chất khí màu xanh lam. Phân tử ozon có cực tính (µ = 0,52D) nên cố nhiệt độ nóng chảy (-162,7 0C) và nhiệt độ sôi (-111,90C) cao hơn oxi. Ozon là phân tử có cực và có cấu trúc góc giống nước nên ozon tan trong nước nhiều hơn oxi khoảng 15 lần. IV.3. Tính chất hóa học Phân tử ozon có 1 liên kết cho-nhận nên khá dễ tách oxi nguyên tử. Điều này giải thích tính kém bền và tính oxi hóa rất mạnh của O3. Thế oxi hoá khử: O3 + 2H+ + 2e → O2 + H2O E0 = +2,07V O3 + H2O + 2e → O2 + 2OH- E0 = +1,24V Từ giá trị thế khử chuẩn cho thấy, O3 có tính oxi hoá mạnh hơn nhiều so với oxi; tính oxi hóa trong môi trường axit mạnh hơn môi trường kiềm. Ozon là chất oxi hoá mạnh đến mức có thể phân tử với nhiều chất ở trong những điều kiện mà O2 tỏ ra trơ. IV.3.1. Ozon phản ứng với kim loại Ozon oxi hoá được nhiều kim loại (trừ Au, Pt, Ir) ở nhiệt độ thường hoặc đun nóng tạo ra oxit, peoxit hoặc ozonit: 2Ag + O3 →Ag2O + O2 2Ag +O3 → KO3 IV.3.2. Ozon - oxi hoá muối Fe2+ thành Fe3+ 2Fe2+ + O3 + 2H+ → 2Fe3+ + H2O + O2 12 và ngay cả khi Fe2+ ở trong ion phức: 2[Fe(CN)6]4- +H2O +O3 → 2[Fe(CN)4]3- +2OH- + O2 IV.3.3. Oxi hoá sunfua thành sunphat PbS + 4O3 → PbSO4 +4O2 H2S + 4O3 → H2SO4 + 4O2 IV.3.4. Oxi hoá NH3 thành HNO3 2NH3 + 4O3 → 2HNO3 + 2O2 + 2H2O IV.3.5. Oxi hoá I- → I2 ngay ở môi trường trung tính 2KI +O3 +H2O → 2KOH + O2 + I2 Các hiđrô halogenua (trừ HF) cũng đều bị ozon oxi hoá 2HCl +O3 → Cl2 + H2O + O2 (HBr và HI cũng có tương tự) IV.3.6. Ozon oxi hoá SO2 và hợp chất Sn(II) bằng cả phân tử 2SO2 + O2 → 2SO3 3SnCl2 + 6HCl + O3 → 3SnCl4 + 3H2O IV.3.7. Ozon phá huỷ nhanh chóng cao su, phản ứng với nhiều hợp chất hữu cơ khác, ví dụ rượu bốc cháy khi tiếp xúc với ozon. Nhiều hợp chất hữu cơ không no phản ứng với O 3 tạo ra hợp chất ozonit không bền. IV.4. Ứng dụng của zon Do tính oxi hoá mạnh, O3 có thể giết chết các vi khuẩn ở trong không khí nên ở nồng độ rất nhỏ trong không khí rất có ích đối với sức khoẻ con người. Trên thực tế người ta dùng O3 để diệt trùng nước uống ở thành phố, sử dụng O3 trong các phản ứng ozon hoá các hoá chất hữu cơ. Ở trên mặt đất, O3 tạo nên chủ yếu do sấm sét và do sự oxi hoá một số chất hữu cơ. Thường có một lượng ozon rõ rệt trong không khí ở các rừng thông và bờ biển. Tại nơi này nhựa thông hay rong biển ở bờ biển bị oxi hoá. Lượng chủ yếu của O3 trong thiên nhiên là ở trên tầng cao khí quyển (cách mặt đất ∼ 25km), ở đó O2 hấp thụ tia tử ngoại của mặt trời (có bước sóng λ= 160 ÷ 240 nm) tạo thành O3: O2 + as → 2O O2 + O → O3 Mặt khác O3 có khả năng hấp thụ tia tử ngoại tím (có bước sóng λ = 240 ÷360 nm) O3 + as → O2 +O 13 Chính nhờ O3 hấp thụ tia tử ngoại gần, mà các tia tử ngoại sóng ngắn này không xuống được mặt đất bảo đảm cho sự tồn tại mọi sinh vật bên trái đất không bị tiêu diệt. IV.5. Nhận biết ozon a. Có thể nhận ra ozon khi vắng mặt H2O2 nhờ giấy quì đỏ tẩm dung dịch KI hoặc làm đen lá bạc hơ nóng. + Việc oxi hoá I- → I2 ngoài O3 còn nhiều chất khác: Cl2 + 2KI → 2KCl + I2 H2O2 + 2KI → 2KOH + I2 NO2 + H2O + 2KI → 2KOH + I2 + NO 2HNO2 + 2KI + H2SO4 → K2SO4 + I2 + 2NO +2H2O + Để tìm O3 trong hỗn hợp với hơi H2O2 người ta dùng giấy tẩm dung dịch MnSO4; khi có mặt O3 giấy này hóa nâu, còn H2O2 không tác dụng. + Để phân biệt O3 và H2O2 người ta còn dùng phản ứng: H2O2 làm mất màu dung dịch KMnO4 còn O3 thì không: 5H2O2 + 2KMnO + 3H2SO4 → 2MnSO4 + 5O2 + 8H2O B. LƯU HUỲNH I. ĐẶC ĐIỂM CHUNG CỦA LƯU HUỲNH I.1. Đặc điểm cấu tạo nguyên tử No 1 2 3 4 5 6 7 Tính chất Số hiệu nguyên tử Cấu hình electron Bán kính n.tử, (antron) Bán kính ion X2-, antron) Độ âm điện Thế ion hóa I1, eV Ái lực electron, eV O 8 2s22p4 0,66 1,40 3,5 13,62 -1,47 S 16 3s23 p4 1,04 1,84 2,6 10,36 -2,07 Se 34 4s24p4 1,17 1,98 2,5 9,75 - Te 52 5s25p4 1,37 3,21 2,1 9,01 - Po 84 6s26p4 2,0 8,43 - Có cấu hình ns2np4 gần với cấu hình bền của khí hiếm, các nguyên tố nhóm VIa, trừ Se và Te (một phần nào), thể hiện rõ tính chất của nguyên tố phi kim. Chúng dễ dàng kết hợp thêm electron của kim loại kiềm và một số kim loại khác tạo nên hợp chất ion. Để đạt được cấu hình bền, các nguyên tố nhóm VIa có thể tạo thành 2 liên kết cộng hóa trị, tạo thành hợp chất với số ôxi hoá +2 hoặc -2. Với oxi và những nguyên tố âm điện hơn, chúng có thể tạo nên 4 hoặc 6 liên kết cộng hóa trị, tạo thành hợp chất với số oxi hoá +4 hoặc +6. 14 Ngoài ra, các nguyên tử nguyên tố nhóm VIa (trừ O) có thể dùng obital d để xen phủ với các obital p của nguyên tố khác tạo nên liên kết π p → d. I.2. Trạng thái thiên nhiên Lưu huỳnh là nguyên tố khá phổ biến trong thiên nhiên, tồn tại ở trạng thái đơn chất (mỏ lưu huỳnh) và trạng thái hợp chất như H 2S, SO2, muối sunfua (FeS2, PbS, ZnS, CuFeS2.. ), sunfat (thạch cao CaSO4.2H2O, MgSO4…). Lưu huỳnh khá phổ biến trên trái đất (chiếm 0,03% nguyên tử) ở dưới dạng 4 đồng vị bền: 32S (95,018%), 33S(0,75%) 34S(4,216%) và 36S(0,017%). I. 3. Tính chất vật lý Nguyên tố Oxi Lưu huỳnh Selen Telu Poloni Nhiệt độ, 0C N.chảy Sôi - 218 -183 119,3 444,6 217,6 685 450 990 252 962 494 322 267 226 - -1,47 -2,07 - Lưu huỳnh có hai dạng thù hình phổ biến là dạng tà phương S α bền và dạng đơn là Sβ . Lưu huỳnh tà phương (d =2,07 g/cm 3) có màu vàng, nóng chảy ở 112,8 0C. Nó bền ở nhiệt độ bình thường, trên 95,50C chuyển sang dạng đơn tà. Lưu huỳnh tồn tại tự do trong thiên nhiên là lưu huỳnh tà phương. Lưu huỳnh đơn tà (d = 1,96 g/cm3) có màu vàng nhạt, nóng chảy ở 119,20 C, dưới nhiệt độ đó chuyển dần sang dạng tà phương. Hai dạng thù hình của lưu huỳnh có thể chuyển hoá cho nhau. S tà phương ↔ S đơn tà ∆H0 = + 0,40 kJ/mol. Hai dạng thù hình Sα và Sβ đều được cấu tạo bởi các phân tử S8, chỉ khác nhau về phương sắp xếp các phân tử S8 trong tinh thể. Vì entanpi của quá trình chuyển hoá giữa S α và Sβ là rất bé nên quá trình đó xảy ra chậm. Ở áp suất thường khi đun nóng từ từ Sα chuyển sang Sβ ở nhiệt độ 95,5oC, nhưng khi đun nóng nhanh thì Sα chưa kịp chuyển sang Sβ nên vẫn tồn tại cho đến nhiệt độ nóng chảy của nó (112,80C). Do đó, giản đồ trạng thái của lưu huỳnh có 4 vùng tồn tại ứng với 4 pha: Sα, Sβ, S lỏng và S hơi. Lưu huỳnh tà phương và sơn tà không tan trong nước, rất ít tan trong rượu và ete, tan nhiều trong dầu hỏa, benzen, nhất là trong các bon đisunfua. Khi kết tinh từ các dung dịch đó, lưu huỳnh xuất hiện ở dạng tinh thể tà phương S α. Phép xác định khối 15 lượng phân tử của lưu huỳnh trong các dung môi khác nhau bằng phương pháp nghiệm lạnh cho thấy, Sα và Sβ đều gồm những phân tử có 8 nguyên tử lưu huỳnh. I.4. Ứng dụng - Lưu hóa cao su; - Tổng hợp axit sunfuric; - Công nghiệp hóa chất; - Dược phẩm (tên dân gian: diêm sinh); - Làm diêm, phẩm nhuộm, thuốc trừ sâu, dung môi hữu cơ, khử độc Hg. II. HIDRO SUNFUA II.1. Đặc điểm cấu tạo phân tử Phân tử H2S có cấu tạo tương tự phân tử nước, tuy nhiên nguyên tử S ở trạng thái lai hóa sp3 yếu hơn. Momen lưỡng cực của H2S là 1,02D; góc liên kết HSH bằng 92,10. II.2. Tính chất vật lý Ở H2S, do lưu huỳnh ở trạng thái lai hóa sp 3 yếu nên sự định hướng của các cặp electron không đặc trưng. Mặt khác, độ phân cực của liên kết H-S không mạnh, nên so với nước, khả năng tạo thành liên kết hiđrô giữa các phân tử H 2S là rất yếu so với H2O. Vì vậy ở điều kiện thường H2S là chất khí, hoá lỏng ở nhiệt độ - 60,4 0C và hoá rắn ở nhiệt độ - 85,60C. Khí H2S rất độc (chỉ 0,1% khí H2S trong không khí đã gây nhiễm độc nặng) và có mùi trứng thối. Khi thở phải khí H2S có nồng độ cao hơn có thể bị ngất hoặc chết vì tắt thở. Khí H2S ít tan trong H2O (ở 200 C, 1 lít nước hòa tan được 2,67 lít H2S); tan nhiều hơn trong dung môi hữu cơ (ở 200C, 1 lít rượu etylic hòa tan được 10 lít khí H2S). II.3. Tính chất hóa học II.3.1. Tính axit yếu Trong nước, H2S là một axit hai nấc và rất yếu, yếu hơn cả axit cacbonic. H2S + H2O € HS- + H3O+ K1 = 1.10-7 HS- + H2O € S2- + H3O+ K2 = 1.10-14 Khi tác dụng với một số muối kim loại, tạo thành kết tủa sunfua ít tan, ví dụ: Pb(NO3)2 + H2S → PbS + 2HNO3 II.3.2. Tính khử mạnh Đây là tính chất hóa học chủ yếu của H2S, thể hiện qua các giá trị thế điện cực sau. Môi trường axit S + 2H+ + 2e SO42- +8e+10H+ → → H2S H2S + 4H2O E0, V + 0,14V + 0,31V Môi trường bazơ S + 2e → S2SO42- + 8e + 4H2O → S2- + 8OH- E0, V - 0,46V - 0,68V 16 II.3.2.1. Phản ứng với oxi Khí H2S có thể cháy trong không khí hoặc trong oxi cho ngọn lửa màu lam nhạt, tuỳ theo lượng oxi mà tạo ra SO2 hay S. 2H2S + 3O2 → 2SO2 + 2H2O. 2H2S + O2 → 2S + 2H2O Phản ứng này được sử dụng để thu hồi S từ khí H 2S có ở trong các khí thải của nhà máy. Dung dịch H2S trong nước để ngoài không khí cũng bị O 2 không khí oxi hoá, tạo kết tủa đục sữa S. Nếu H2S cháy trong khí O2 ẩm và có xúc tác có thể tạo ra H2SO4. II.3.2.2. Phản ứng với các chất oxi hóa khác - H2S có thể khử các halogen, khử Fe(III) thành Fe(II), SO2 thành S... 2FeCl3 + H2S → 2FeCl2 + S + 2HCl. SO2 + 2H2S → 3S + 2H2O 8HNO3 + H2S → 8NO2 + H2SO4 + 4H2O 4Cl2 + H2S + H2O → H2SO4 + 8HCl - Khử được axit HNO2 (hay dung dịch NaNO2 đã oxi hoá) tạo ra S và NO) 2HNO2 + H2S → 2NO + S + 2H2O - Trong môi trường axit, H 2S đã làm mất màu tím của dung dịch KMnO 4, mất màu vàng da cam của dung dịch K2Cr2O7 K2Cr2O7 + 3H2S + 4H2SO4 → K2SO4 + Cr2(SO4)3 + 3S + 7H2O II.4. Muối sunfua II.4.1. Độ tan Dựa vào độ tan trong nước, người ta chia muối sunfua làm ba loại: - Sunfua tan trong nước: Cr2S3, BaS, Al2S3, Na2S, K2S… - Sunfua không tan trong nước không tan trong dung dịch axit loãng như : CuS, Ag2S, CdS, HgS, SnS2, PbS, AsS3, As2S5…. - Sunfua không tan trong nước nhưng tan trong axit loãng. MnS, FeS, CoS, NiS, ZnS… II.4. 2. Màu sắc Sunfua kim loại kiềm, kiềm thổ không có màu. Nhiều sunfua khác có màu đặc trưng: PbS, CuS, CoS và NiS có màu đen, CdS màu vàng, HgS màu đỏ, MnS màu hồng. 17 III. CÁC OXIT CỦA LƯU HUỲNH III.1. Sunfu dioxit III.1.1. Đặc điểm cấu tạo phân tử Phân tử SO2 có cấu trúc góc, góc liên kết OSO bằng 119,50; độ dài liên kết S-O bằng 1,43 antron và momen lưỡng cực bằng 1,59D. Theo thuyết VB, trong phân tử SO 2 có 2 liên kết σ và 1 liên kết π không định chỗ, giải tỏa trên 3 nguyên tử III.1.2. Tính chất vật lý Ở điều kiện thường, SO2 là khí không màu, mùi sốc, dễ hoá lỏng (nhiệt độ sôi -100C) và dễ hoá rắn (nhiệt nóng chảy -750C). SO2 lỏng là dung môi tốt với nhiều chất hữu cơ và vô cơ. Dung môi SO 2 lỏng có hằng số điện môi bé (ε = 13) nên nhiều chất điện li tan trong đó phân li kém hơn so với ở trong nước. SO2 là hợp chất có cực mạnh và cấu trúc góc giống nước nên SO 2 tan nhiều trong nước (ở 200C, 1 lít nước hoà tan khoảng 40 lít SO2). III.1.3.Tính chất hóa học Tính chất hoá học của SO2 thể hiện ở tính axit và tính oxi hoá - khử. III.1.3.1. Tính axit Dung dịch SO2 trong nước có tính axit yếu SO2 + H2O € HSO 3− + H3O+ K1 = 1,7.10-2 HSO 3− + H2O € SO 32− + H3O+ K2 = 6,2.10-8 Trước đây, người ta cho rằng đó là dung dịch của axit sunfurơ. Tuy nhiên, những nghiên cứu bằng những phương pháp vật lí hiện đại nhận thấy trong dung dịch SO 2, không có hoặc có rất ít phân tử H2SO3. Phần lớn SO2 tan vào dd ở dạng hiđrat hoá SO 2.xH2O; khi làm lạnh dung dịch có thể tách ra hiđrat SO2.7H2O, trong đó cũng không có phân tử H2SO3. III.1.3.2. Tính khử SO2 cũng như muối hiđrosunfit và sunfit thể hiện tính khử mạnh khi tác dụng với chất oxi hoá. Thế khử của SO2 trong các môi trường như sau: SO42- + 4H+ + 2e → H2SO3 + H2O EO = +0,17V SO42- + H2O + 2e → SO32- + 2OH- EO = -0,93V Nhận thấy SO2 và ion sunfit thể hiện tính khử mạnh trong môi trường kiềm là do trong dung dịch nước có dạng đồng phân chứa liên kết S - H. - O2 phản ứng với SO2 có Pt xúc tác ở 4000 C 18 - H2O2 : H2O2 + SO2 → H2SO4 - Cl2 phản ứng với SO2 khi có than hoạt tính hoặc long não làm xúc tác tạo ra sunfuryl clorua: SO2 + Cl2 → SO2Cl2 - Dung dịch clo, brom bị mất màu. SO2 + Cl2 + 2H2O → 2HCl + H2SO4. - Các chất oxi hoá như HNO 3, KMnO4, K2Cr2O7, muối sắt (III), các halogen… oxi hoá SO2, hiđrosunfit, sunfit đến H2SO4 hoặc sunfat. 2KMnO4 + 5SO2 + 2H2O → 2MnSO4 + K2SO4 + 2H2SO4 Cl2 + H2O + Na2SO3 → Na2SO4 + 2HCl Khi để trong không khí, muối sunfit và hiđrosunfit biến dần thành sunfat: 2Na2SO3 + O2 → 2Na2SO4 III.2. Sunfu trioxit Phân tử SO2 có cấu trúc tam giác, góc liên kết OSO bằng 120 0 và độ dài liên kết SO bằng 1,42 antron. Theo thuyết VB, trong phân tử SO 3 có 3 liên kết σ và 1 liên kết π không định chỗ, giải tỏa trên 4 nguyên tử Phân tử SO3 chỉ tồn tại ở trạng thái hơi (nhiệt độ sôi 44,8 0C); khi làm lạnh, hơi SO3 ngưng tụ thành chất lỏng dễ bay hơi gồm những phân tử trime mạch vòng; tiếp tục làm lạnh đến 16,80C, chất lỏng đó biến thành khối rắn trong suốt có cấu tạo polime mạch thẳng Hiện tượng dễ trùng hợp của SO3 thành mạch vòng hay mạch thẳng là do nguyên tử S chuyển từ trạng thái lai hoá sp2 sang sp3 đặc trưng hơn. SO3 là sản phẩm trung gian dùng để điều chế H2SO4. Trong công nghiệp, SO3 được điều chế bằng cách oxi hóa SO2 bằng oxi không khí có mặt xúc tác. III.3. Oleum Oleum là chất lỏng, sánh như dầu thực vật; Bao gồm hỗn hợp các axit polisunfuric, thu được khi hòa tan SO 3 bằng axit sunfuric: SO3 + H2SO4 → H2S2O7 nSO3 + H2SO4 → H2Sn+1O3n+4 19 Thành phần: H2SO4.nSO3. IV. AXIT SUNFURIC IV.1.Đặc điểm cấu tạo - Phân tử H2SO4 có cấu trúc tứ diện lệch. Nguyên tử S ở trạng thái lai hóa sp3. - Độ dài liên kết: dS-O = 1,57 antron; dS=O = 1,42 antron; dO-H = 0,96 antron. IV.2. Tính chất vật lý Do có khả năng hình thành liên kết hidro liên phân tử mạnh (hình 6-9) nên H 2SO4 là chất lỏng sánh như dầu. H2SO4 có khả năng hấp thụ mạch hơi nước nên dùng làm khô các chất. Ở nồng độ nào của H2SO4 cũng đều có khả năng hấp thụ hơi nước, vì áp suất hơi nước trên bề mặt dung dịch H2SO4 là khá bé kể cả dung dịch 20%. Bảng dưới đây cho thấy áp suất hơi nước trên bề mặt của dung dịch H 2SO4 ở các nồng độ khác nhau: Nồng độ axit sunfuric 50 60 70 80 90 250C 5,5 2, 5 0, 5 0, 2 0, 1 Phơi nước (mmHg) ở 10 0 0,0 3 Axit sunfuric có trên thị trường có nồng độ khoảng 98,5% (d = 1,84 g/cm3). Axit sunfuric tinh khiết là dung môi ion hoá (ε = 100 ở 250C), bản thân axit cũng tự ion hoá: H2SO4 + H2SO4 € H3SO +4 + HSO −4 Axit sunfuric còn hấp thụ nước của nhiều hợp chất hữu cơ như xenlulozơ, đường và biến chúng thành cacbon. IV.3. Tính chất hóa học IV.3.1. Dung dịch axit sunfuric loãng Dung axit H2SO4 loãng là một axit mạnh điển hình, nấc thứ nhất điện li hoàn toàn, nấc thứ hai có hằng số điện li 1.10-2. H2SO4 hoà tan được nhiều kim loại tạo ra muối sunfat và H2. H2SO4 hoà tan được Cu khi có mặt của O2 không khí, đây là phương pháp điều chế CuSO4 trong công nghiệp. 2Cu + O2 + H2SO4 → 2CuSO4 + 2H2O IV.3.2. Dung dịch axit sunfuric đặc IV.3.2.1 Tính axit 20 Dung axit H2SO4 đặc là một axit mạnh điển hình. Là axit khó bay hơi, axit sunfuric thường được sử dụng để điều chế các axit dễ bay hơi như khí HF, HCl hay HNO3. NaCl (tinh thể) + H2SO4 (đặc) → NaHSO4 + HCl t CaF2 (tinh thể) + H2SO4 (đặc) → CaSO4 + 2HF IV.3.2.2. Tính oxi hóa H2SO4 đặc là chất oxi hoá mạnh, nhất là khi đun nóng. Sản phẩm của phản ứng chủ yếu là SO2 nhưng tuỳ theo chất khử, cũng có thể tạo ra S và H2S. 0 Axit sunfuric oxi hoá HI → I2, H2S → SO2, tác dụng với đa số kim loại, cả những kim loại kém hoạt động như Cu, Hg và một số nguyên tố không kim loại như C, S. Ví dụ: - Đa số kim loại tác dụng với H2SO4 đặc nóng đều tạo SO2: Cu + 2H2 SO4 → CuSO4 + 2H2O + SO2 2Ag + 2H2SO4 → Ag2SO4 + SO2 + H2O Hg + 2H2SO4 → HgSO4 + SO2 + 2H2O - Nếu là kim loại khử mạnh hơn như Zn thì ngoài SO2 còn tạo ra một ít S. 3Zn + 4H2SO4 → 3ZnSO4 + S + 4H2O - Oxi hoá nhiều hợp chất 2HBr + H2SO4 → SO2 + Br2 + 2H2O 8HI + H2SO4 → H2S + 4I2 + 4H2O IV.4. Điều chế Trong công nghiệp, axit sunfuric được sản xuất theo phương pháp buồng chì và phương pháp tiếp xúc. IV.4. 1. Phương pháp buồng chì (1758) Oxi hoá SO2 bằng oxi không khí với xúc tác là hỗn hợp NO và NO2: 2SO2 + O2 + NO + NO2 + H2O → 2NOHSO4 Hoà tan sản phẩm bằng nước trong buồng chì thu được H2SO4. 2NOHSO4 + H2O → 2H2SO4 + NO + NO2. Phương pháp này cho H2SO4 60 ÷ 70%, sau người ta thay buồng chì bằng tháp hấp thụ (xây bằng gạch chịu axit), cho phép điều chế H2SO4 75 - 80%. IV.4. 2. Phương pháp tiếp xúc Oxi hoá SO2 bằng oxi không khí với xúc tác là V2O5. V. Muối sunfat và hidrosunfat - Hiện nay người ta đã biết được sunfat và hiđrôsunfat của tất cả các kim loại, chỉ các hiđrosunfat của một số kim loại hoạt động nhất (như K, Na…) mới tách ra ở trạng thái rắn. 21 - Hầu hết các muối sunfat đều dễ tan trong nước, không màu dễ kết tinh Khi kết tinh, các sunfat ít tan tách ra dưới dạng muối khan còn các sunfat tan tách ra dưới dạng hidrat hoá, ví dụ Na2SO4.10H2O, Al2 (SO4)3.18H2O,… . Sunfat của những kim loại hoá trị 2 như Mg, Mn, Ni, Co, Fe và Zn (trừ Cu: CuSO4.5H2O) thường được kết tinh dưới dạng heptahidrat MSO4.7H2O. - Các muối sunfat tan thường tạo nên những muối kép: - Các muốn sunfat của kim loại: K, Na, Ca, Ba rất bền với nhiệt, không bị phân huỷ khi nung nóng đỏ và ở 10000C. Các muối sunfat khác điều bị nhiệt phân huỷ biến thành oxit kim loại và SO2 và O2. VI. CÁC OXIAXIT KHÁC CỦA LƯU HUỲNH VI.1. Axit thiosunfuric Phân tử H2S2O3 có cấu trúc tương tự axit sunfuric. Nguyên tử S ở trạng thái lai hóa sp3. Do liên kết S=S yếu nên phân tử H 2S2O3 rất kém bền, bị phân huỷ dễ dàng trong dung dịch: H2S2O3 → H2O + SO2 + S Axit H2S2O3 là một axit mạnh, muối thiosunfat của kim loại kiềm không bị thuỷ phân trong nước. VI.2. Muối thiosunfat Quan trọng nhất là Na2S2O3.5H2O, được dùng trong nhiếp ảnh và y học. Na2S2O3 bị oxi hoá dễ bởi các chất oxi hoá mạnh như: Cl 2, HOCl, KMnO4, Br2, biến thành H2SO4 hay muối sunfat: 4Cl2 + Na2S2O3 + 5H2O → Na2SO4 + H2SO4 + 8HCl. Trong công nghiệp, phản ứng này được dùng để loại hết Cl 2 còn sót trong vải khi đã tẩy trắng. Với những chất oxi hoá yếu như I2, nó biến thành natri tetrathionat: I2 + 2Na2S2O3 → Na2S4O6 + 2NaI Đây là phương pháp để chuẩn độ iot. Nhiều chất oxi hoá như O3, H2O2 phản ứng với KI giải phóng I 2, I2 sinh ra được định lượng bằng Na2S2O3, từ đó suy ra lượng KI đã dùng. Dungdịch Na2SO3 hoà tan một số muối muối ít tan nhờ tạo phức chất: AgBr + 2Na2S2O3 → Na3[Ag(S2O3)2] + NaBr Na2S2O3 là chất định hình trong tráng phim, in ảnh. Nó có tác dụng rửa sạch AgBr còn lại trên phim ảnh và giấy ảnh sau khi rửa. VI.3. Axit peoxisunfuric Có hai axit peoxisunfuric là: Axit peoxi nomosunfuric H 2SO5 và axit peoxi disunfuric H2S2O8. 22 Axit H2SO5 và H2S2O8 là những tinh thể không màu. Cả 2 axit đều hút ẩm mạnh và phản ứng mạnh với nước, đường, xenlulozơ giống H2SO4. Trong nước hay dung dịch loãng, hai axit bị thuỷ phân: H2SO5 + H2O → H2SO4 + H2O2 H2S2O8 + 2H2O → 2H2SO4 + H2O2 Cả 2 axit và muối tương ứng đều là các chất oxi hoá mạnh, trong đó axit H 2SO5 có tính oxi hoá mạnh hơn H2S2O8. C. BÀI TẬP Bài 1: Viết các phương trình phản ứng xảy ra: a) Ion I- trong KI bị oxihoa thành I2 bởi O3, còn I2 oxihoa được Na2S2O3. b) H2O2 bị khử NaCrO2 (trong môi trường bazơ) và bị oxihoa trong dung dịch KMnO 4 (trong môi trường axit). c) Khi H2S qua huyền phù iot. d) Dung dịch Na2S2O3 + Ag2S2O3. e) Na2S2O3 + H2SO4(đđ). Bài 2: Nguyên tố lưu huỳnh tạo thành với flo hợp chất SFn, trong đó n có giá trị cực đại. Dựa vào cấu hình electron của S để tìm giá trị đó. Viết công thức cấu tạo, công thức electron của SFn. Các obitan nguyên tử trung tâm S lai hoá kiểu gì ? Vẽ mô hình phân tử. Bài 3: A, B, C là đơn chất của các nguyên tố thuộc chu kì nhỏ, có các quy trình sau: (1) A + C → D ↑ (2) A + B → E ↑ (3) A + F → D ↑ + H2O (4) D + E → A ↓ + H2O (5) D + KMnO4 + H2O → G + H + F (6) E + KMnO4 + F → A ↓ + G + H + H2O. Xác định A, B, C, E, F, G, H. Viết phương trình hoá học Bài 4: Viết phương trình phản ứng xảy ra trong các trường hợp sau: 1) SO2 + Cl2 → 2) SO2Cl2 + H2O → 3) SOCl2 + H2O → 4) SO2 + PCl5 → 5) CuCl2.2H2O + SOCl2 → 6) Na2S4O6 + KMnO4 + H2SO4 → 7) I2 + Na2S2O3 → 8) Al + Na2S2O3 + HCl → H2S + ... 23 Bài 5: Sử dụng phương trình phản ứng hoá học minh hoạ các ứng dụng được mô tả dưới đây: a) Màu trắng chì của các bức tranh cổ lâu ngày bị đen lại do tạo hợp chất PbS. Để tái tạo màu trắng này, người ta rửa tranh bằng H2O2. b) Natripeoxit được sử dụng làm nguồn cung cấp oxi và hấp thụ khí cacbonđioxit trong tàu ngầm và cũng được thêm một lượng nhỏ vào bột giặt để làm chất tẩy trắng. c) Natri thiosunfat là chất chính truốc định hình dùng trong việc tráng phim và in ảnh, nó có tác dụng rửa sạch AgBr còn lại trên phim ảnh và giấy sau khi đã rửa bằng thuốc hiện hình. d) Tại sao trong thiên nhiên có nhiều nguồn tạo ra H 2S nhưng không có hiện tượng tụ khí đó trong không khí ? e) Để một vật bằng bạc ra ngoài không khí bị ô nhiễm H2S một thời gian. Bài 6: Hợp chất A được tạo thành từ 3 nguyên tố X, Y, Z có phân tử khối là 142 đvC. Trong đó nguyên tử của nguyên tố X có e cuối cùng ứng với bộ 4 số lượng tử là n = 3; l 1 2 = 0; ml = 0; ms = + . Đơn chất của nguyên tố Y (thuộc chu kì 3) có thể thu hồi như là một sản phẩm phụ từ khí thiên nhiên bằng cách: Đốt cháy đó cho sản phẩm tác dụng với 1 lượng khí thiên nhiên, sau 3 2 lượng khí thiên nhiên còn lại. Nguyên tố Z thuộc chu kì 3 2 có các giá trị năng lượng ion hoá là: In (eV) I1 13,26 I2 35,12 I3 54,98 I4 77,91 I5 105,80 I6 137,95 I7 742,29 I8 870,40 a) Xác định công thức phân tử của A. b) Xác định trạng thái lai hoá của nguyên tử trung tâm và dạng hình học phân tử của A. c) Hợp chất B và C cũng được tạo thành từ 3 nguyên tố X, Y, Z trên có thể điều chế được đồng thời A và C bằng cách cho B tác dụng với chất oxihoa là hiđropeoxit. Xác định B, C và viết các phương trình hoá học. Bài 7: Hoàn thành các phương trình phản ứng sau, ghi rõ điều kiện phản ứng (nếu có). Xác định công thức phân tử của các chất A, B, C, D, E, F, G, H. 1. A + O2 → B 2. B + KOH → C + D 3. A + KOH → K2S + C + D 4. E + A → B + F 5. E → F + O2 6. C + Br2 + H2O → G + H 24 7. H + O2 → Br2 + D 8. G + Ba(ClO3)2 → BaSO4 + E. Bài 8: X, Y, Z lần lượt là hợp chất của lưu huỳnh, trong đó lưu huỳnh lần lượt thể hiện số oxihoa là: -2, +4, +6. Sơ đồ sau biểu diễn mối quan hệ giữa X, Y, Z với lưu huỳnh đơn chất So. Z X Y Z So Z Hãy xác định các chất thích hợp và viết phương trình phản ứng minh hoạ theo sơ đồ trên, ghi rõ điều kiện (nếu có). Bài 9: Nguyên tử của nguyên tố X có 10 electron thuộc phân lớp p. Thêm đơn chất X hoạt động phóng xạ vào dung dịch chứa XO32− thu được ion A hoạt động phóng xạ. Thêm dung dịch chứa ion Ba2+ thì thu được kết tủa B. Lọc kết tủa B, sấy khô rồi xử lý với dung dịch axit clohiđric thì thu được chất rắn hoạt động phóng xạ, chất khí không hoạt động phóng xạ và nước. a) Viết phương trình ion thu gọn minh hoạ (ký hiệu X* cho X hoạt động phóng xạ). b) Viết công thức cấu tạo của ion A và cho biết cấu tạo, dạng hình học các hợp chất khí với hiđro, oxit bậc cao nhất, hiđroxit bậc cao nhất của X. Bài 10: a) Có thể dùng những chất nào kể dưới đây để làm anot khi điều chế ozon bằng phương pháp điện phân dung dịch axit sunfruric (than chì, platin, bạc, vàng). b) Thường dùng những chất nào để ức chế quá trình phân huỷ hiđropeoxit ? Những chất nào thúc đẩy nhanh quá trình phân huỷ H2O2 ? Bài 11: Giải thích a) Tại sao H2O và H2O2 ở điều kiện thường là những chất lỏng có nhiệt độ sôi cao b) Tại sao H2O2 và H2O lại có thể trộn lẫn với nhau theo bất kì tỷ lệ nào ? c) Tại sao khi đun nóng chảy nước đá có hiện tượng co thể tích ? d) Tại sao dung dịch loãng của H2O2 lại bền hơn dung dịch đậm đặc ? e) Tại sao khi chiếu sáng hoặc đun nóng dung dịch H2O2 lại bị phân huỷ mạnh ? f) Tại sao khi cho Na2O2 tác dụng với H2O có khí O2 thoát ra nhưng khi cho BaO tác dụng với H2SO4 loãng thì không có hiện tượng đó. g) Tại sao nhiệt độ nóng chảy và nhiệt độ sôi của lưu huỳnh lại rất cao so với nhiệt độ nóng chảy, nhiệt độ sôi của oxi ? h) Tại sao ở nhiệt độ thường, lưu huỳnh có tính trơ về phương diện hoá học, nhưng khi đun nóng lại tỏ ra khá hoạt động ? 25 i) Tại sao khí H2S ít tan trong nước nhưng tan nhiều trong dung môi hữu cơ ? k) Tại sao axit peoximonosunfuric lại là axit một nấc mặc dù có 2 nguyên tử hiđro ? m) Tại sao telu tạo ra axit teluric H 6TeO6 nhưng lưu huỳnh, selen không có khả năng đó ? Bài 12: 1) Ozon có thể tồn tại trong không khí có chứa một lượng lớn các khí SO 2, CO2, HF, NH3 được không ? 2) Bằng phương pháp nào có thể nhận ra được ozon trong hỗn hợp với hơi hiđropeoxit. 3) Dựa vào cơ sở nào để nói rằng H2O2 vừa có tính oxihoa vừa có tính khử ? Trong hai khả năng đó, khả năng nào là chủ yếu. Có phản ứng nào H 2O2 đồng thời thể hiện cả hai tính chất đó không ? 4) Trong hai chất O3 và H2O2 chất nào có tính oxihoa mạnh hơn ? Nêu dẫn chứng 5) Có hiện tượng gì xảy ra khi cho sunfuryclorua tác dụng với dung dịch BaCl2 loãng. 6) Có phản ứng hoá học xảy ra khi cho sunfuryl clorua tác dụng với dng dịch KMnO4. Bài 13: 1. Viết phương trình phản ứng khi cho H 2O2 tác dụng với dung dịch KI, dung dịch KMnO4 trong môi trường axit, dung dịch natri cromit trong môi trường kiềm. Trong mỗi trường hợp H2O2 thể hiện tính chất gì ? 2. Viết phương trình phản ứng khi cho lưu huỳnh tác dụng với các chất sau: F 2, Cl2, O2, P, NaOH, KClO3, H2SO4đ, HNO3đ, HNO3(l). 3. Viết phương trình phản ứng của SO 2 với các chất HI, H2S, CO, H2, C, Mg từ đó cho nhận xét về tính khử của SO2 so với các chất kể trên. Bài 14: Hoàn thành các phương trình phản ứng sau: 1. Zn + H2SO4đ → 2. Hg + H2SO4đ → 3. Zn + H2S2O7 → H2S + … 4. Cl2 + Na2S2O3 + H2O → 5. I2 + Na2S2O3 → 6. Al + Na2S2O3 + HCl → 7. (NH4)2S2O8 + MnSO4 + H2O → HMnO4 + ... 8. K2S2O4 + K2Cr2O7 + H2SO4 → 9. K2S3O6 + O3 + H2O → 10. Na2S4O6 + KMnO4 + H2SO4 → 11. Na2S5O6 + O3 + H2O → 12. (NH4)2S3O6 + K2Cr2O7 + H2SO4 → 13. H2SeO3 + HClO3 → 14. H2SeO4 + HCl → 26 15. H2SeO3 + KMnO4 + KOH → 16. Na2SeO4 + SO2 + H2O → 17. Na2SeO3 + Cl2 + H2O → 18. Ag2SeO3 + Br2 + H2O → 19. Se + HNO3 + H2O → 20. Te + HNO3 → 21. SeO2 + H2S2O3 + H2O → 22. SeO3 + I- + H2O → 23. SOCl2 + Fe → FeCl2 + FeS + ... 24. MgI2 + H2O2 + H2SO4 → 25. Na2O2 + KI + H2SO4 → 26. H2O2 + K2Cr2O7 + H2SO4 → 27. CaOCl2 + H2O2 → 28. Na2SeO3 + H2O2 → 29. CrCl3 + H2O2 + NaOH → 30. Na2O2 + Fe(OH)2 + H2O → 31. Hg(NO3)2 + H2O2 + NaOH → 32. Fe + H2O2 → 33. As2S3 + H2O2 + NH3 + H2O → (NH4)3AsO4 + ... Bài 15: Quá trình nào có thể xảy ra khi tiếp tục đun nóng các chất sau đây trong không khí ? 1) FeSO4 2) (NH4)2SO4.FeSO4.6H2O 3) Na2SO4.10H2O 4) FeSO4.7H2O 5) NaHSO4 6) Hỗn hợp KHSO4 + Al2O3 Bài 16: 1. Một hỗn hợp X gồm 2 oxit AOx và AOx + 1 chiếm thể tích là 56 lít biết rằng A là một nguyên tố thuộc nhóm 6, phân nhóm chính. 2. Lấy 84 gam hỗn hợp X cho vào một bình, có thể tích V = 1 lít. Thêm vào đó 16 gam O2 và một ít V2O5 xúc tác. Nung bình cho đến khi đạt đến cân bằng thì áp suất P 2 sau phản ứng bằng 1, 2 lần áp suất P 1 (lúc chưa thêm O2) , P1 và P2 đều đo ở 273oC. Tính hằng số cân bằng của phản ứng ở 273oC. 3. Phải thêm vào hỗn hợp có được trong câu 2 (sau phản ứng với O 2) bao nhiêu mol O2 để khi đến cân bằng mới ta được 1 mol Aox + 1, nhiệt độ là 273 oC. Cho S = 32, Se = 79. 27 Bài 17: Hợp chất A tạo bởi kim loại M có hoá trị không đổi và X (nằm ở chu kì 3, nhóm VI A). Lấy 13 gam A chia làm hai phần không bằng nhau: - Phần 1: Tác dụng với O2 tạo khí B. - Phần 2: Tác dụng với dung dịch HO tạo khí C. Trộn B và C thu 7,68 gam kết tủa vàng và còn lại là chất khí nào mà khi gặp nước clo tạo dung dịch D. Cho tác dụng với AgNO3 dư tạo được 22,96 gam kết tủa. 1. Viết cấu hình e đầy đủ của X. Gọi tên và nêu tính chất hoá học cơ bản của X. X có những số oxihoa nào ? Trong hoàn cảnh nào ? Giải thích tại sao X có các mức oxihoa đó. 2. Xác định công thức phân tử A. Bài 18: Theo lý thuyết khoáng pyrit có công thức: FeS 2, trong thực tế một phần ion S 22− được thay thế bởi S2- và công thức tổng của pyrit là FeS 2 – x . Như vậy có thể coi pyrit như là hỗn hợp FeSs, FeS. Khi xử lý một mẫu khoáng với Br 2 trong KOH dư thì xảy ra phản ứng: FeS2 + Br2 + KOH → Fe(OH)3 + KBr + K2SO4 + H2O FeS + Br2 + KOH → Fe(OH)3 + KBr + K2SO4 + H2O Sau khi lọc, được chất rắn A và dung dịch B: - Nung chất rắn A đến khối lượng không đổi thu được 0,2 gam Fe2O3. - Cho dư dung dịch BaCl2 vào dung dịch B thu được 1,1087 gam kết tủa BaSO4. a) Xác định công thức tổng quát của pyrit. b) Cân bằng các phản ứng trên bằng phương pháp ion – electron. c) Tính lượng Br2 dùng để oxihoa mẫu khoáng trên. Bài 19: Từ các nguyên tố O, Na, S tạo ra được các muối A, B đều có hai nguyên tử Na trong phân tử. Trong một thí nghiệm hoá học người ta cho m 1 gam muối A biến thành m2 gam muối B và 6,16 lít khí Z tại 27,3oC ; 1 atm. Biết rằng, hai khối lượng đó khác nhau 16,0 gam. a) Viết phương trình phản ứng xảy ra với công thức cụ thể của A, B. b) Tính m1, m2. Bài 20: a) Axit H2SO4 100% hấp thụ SO3 tạo oleum (H2SO4 là dung môi, SO3 là chất tan). Hỏi cần bao nhiêu gam oleum có hàm lượng SO3 là 71% pha vào 100 ml dung dịch H2SO4 40% (d = 1,31 gam/mol) để tạo ra oleum có hàm lượng SO3 là 10% ? b) Một loại oleum, ngoài H2SO4, SO3 còn có SO2. Lấy 1 gam oleum này đem hoà tan vào H2O được dung dịch A gồm hai axit. Để trung hoà hết dung dịch A cần 22ml dung dịch NaOH 1M. Nếu cũng lấy 1 gam oleum này cho vào 10 ml dung dịch I 2 0,05 M. Lượng I2 dư phản ứng vừa đủ với 4,1 ml dung dịch Na 2S2O3 0,1M (tạo sản phẩm là Na2S4O6 và NaI). Tính % khối lượng các anhidrit trong oleum này. 28 Bài 21: 1. Để oxihoa hết 2,16 gam một oxit của kim loại R cần dùng 0,015 mol H 2SO4 trong dung dịch H2SO4 (đậm đặc, nóng). a. Định công thức oxit. b. Nếu hoà tan lượng oxit trên trong dung dịch H 2SO4 (lỏng, dư), khối lượng kết tủa thu được là bao nhiêu ? 2. Đốt cháy hoàn toàn 12 gam một sunfua kim loại R có hoá trị không đổi thu được chất rắn A và khí B. Hoà tan hết A bằng một lượng vừa đủ dung dịch H 2SO4 24,5% thu được dung dịch muối X có nồng độ 33,33%. Làm lạnh xuống tới nhiệt độ thấp tách ra 15,625 gam tinh thể T, phần dung dịch bão hoà lúc đó có nồng độ 22,54%. Xác định công thức của T. 3. Biết nhiệt độ sôi của CS 2 là 46,20oC, hằng số nghiệm sôi của nó là 2,37. Hoà tan 1,024 gam lưu huỳnh vào 20 gam CS 2 thì nhiệt độ sôi của dung dịch thu được là 46,67oC. Hãy cho biết công thức phân tử của đơn chất lưu huỳnh (Ms = 32). Bài 22: Nung m gam hỗn hợp A gồm FeS và FeS 2 trong một bình kín chứa không khí (gồm 20% thể tích O2 và 80% thể tích N2) đến khi phản ứng xảy ra hoàn toàn, thu được chất rắn B và hỗn hợp khí C có thành phần thể tích N 2 = 84,77% ; SO2 = 10,6%, còn lại là O2. Hoà tan chất rắn B bằng dung dịch H2SO4 vừa đủ, dung dịch thu được cho tác dụng với dung dịch Ba(OH)2 dư. Lọc lấy kết tủa, làm khô, nung ở nhiệt độ cao đến khối lượng không đổi, thu được 12,885 gam chất rắn. a. Tính % khối lượng các chất trong A. b. Tính m ? c. Giả sử dung tích của bình là 1,252 lít ở nhiệt độ và áp suất ban đầu là 27,3 oC và 1 atm. Sau khi nung chất A ở nhiệt độ cao, đưa bình về nhiệt độ ban đầu, áp suất trong bình là P. Tính áp suất gây ra trong bình bởi mỗi khí có trong hỗn hợp C. Bài 23: 1. Cho 6 gam mẫu chất chứa Fe 3O4 ; Fe2O3 và các tạp chất trơ. Hoà tan mẫu vào lượng dư dung dịch KI trong môi trường axit (khử tất cả Fe thành Fe 2+) tạo ra dung dịch A. Pha loãng dung dịch A đến thể tích 50ml. Lượng I 2 có trong 10ml dung dịch A phản ứng vừa đủ với 5,5ml dung dịch Na 2S2O31M (sinh ra S 4O62− ). Lấy 25ml mẫu dung dịch A khác chiết tách I2, lượng Fe2+ trong dung dịch còn lại phản ứng vừa đủ với 3,2 mol dung dịch MnO4− 1M trong H2SO4. a. Viết các phương trình phản ứng xảy ra (dạng phương trình ion thu gọn) b. Tính thành phần % khối lượng Fe3O4 và Fe2O3 trong mẫu ban đầu. 2. Một hỗn hợp A gồm FeS 2 ; FeS ; CuS được hoà tan vừa đủ trong một dung dịch có chứa 0,33 mol H2SO4 đặc, nóng. Thu được 7,28 lít SO2 (đktc) và dung dịch B. Nhúng 29 một thanh sắt nặng 50 gam vào dung dịch B, phản ứng xong nhấc thanh sắt ra đem cân thấy khối lượng sắt lúc này là 49,48 gam và còn lại dung dịch C. a. Xác định khối lượng các chất có trong A (coi lượng đồng được đẩy ra bám hết lên thanh sắt) b. Viết phương trình phản ứng xảy ra (nếu có) khi cho dung dịch C lần lượt tác dụng với dung dịch NaOH, dung dịch K2S, dung dịch Cl2. Bài 24: 1. Hoàn thành các phương trình phản ứng sau: a. KClO3 + I2 → b. KClO3 + H2C2O4 + H2SO4 → c. FeCl3 + H2S → d. Na2CO3 + Br2 (hơi) → e. NaClO3 + SO2 + H2SO4 → f. MgCl2 + Na2S + H2O → g. ClO2 + KOH → h. I2 + HNO3 (đặc) → Bài 25: 1. Hoà tan hoàn toàn 2,00 gam một mẫu X gồm Na 2S . 9H2O và Na2S2O3 . 5H2O và tạp chất trơ vào nước rồi pha loãng thành 250,00ml (dung dịch A). Thêm 25,00ml dung dịch KI3 0,0525M vào 25,00ml dung dịch A. Sau đó axit hoá bằng H 2SO4 rồi chuẩn độ iot dư hết 12,90ml Na2S2O3 0,1010M. Mặt khác cho ZnSO4 dư vào 50,00ml dung dịch A, lọc bỏ kết tủa rồi chuẩn độ nước lọc hết 11,50ml dung dịch KI 3 0,0101M. Tính thành phần Na2S . 9H2O và Na2S2O3 . 5H2O trong mẫu X ? 2. Cho x gam dung dịch H2SO4 loãng, nồng độ C% tác dụng hoàn toàn với hỗn hợp hai kim loại kali và sắt (dùng dư), sau phản ứng khối lượng chung giảm đi 0,04694x gam. a. Tính C%. b. Tính x, biết lượng khí sinh ra trong phản ứng trên khử được nhiều nhất là 225,32 gam CuO. 3. Cho hỗn hợp A gồm KCl và KBr tác dụng với dung dịch AgNO 3 dư, lượng kết tủa tạo ra sau khi làm khô vừa bằng khối lượng của AgNO3 đã phản ứng. a. Tính % khối lượng mỗi muối trong A. b. Cho 25 gam hỗn hợp A tác dụng với 300 gam dung dịch AgNO3 20%. + Tính khối lượng kết tủa. + Tính nồng độ % của chất còn lại trong dung dịch. Bài 26: 30 1. Hỗn hợp 3 kim loại X, Y, Z có tỷ lệ mol tương ứng là 4 :3 :2 và có tỷ lệ khối lượng nguyên tử tương ứng là 3 :5 :7. Hoà tan hết 3,28 gam hỗn hợp ba kim loại trên trong dung dịch HCl dư thì thu được 2,016 lít khí (ở đktc) và dung dịch A. a. Xác định ba kim loại X, Y, Z biết rằng khi chúng tác dụng với axit đều tạo muối và kim loại đều có hoá trị II. b. Cho dung dịch NaOH dư vào dung dịch A, đun nóng trong không khí cho phản ứng xảy ra hoàn toàn. Tính lượng kết tủa thu được, biết rằng chỉ có 50% muối của kim loại Y kết tủa với dung dịch NaOH. 2. Từ các nguyên tố O, Na, S tạo ra được các muối A, B đều có hai nguyên tử Na trong phân tử. Trong một thí nghiệm hoá học người ta cho m 1 gam muối A biến đổi thành m 2 gam muối B và 6,16 lít khí hai tại 27,3 oC ; 1 atm. Biết rằng hai khối lượng đó khác nhau 16,0 gam. a. Hãy viết phương trình hoá học của phản ứng xảy ra với công thức cụ thể của A, B. b. Tính m1, m2. Hướng dẫn giải Bài 1: a) 2KI + O3 + H2O → 2KOH + O2 + I2. I2 + 2Na2S2O3 → 2NaI + Na2S4O6. b) 3H2O2 + 2NaCrO2 + 2NaOH → 2Na2CrO4 + 4H2O. 5H2O2 + 2KMnO4 + 3H2SO4 → 2MnSO4 + K2SO4 + 5O2 + 8H2O. c) H2S + I2 → S ↓ + 2HI. d) 3Na2S2O3 + Ag2S2O3 → 2Na3 [Ag(S2O3)2]. e) Na2S2O3 + H2SO4đđ → Na2SO4 + S ↓ + SO2 ↑ + H2O. Bài 2: Cấu hình của S: ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑ ↑ 1s2 2s2 2p6 3s2 3p4 3do Vì S có các obitan trống ở phân lớp 3d nên các e ghép đôi ở 3s, 3p có thể nhảy lên phân lớp 3d để tạo ra 6e độc thân sẽ tạo với flo 6 liên kết cộng hoá trị trong SF n là SF6. Vậy các obitan của S trong hợp chất SF6 ở trạng thái lai hoá sp3d2. Hình dạng phân tử SF6: Bát diện. Bài 3: A: S B : H2 C : O2 D : SO2 E : H2S F : H2SO4 đ/n G : MnSO4 H : H2SO4 (1) S + O2 → SO2. (2) S + H2 → H2S 31 (3) S + 2H2SO4 đ/n → 3SO2 + 2H2O (4) SO2 + 2H2S → 3S ↓ + 2H2O (5) 5SO2 + 2KMnO4 + 2H2O → K2SO4 + 2MnSO4 + 2H2SO4 (6) 5H2S + 2KMnO4 + 3H2SO4 → 2MnSO4 + K2SO4 + 5S + 8H2O Bài 4: 1) SO2 + Cl2 → SO2Cl2 2) SO2Cl2 + 2H2O → H2SO4 + 2HCl 3) SOCl2 + H2O → SO2 + 2HCl 4) SO2 + PCl5 → SOCl2 + POCl3 5) CuCl2.2H2O + 2SOCl2 → CuCl2 + 2SO2 + 4HCl 6) 5Na2S4O6 + 14KMnO4 + 6H2SO4 → 5Na2SO4 + 7K2SO4 + 14MnSO4 + 6H2O 7) I2 + 2Na2S2O3 → Na2S4O6 + 2NaI 8) 8Al + 3Na2S2O3 + 30HCl → 8AlCl3 + 6H2S + 6NaCl + 9H2O. Bài 5: a) PbS + 4H2O2 → PbSO4 + 4H2O. b) Na2O2 + 2H2O → 2NaOH + H2O2. 1 H2O2 → H2O + O2 2 2NaOH + CO2 → Na2CO3 + H2O AgBr + 2Na2S2O3 → Na3[Ag(S2O3)2] + NaBr c) d) 2H2S + O2 → 2S + 2H2O e) 4Ag + O2 + 2H2S → 2Ag2S + 2H2O Bài 6: a) Xác định X: n = 3; l = 0 ⇒ phân lớp 3s ml = 0; ms = + 1 ⇒ phân lớp e cuối cùng của X là 3s1 2 ⇒ X là Na. - Xác định Y: Trong khí thiên nhiên có chứa H2S. 1 lượng khí thiên nhiên: 2H2S + 3O2 → 2SO2 + 2H2O 3 2 + Khi cho sản phẩm tác dụng với lượng khí thiên nhiên còn lại 3 SO2 + 2H2S → 3S + 2H2O + Khi đốt Vậy Y là S. - Xác định Z : Vì I7 tăng đột biến so với I6 ⇒ Z có 6 electron ở lớp ngoài cùng và Z thuộc chu kì 2 ⇒ Z là oxi. Vì A là hợp chất của X, Y, Z có M = 142 đvC nên A là Na2SO4 b) Trạng thái lai hoá của S là sp3, hình tứ diện. c) Chọn B là Na2S2O3 ; C là Na2S3O6 32 2Na2S2O3 + 4H2O2 → Na2S3O6 + Na2SO4 + 4H2O Bài 7: A : S; B : SO2; C : K2SO3; D: H2O; E : KClO3; F : KCl; G : K2SO4; H : HBr 1. S + O2 t º SO2 2. SO2 + 2KOH → K2SO3 + H2O 3. 3S + 6KOH → 2K2S + K2SO3 + 3H2O 4. 2KClO3 + 3S t º 2KCl + 3SO2 5. 2KClO3 MnO ,t º 2KCl + 3O2 6. K2SO3 + Br2 + H2O → K2SO4 + 2HBr 7. 4HBr + O2 → 2Br2 + 2H2O 8. K2SO4 + Ba(ClO3)2 → BaSO4 + 2KClO3 Bài 8: Có thể chọn X là H2S (S-2); Y là SO2 (S+4); Z là H2SO4(S+6) 1. X → Z: H2S + 4Cl2 + 4H2O → H2SO4 + 8HCl 2. Z → X: H2SO4 + Na2S → H2S ↑ + Na2SO4 3. X → Y: H2S + 3O2 tº 2SO2 ↑ + 2H2O 4. Y → Z: SO2 + Br2 + 2H2O → H2SO4 + 2HBr 5. Z → Y: 2H2SO4đ + Cu tº SO2 + CuSO4 + 2H2O tº 6. So → X: H2 + S H2S tº 7. Y → So: 2H2S + SO2 3S + 2H2O tº 8. So → Z: S + 6HNO3 H2SO4 + 6NO2 + 4H2O 9. Z → So: 3Zn + 4H2SO4 → 3ZnSO4 + S + 4H2O Bài 9: a) Cấu hình e của X: 1s22s22p63s23p4 ⇒ Zx = 16 ⇒ X là lưu huỳnh Sx + SO32− → S x SO32− ( S 2O32− ) x 2− Ba2+ + S SO3 → BaSx SO3 ↓ 2 BaSx SO3 ↓ + 2H+ → SO2 + S ↓ + Ba2+ + H2O b) Cấu tạo của A: S* 2- S O O O 33 Vì SO2 không có tính phóng xạ nên S* chỉ tham gia liên kết S-S, mà không tham gia liên kết S-O. Cấu tạo các hợp chất chứa hiđro, oxit bậc cao nhất, hiđroxit bậc cao nhất của X: OH O S S S O H H O O HO O Bài 10: a) Chỉ có thể dùng điện cực platin hoặc vàng làm anot, nếu dùng các chất còn lại sẽ bị ozon oxihoa. b) Những chất có đặc tính axit như H 3PO4; H2SO4 đều có khả năng ức chế quá trình phân huỷ H2O2. Những chất có tính kiềm, bụi, các kim loại nặng và các ion của chúng, MnO 2… thúc đẩy nhanh quá trình phân huỷ H2O2. Bài 11: a) H2O2 và H2O ở điều kiện thường là những chất lỏng vì chúng có hiện tượng trùng hợp phân tử do liên kết hiđro gây ra. b) H2O2 và H2O có thể tạo liên kết hiđro với nhau nên trộn lẫn với nhau được theo bất kì tỷ lệ nào. c) Nhờ có liên kết hiđro, các phân tử trùng hợp với nhau tạo ra những tập hợp phân tử lớn hơn. Do phân tử nước đá có dạng (H 2O)5 với cấu tạo tứ diện (bốn phân tử nước nằm ở 4 đỉnh, một phân tử nước nằm ở tâm hình tứ diện). Phân tử tập hợp (H 2O)5 có cấu tạo rỗng. Khi nước đá nóng chảy, một phần liên kết hiđro bị đứt ra, cấu tạo rỗng bị phá vỡ, các phân tử H2O2 gần nhau hơn, do đó có hiện tượng co thể tích. d) Quá trình phân huỷ 2H2O2 = 2H2O + O2 có đặc tính dây chuyền. Trong dung dịch loãng, điều kiện phát triển dây chuyền kém thuận lợi hơn do các phân tử H 2O ngăn cản sự va chạm giữa các gốc và các phân tử H2O2. e) Khi chiếu sáng hoặc đun nóng đã tạo điều kiện thuận lợi cho quá trình va chạm và làm cho dây chuyền phân huỷ phát triển. f) Cả hai phản ứng Na2O2 + H2O và BaO2 + H2SO4 đều tạo ra H2O2, nhưng khi cho Na2O2 tác dụng với H2O tạo ra môi trường kiềm: Na2O2 + 2H2O → 2NaOH + H2O2 H2O2 sẽ bị phân huỷ trong môi trường kiềm tạo ra O2. g) Do hai nguyên nhân sau: 34 - Nguyên nhân thứ nhất: Làm tăng nhiệt độ nóng chảy và nhiệt độ sôi từ oxi đến lưu huỳnh là sự tăng bán kính nguyên tử tạo điều kiện làm cho tương tác khuếch tán tăng. - Nguyên nhân thứ hai: Phân tử oxi chỉ gồm hai nguyên tử, phân tử lưu huỳnh ở trạng thái lỏng hay rắn đều có số nguyên tử lớn hơn (thường là 8 nguyên tử). Do đó đối với lưu huỳnh thường phải cung cấp năng lượng lớn hơn oxi, không những để thắng lực tương tác khuyếch tán mà còn phải thắng tương tác giữa các nguyên tử trong phân tử. i) H2S phân cực kém H2O nên ít tan trong dung môi phân cực và tan tốt trong dung môi không phân cực. k) Số lần axit được quyết định bởi số nhóm OH liên kết với nguyên tử trung tâm. Trong phân tử H2SO5 chỉ có một nhóm OH liên kết trực tiếp với nguyên tử lưu huỳnh. Hằng số điện li đối với ion H+ trong nhóm HO-O là rất bé. Vì vậy axit H 2SO5 là axit một lần axit. l) Lưu huỳnh và selen không tạo ra axit, tương tự với axit H 6TeO6 vì bán kính của các nguyên tử S và Se bé hơn bán kính của Te. Bài 12: 1) Không vì khí SO2 và NH3 đều có tính khử nên bị ozon oxihoa. 2) Dùng giấy tẩm dung dịch MnCl2, khi có mặt ozon, giấy này hoá nâu, hiđropeoxit không tác dụng với giấy đó. 3) Vì số oxihoa của oxi trong H2O2 là -1 nên gốc O22− có hai khả năng: O22− + 2e → 2O2- Thu thêm 2e: - Nhường đi 2e: O22− → O2 + 2e Thế điện cực của H2O2 trong môi trường axit: H2O2 + 2H+ + 2e → 2H2O Eo = +1,77V. Và trong môi trường kiềm: H2O2 + 2e → 2OHEo = +0,87V. Vậy H2O2 thể hiện tính oxihoa mạnh cả môi trường axit và môi trường kiềm nhưng mạnh hơn là trong môi trường axit. Trong hai tính chất oxihoa - khử thì tính oxihoa là chủ yếu và phản ứng phân huỷ H 2O2 thể hiện đồng thời cả tính oxihoa cả tính khử. 2H2O2 → 2H2O + O2 4) Ozon có tính oxihoa mạnh hơn H2O2: H2O2 + O3 → H2O + 2O2 5) Có hiện tượng xuất hiện kết tủa trắng do: SO2Cl2 + 2H2O → H2SO4 + 2HCl H2SO4 + BaCl2 → BaSO4 + 2HCl 6) KMnO4 sẽ oxihoa HCl được tạo ra do quá trình thuỷ phân SO2Cl2: 2KMnO4 + 5SO2Cl2 + 2H2O → K2SO4 + 2MnSO4 + 5Cl2 + 2H2SO4 Bài 13: 35 1. Tác dụng với dung dịch KI: 2KI + H2O2 + H2SO4 → I2 + K2SO4 + 2H2O Trong phản ứng này đã xảy ra quá trình khử H2O2 Tác dụng với dung dịch KMnO4: 5H2O2 + KMnO4 + 3H2SO4 → 2MnSO4 + H2SO4 + 5O2 + 8H2O Trong phản ứng này đã xảy ra quá trình oxihoa H2O2 Tác dụng với natri cromit NaCrO2 trong môi trường kiềm 2NaCrO2 + 3H2O2 + 2NaOH → 2Na2CrO4 + 4H2O Trong phản ứng này H2O2 là chất oxihoa. 2. 3S + 6NaOHđ/n → 2Na2S + Na2SO3 + 3H2O S + 2H2SO4đ/n → 3SO2 + 2H2O S + 6HNO3đ/n → H2SO4 + 6NO2 + 2H2O S + 2HNO3(l) → H2SO4 + 2NO ↑ 3. SO2 + 2H2S → 3S + 2H2O SO2 + 6HI → H2S + 3I2 + 2H2O Ở 500oC (có xúc tác) SO2 + 2CO → 2CO2 + S Ở 500oC SO2 + 2H2 → S + 2H2O Ở 500oC SO2 + 2e → 2CO + S 2Mg + SO2 → 2MgO + S Các chất trên đều có tính khử mạnh hơn SO2 do đó trong các phản ứng trên SO2 thể hiện tính oxihoa. Bài 14: 1. Zn + 5H2SO4đ → 4ZnSO4 + H2S + 4H2O 2. Hg + 2H2SO4đ → HgSO4 + SO2 + 2H2O 3. 8Zn + 5H2S2O7 → 8ZnSO4 + 2H2S ↑ + 3H2O 4. 4Cl2 + Na2S2O3 + 5H2O → 2NaHSO4 + 8HCl 5. I2 + 2Na2S2O3 → Na2S4O6 + 2NaI 6. 8Al + 3Na2S2O3 + 30HCl → 8AlCl3 + 6H2S + 6NaCl + 9H2O 7. 5(NH4)2S2O8 + 2MnSO4 + 8H2O → 2HMnO4 + 10NH4HSO4 + 2H2SO4 8. K2S2O4 + K2Cr2O7 + 3H2SO4 → 2K2SO4 + Cr2(SO4)3 + 3H2O 9. K2S3O6 + 4O3 + 2H2O → 2KHSO4 + H2SO4 + 4O2 10. 5Na2S4O6 + 14KMnO4 + 6H2SO4 → 5Na2SO4 + 7K2SO4 + 14MnSO4 + 6H2O 11. Na2S5O6 + 10O3 + 4H2O → 2NaHSO4 + 3H2SO4 + 10O2 12. 3(NH4)2S3O6 + K2Cr2O7 + H2SO4 → 3S + 3(NH4)2SO4 + K2SO4 + Cr2(SO4)3 + H2O 13. 3H2SeO3 + HClO3 → 3H2SeO4 + HCl 14. H2SeO4 + 2HCl → H2SeO3 + Cl2 + H2O 36 15. H2SeO3 + 2KMnO4 + 4KOH → K2SeO4 + 2K2MnO4 + 3H2O 16. Na2SeO4 + 3SO2 + H2O → Na2SO4 + Se + H2SO4 17. Na2SeO3 + Cl2 + H2O → 2NaCl + H2SeO4 18. Ag2SeO3 + Br2 + H2O → 2AgBr + H2SO4 19. 3Se + 4HNO3 + H2O → 3H2SeO3 + 4NO 20. 3Te + 4HNO3 + H2O → 3H2TeO3 + 4NO 21. SeO2 + 4Na2S2O3 + 2H2O → 2Na2S4O6 + Se + 4NaOH 22. SeO32− + 4I- + 3H2O → Se + 2I2 + 6OH23. 2SOCl2 + 3Fe → 2FeCl2 + FeS + SO2 24. MgI2 + H2O2 + H2SO4 → MgSO4 + 2H2O + I2 25. Na2O2 + 2KI + 2H2SO4 → I2 + Na2SO4 + K2SO4 + 2H2O 26. 2H2O2 + K2Cr2O7 + 4H2SO4 → Cr2(SO4)3 + K2SO4 + 7H2O + 3O2 27. CaOCl2 + H2O2 → CaCl2 + O2 + H2O 28. Na2SeO3 + H2O2 → Na2SeO4 + H2O 29. 2CrCl3 + 3H2O2 + 10NaOH → 2NaCrO4 + 6NaCl + 8H2O 30. Na2O2 + 2Fe(OH)2 + 2H2O → 2Fe(OH)3 + 2NaOH 31. Hg(NO3)2 + H2O2 + 2NaOH → Hg + 2NaNO3 + 2H2O + O2 ↑ 32. 2Fe + 3H2O2 → 2Fe(OH)3 33. As2S3 + 14H2O2 + 14NH3 + H2O → 2(NH4)3AsO4 + 3(NH4)2SO4 + 6H2O Bài 15: 1) Khi nung FeSO4.7H2O trước hết quá trình mất nước kết tinh, sau đó đến quá trình phân huỷ muối và tách SO3. 2FeSO4 700ºC Fe2O3 + SO3 + SO2 Trong không khí quá trình đó được tăng cường do oxi tham gia chuyển FeO thành Fe2O3. 2) Nung (NH4)2SO4.FeSO4.6H2O có quá trình nhiệt phân (NH4)2SO4 (NH4)2SO4 → 2NH3 + H2SO4 2FeSO4 + 2H2SO4 → Fe2(SO4)3 + 2H2O + SO2 ↑ 3) Có quá trình thăng hoa của Na2SO4.10H2O. Na2SO4 không bị phân huỷ. 4) Khi đun nóng KHSO4 hoà tan được Al2O3 tinh thể, chuyển Al2O3 thành dạng muối tan 2KHSO4 → K2S2O7 + H2O Al2O3 + 3K2S2O7 → Al2(SO4)3 + 3K2SO4 Bài 16: 1. Số mol hỗn hợp: 37 PV 1.56 = = 1,25(mol ) 22 , 4 RT .2.273 273 84 Mx = = 67,2 1,25 n1 = MAOx < 67,2 < MAOx +1 ⇔ A + 16x < 67,2 < A + 48 - Nếu x = 1: ⇒ A + 16 < 67,2 < A + 32 35,2 < A < 51,2 (loại) - Nếu x = 2: ⇒ A + 32 < 67,2 < A + 48 19,2 < A < 35,2 ⇒ A = 32. Vậy A là S và công thức của hai oxit là SO2 và SO3. Số mol mỗi oxit: a = 1molSO 2 a + b = 1,25 ⇔  64a + 80b = 84 b = 0,15molSO 3 2. Thêm 16 gam O2 tức là: 16 = 0,5 (mol) O2 32 Gọi x là số mol O2 phản ứng: 2SO2 + O2  2SO3 2x x 2x Khi đến cb, ta có: nSO2 = 1 − 2 x nO2 = 0,5 − x nSO3 = 0,25 + 2 x Tổng số mol khí sau phản ứng: n2 = 1 – 2x + 0,5 – x + 0,25 + 2x = 1,75 – x Cùng V, T nên ta có : P2 n2 = = 1,2 ⇒ n2 = 1,2n1 P1 n1 n1 = nSO2 + nSO3 = 1,25(mol ) n2 = 1,2.1,25 = 1,75 − x ⇒ x = 0,25(mol ) *Hằng số cân bằng: Khi cân bằng ta có: nSO2 = 1 − 2 x = 0,5(mol ) nO2 = 0,5 − x = 0,25(mol ) nSO3 = 0,25 + 2 x = 0,75(mol ) Vì: V = 1 lít, nồng độ = số mol 38 k= [ SO3 ] 2 = 0,752 = 9 [ SO2 ] 2 [ O2 ] 0,52.0,25 3. Gọi x là số mol O2 phải thêm vào. Theo định luật chuyển dịch cân bằng, sẽ có phản ứng theo chiều giảm O2, tạo thêm SO3. Ta được 1 mol SO3 tức là có tạo thêm: 1 – 0.75 = 0,25 mol SO3 Vậy đã có 0,25 mol SO3 phản ứng với 0,125 mol O2. Khi đến cb mới: nSO3 = 1(mol ) nSO2 = 0,5 − 0,25 = 0,25( mol ) nO2 = 0,25 + x − 0,125 = 0,125 + x(mol ) Vì nhiệt độ không đổi nên hằng số cb vẫn bằng 9: k= [ SO3 ] 2 = 12 =9 [ SO2 ] 2 [ O2 ] 0,252 (0,125 + x) ⇒ x = 1,652 mol O2 mO2 = 1,652 . 32 = 52,684 gam Bài 17: 1. Đặt công thức phân tử của A : M2Sn Gọi: a là số mol M2Sn phản ứng ở phần 1. b là số mol M2Sn phản ứng ở phần 2. n là hoá trị của kim loại M. - Phần 1: - Phần 2: M 2 Sn + 3n O2 → M 2On + nSO2 α a an(mol) M2Sn + 2nHCl → 2MCln + nH2S b bn(mol) SO2 + 2H2S → 3S + 2H2O 0,08 0,16 0,24 (mol) Số mol của lưu huỳnh: 7,68 = 0,24(mol ) ⇒ bn = 0,16(mol ) 32 mA = (2M + 32n) (a + b) = 13 (1) - Trường hợp 1: SO2 dư SO2 + Cl2 + an – 0,08 HCl + AgNO3 2an – 0,16 Số mol của AgCl: 2H2O → → 2HCl + H2SO4 2an – 0,16 an – 0,08 (mol) AgCl ↓ + HNO3 2an – 0,16 22,96 = 0,16 (mol) 143,5 ⇔ 2an – 0,16 – 0,16 ⇒ an = 0,16. 39 Từ (1) ⇒ 2Ma + 2Mb + 32na + 32nb = 13 ⇒ M = 4,3n (loại) - Trường hợp 2: H2S dư → 2H2S + SO2 3S + 2H2O 2an an 3an (mol) H2S + 4Cl2 + 4H2O → 8HCl + H2SO4 0,02 0,16 (mol) HCl + AgNO3 → AgCl + HNO3 0,16 ← 0,16 (mol) nH S dư = bn – 2an = 0,02 2 ns = 0,24 = 3an ⇒ an = 0,08 và bn = 0,18 (1) ⇒ 2Ma + 2Mb + 32an + 32bn = 13 ⇒ M = 9n n 1 2 M 9 18 Chọn n = 3; M = 27 ⇒ M là kim loại Al. Công thức phân tử của A là Al2S3. Bài 18: a) nFe = 2nFe O = 2. 2 3 nS = nBaSO4 = 3 27 0,2 = 0,00250 (mol) 160 1,087 = 0,00475 (mol) 233 0,00475 Tỷ lệ số mol S với số mol Fe trong công thức tổng pyrit: 0,00250 = 1,9 Vậy công thức tổng quát của mẫu khoáng pyrit FeS1,9. b) * 2 FeS2 – 15e + 190H- → Fe(OH)3 + 2SO42− + 8H2O 15 Br2 + 2e → 2Br ⇒ 2FeS2 + 38OH- + 15Br2 → 2Fe(OH)3 + 4SO42− + 16H2O 2FeS2 + 38KOH + 15Br2 → 2Fe(OH)3 + 4K2SO4 + 30KBr + 16H2O * 2 FeS - 9e + 11OH- → Fe(OH)3 + SO42− + 8H2O 9 Br2 + 2e → 2Br ⇒ 2FeS + 22OH- + 9Br2 → 2Fe(OH)3 + 2SO42− + 8H2O 2FeS + 22KOH + 9Br2 → 2Fe(OH)3 + 2K2SO4 + 18KBr + 8H2O c) Công thức tổng của pyrit FeS2 – x = FeS1,9 → 2 – x = 1,9 Vậy x = 0,1 nghĩa là FeS2 chiếm 90% ; FeS chiếm 10% nFe = nFeS1,9 = 0,0025 Số mol mỗi chất trong mẫu khoáng pyrit: - Số mol FeS2 : 0,9 . 0,0025 = 0,00225 (mol) - Số mol FeS : 0,1 . 0,0025 = 0,00025 (mol) 40 Khối lượng Br2 dùng để oxihoa mẫu khoáng trên là : 0,00225. 15 9 .160 + 0,00025. .160 = 0,288 gam 2 2 Bài 19: n A = nB = n2 = 6,16.273 = 0,25 (mol) 300,3.22,4 a) Đặt A là Na2X ; B là Na2Y , ta có: Na2X → Na2Y + Z Vậy A và B có thể là : H2S và SO2 ⇒ Cứ 0,25 mol thì lượng A khác lượng B là 16 gam. So sánh các cặp chất, thấy A: Na2S và B: Na2SO4. Vậy: Na2S + H2SO4 → Na2SO4 + H2S ↑ b) Tính m1, m2: m1 = 78 . 0,25 = 19,5 (gam) m2 = 19,5 + 16,0 = 142,0 + 0,25 = 35,5 (gam) Bài 20: a) H2SO4 . nSO3 → (n + 1)H2SO4 a (mol) 80n 71 = ⇒n=3 98 + 80n 100 Ta có: m ⇒ mH 2SO4 .40% = 1,31.100 = 131 (gam) V 131,40 ⇒ mct = = 52,4 (gam) 100 ⇒ mH 2O = 78,6 (gam) d= phản ứng: Ta có: SO3 + 4,367mol H2O → H2SO4 4,367 (mol) (3a − 4,267).80 10 = ⇒ a = 1,7578 131 + 338a 100 m = 338 . 1,7578 = 594 (gam)  H 2 SO4 : amol  b) 1 gam oleum : SO3 : bmol SO : cmol  2 98a + 80b + 64c = 1 (gam) phản ứng: SO3 + H2O → H2SO4 → b b SO2 + H2O → H2SO3 → c c → H2O OH- + H+ → 2(b + c) 2(b + c) ⇒ 2(a + b + c) = 1 . 0,022 41 ⇒ a + b + c = 0,011 nI 2 = 0,05 . 0,01 = 0,0005 (mol) SO2 + I2 + 2H2O → 2HI + H2SO4 (e) (1) 2,95.10-4 2,95.10-4 I2 + 2Na2S2O3 → Na2S4O6 + 2NaI (2) 2,05.10-4 4,1.10-4 ⇒ nI phản ứng (1) = 0,0005 – 2,05.10-4 = 2,95.10-4 mol = C ⇒ mSO = 64 . 2,95.10-4 = 0,01888 (gam) Phản ứng: 2 2 ⇒ % = 1,888%. 98a + 80b = 0,98112 ⇒  a + b = 0,010705 ⇒ a = 6,93.10 −3  b = 3,776.10 −3 mSO3 = 3,776.10 −3 . 80 = 0,30208 (gam) ⇒ ⇒ % SO3 = 30,8 % Bài 21: 1. Công thức: R2Oa Ta có: Ra+ → Rb+ + (b-a)e 0,03(b-a) 0,03(b-a) 8+6 + 2e → 8+4 0,015 0,03 Vậy M = 2,16. (b − a ) = 2 M R + 16a 0,015 ⇔ MR = 72b – 80ª Ta có bảng: B A MR R 3 2 56 Fe 3 1 136 0 2 1 64 Cu Vậy có hai nghiệm FeO và Cu2O. - Nếu FeO: FeO + H2SO4(e) → FeSO4 + H2O ⇒ Không có kết tủa. - Nếu Cu2O: Cu2O + H2SO4 → CuSO4 + Cu ↓ + H2O 0,015 0,015 Khối lượng kết tủa thu được là: 64 . 0,015 = 0,96 (gam) 2. Công thức R2Sa Phản ứng: R2Sa + 3a O2 → R2Oa + aSO2 2 42 hoặc: R2Sa + aO2 → 2R + aSO2 - Nếu chất rắn A là R2Oa: R2Oa + aH2SO4 → R2(SO4)a + aH2O 1mol amol 1mol 2M + 96a Ta có: 100 2 M + 16a + 98a. 24,5 = 1 3 (1) Từ (1) ⇒ a = 2 ⇒ Me = 64 ⇒ R là Cu. - Nếu chất rắn A là R : 2R + 2aH2SO4 → R2(SO4)a + aSO2 + 2aH2O (do R: là kim loại rất yếu) 1mol amol 0,5mol 0,5amol Ta có: (2 M R + 96a ).0,5 1 = 100 M R + 98a. − 64.0,5a 3 24,5 ⇒ Trường hợp này không có nghiệm. Vậy dung dịch X là dung dịch CuSO4. Ta có: Số mol CuS = số mol CuSO4 = 0,125. ⇒ mddX = 60 (gam) Đặt T là CuSO4 . nH2O Áp dụng bảo toàn khối lượng CuSO4 ta có : 0,125.160 = 15,625 (60 − 15,625).22,54 .160 + 160 + 18n 100 ⇒ n = 5. Vậy T là CuSO4 . 5H2O 3. Áp dụng công thức ∆t s = k s . m m ⇒ M = ks . M ∆t s Trong đó m là khối lượng chất tan 1000 gam dung môi Vậy M = 2,37. 1,024.1000 ≈ 258 (46,67 − 46,20).20 Vậy phân tử lưu huỳnh là S8 Bài 22: Đặt x = nFeS , y = nFeS trong hỗn hợp A và a là số mol không khí ban đầu (trong đó có 2 0,8a mol N2 và 0,2a mol O2). 4FeS + 7O2 x 1,75x 4FeS2 y + 11O2 2,75y → 2Fe2O3 + 4SO2 ↑ + 8SO2 ↑ 2y 0,5x → 2Fe2O3 0,5y 43 Tổng số mol khí sau khi nung gồm 0,8a mol N2 (0,2a – 1,75x – 2,75y) mol O2 dư và (x + 2y) mol SO2. ∑ n khí sau khi nung là nz = 0,8a + 0,2a – 1,75x – 2,75y + x + 2y = a – 0,75(x + y) mol 0,8a.100% % N2 = a − 0,75( x + y ) = 84,77 % ⇒ a = 13,33(x - y) ( x + 2 y ).100% % SO2 = a − 0,75( x + y ) = 10,6% ⇒ a = 10,184x + 19,618y (1) (2) Từ (1) và (2) ⇒ 13,33(x + y) = 10,184x + 19,618y ⇒ 3,146x = 6,288y ⇒ x = 2y (3) a. % khối lượng các chất trong hỗn hợp A Vì x = 2y nên nếu lấy 3 mol hỗn hợp A ta sẽ có 2 mol FeS và 1 mol FeS 2 (vì thành phần % không tuỳ thuộc vào lượng hỗn hợp). % FeS = 2.88.100% = 59,46% 2.88 + 1.120 % FeS2 = 40,54% b. Chất rắn B là Fe2O3 với nFe O = 0,5(x + y) mol 2 3 Hoà tan trong dung dịch H2SO4 vừa đủ: Fe2O3 + 3H2SO4 → Fe2(SO4)3 + 3H2O 0,5(x + y) 0,5(x + y) Thêm Ba(OH)2 dư: Fe2(SO4)3 + 3Ba(OH)2 → 2Fe(OH)3 ↓ + 0,5(x + y) (x + y) 1,5(x + y) Khi nung, kết tủa BaSO4 rât bền không đổi tº 2Fe(OH)3 Fe2O3 + 3H2O (x + y) 0,5(x + y) Khối lượng chất rắn sau khi nung mBaSO + mFe O = 1,5(x + y) . 233 + 0,5(x + y) . 160 = 12,885 4 3BaSO4 ↓ 2 3 ⇒ x + y = 0,03 (4) Từ (3) và (4) ⇒ x = 0,02 (mol) (FeS) ; y = 0,01 (mol) (FeS2) Khối lượng m của hỗn hợp A m = m A = mFeS + mFeS2 = 0,02.88 + 0,01.120 = 2,96( gam) c. Áp suất riêng mỗi khí sau phản ứng Số mol khí trước phản ứng: P1V 1.1.232 = = 0,05 a = n1 = RT 22,4 (273 + 27,3) (mol) 273 Số mol khí sau phản ứng: n2 = a – 0,75(x + y) = 0,05 – 0,75.0,03 = 0,0275 (mol) Vì cùng nhiệt độ và thể tích, ta có: 44 P2 n2 0,0275 = = = 0,55 P1 n1 0,05 Với P1 = 1 atm ⇒ P2 = P = 0,55 atm Vì áp suất mỗi khí trong hỗn hợp tỷ lệ với số mol (tỷ lệ % thể tích) 84,77 = 0,466 atm 100 10,6 = 0,55. = 0,058 atm 100 PN2 = 0,55. Nên PSO2 PO2 = 0,55 – (0,466 + 0,058) = 0,026 atm Bài 23: 1. a) Các phương trình phản ứng: Fe3O4 + 2I- + 8H+ → 3Fe2+ + I2 + 4H2O Fe2O3 + 2I- + 6H+ → 2Fe2+ + I2 + 3H2O 2− 3 2− 4 2 S 2O + I 2 → S 4O + 2 I 2+ − 4 + (1) (2) − 3+ 2+ 5 Fe + MnO + 8 H → 5Fe + Mn + 4 H 2O (3) (4) b) Tính phần trăm: Từ (3): Từ (4): 1 1 nMnO− = .0,0055.1 = 0,00275 mol 4 2 2 nI 2 = 5.nS O2− = 5.0,0032.1 = 0,016 mol nFe2+ = 2 3 Đặt số mol của Fe3O4 và Fe2O3 trong mẫu ban đầu lần lượt là x và y 3 x + 2 y = 0,016.2 = 0,032  x = 0,0045 ⇒   x + y = 0,00275.5 = 0,01375  y = 0,00925 Ta có: %mFe O = 0,00925.160 .100 = 24,7% 2 3 %mFe3O4 6 0,00425.232 = .100 = 17,4% 6 2FeS2 + 14H2SO4đặc tº Fe2(SO4)3 + 15SO2 ↑ + 14H2O 2FeS + 10H2SO4đặc tº Fe2(SO4)3 + 9SO2 ↑ + 10H2O CuS + 4H2SO4đặc tº CuSO4 + 4SO2 ↑ + 4H2O Fe + CuSO4 → FeSO4 + Cu Fe + Fe2(SO4)3 → 3FeSO4 - Đặt số mol FeS2, FeS và CuS lần lượt x, y, z mol. Theo bài ra và theo phương trình hoá học, ta có hệ: 2. a) 7 x + 5 y + 4 z = 0,33  7,28  = 0,325 7,5 x + 4,5 y + 4 z = 22,4  50 − 56(0,5 x + 0,5 y + z ) + 64 z = 49,48  x = 0,01  Giải hệ phương trình, ta được  y = 0,02  z = 0,04  45 Khối lượng các chất trong A là mFeS2 = 1,2 gam  mFeS = 1,76 gam m = 3,84 gam  CuS b. Dung dịch C: FeSO4 FeSO4 + 2NaOH → Fe(OH)2 ↓ + Na2SO4 FeSO4 + K2S → FeS ↓ + K2SO4 6FeSO4 + 3Cl2 → 2Fe2(SO4)3 + 2FeCl3 Bài 24: a. 2KClO3 + I2 → 2KIO3 + Cl2 b. 2KClO3 + H2C2O4 + 2H2SO4 → 2KHSO4 + 2H2O + 2ClO2 + 2CO2 c. 2FeCl3 + H2S → 2FeCl2 + 2HCl + S d. 3Na2CO3 + 3Br2 (hơi) → 5NaBr + NaBrO3 + 3CO2 e. 2NaClO3 + SO2 + H2SO4 → 2ClO2 + 2NaHSO4 f. MgCl2 + Na2S + 2H2O → Mg(OH)2 + H2S + 2NaCl g. ClO2 + KOH → h. 3I2 + 10HNO3 (đặc) → 6HIO3 + 10NO + 2H2O Bài 25: 1. Dung dịch KI3 phản ứng với dung dịch A: S 2− + I 3− → S + 3I − (1) 2− − 2− − 2 S 2O3 + I 3 → S 4O6 + 3I (2) − 2− − 2 S 2O3 + I 3 dư → S 4O62− + 3IChuẩn độ I 3 dư: (3) + Đặt: nNa S = x mmol; nNa S O = y mmol trong 25ml dung dịch A (a) 2 2 2 3 1 1 ⇒ nI − = nS 2− + nS O2− + nS O2− (chuẩn độ) 3 2 3 2 2 23 1 1 ⇔ x + y = 25,000.0,0525 − .12,90.0,1010 2 2 1 ⇔ x + y = 0,66105 mmol (b) 2 + Thêm ZnSO4 dư làm kết tủa hoàn toàn S2-: Zn2+ + S2- → ZnS Chuẩn độ S 2O32− trong 50ml dung dịch A (2y mmol Na2S2O3) 2 S 2O32− + I 3− → 3I − + S 4O62− (3) ⇒ nS O = 2nI (chuẩn độ) = 2.11,50.0,0101 = 0,2323 mmol − 2 3 − 3 ⇒ 2y = 0,2323 mmol ⇒ y = 0,11615 mmol Thay vào (b) ⇒ x = 0,602975 mmol. 250,00 Từ (a) ⇒ nNa2S .9 H 2O = 25,00 .x = 6,2975 mmol 250,00 nNa2S2O3 .5 H 2O ( x ) = . y = 1,1615 mmol 25,00 46 1,1615.248 .100% = 14,40% 2,00 6,02975.240 = .100% = 72,36% 2,00 ⇒ %mNa2S2O3 .5 H 2O ( x ) = %mNa2S .9 H 2O ( x ) 2K + H2SO4 → K2SO4 + H2 Fe + H2SO4 → FeSO4 + H2 2. a. 1 K + H2O → KOH + H 2 ∑n 2 = 0,02347 x (mol) C C ⇒ nH 2SO4 = X (mol ) ⇒ nH 2 = x ( mol ) 9800 9800 (100 − C ) x 1  (100 − C ) x  nH 2O = (mol ) ⇒ nH 2 =   1800 2  1800  c 1 (100 − C ) x ⇒ 0,02347 x = x + . 9800 2 1800 H2 * C% = 24,5% * nCuO = 225,32 = 2,8165 (mol) 80 KCl + AgNO3 → AgCl + KNO3 → x x → x b. KBr + AgNO3 → AgBr + KNO3 → y → y y mhỗn hợp = 74,5x + 119y m ↓ = 143,5x + 188y = 170(x + y) 26,5 x 18 74,5 x.100% % KCl = = 29,84% 26,5 74,5 x + 119. x 18 % KBr = 70,16% ⇒y= 3. Trong 25 gam hỗn hợp A 25 x.0,2984  = 0,1(mol ) nKCl = 74,5  25 − 7,46  = 0,1474(mol ) nKBr = 119  m ↓= 0,1.143,5 + 188.0,1474 = 42,06( gam)   Bài 26: 1. Đặt số mol 3 kim loại X, Y, X lần lượt là 4x, 3x, 2x và khối lượng nguyên tử tương ứng là : Mx, My, Mz. 47 nH 2 = 2,016 = 0,09 (mol) 22,4 Phương trình hoá học: X + 2HCl → XCl2 + H2 ↑ (1) 4x 4x 4x Y + 2HCl → YCl2 + H2 ↑ (2) 3x 3x 3x Z + 2HCl → ZCl2 + H2 ↑ (3) 2x 2x 2x Từ (1), (2), (3) ta có: 4x + 3x + 2x = 0,09 ⇒ x = 0,01 (a) 5 Mx 3 7 MZ = M x 3 Ta có: MY = Mặt khác ta có: Từ (a), (b), (c) (b) (c) MX . 4x + MY . 3x + MZ . 2x = 3,28 (d) 5 7 ⇒ M X (0,04 + .0,03 + .0,02) = 3,28 3 3 ⇒ MX = 24. Vậy X là Mg 5 ⇒ M Y = .24 = 40 . Vậy Y là Ca 3 7 ⇒ M Z = .24 = 56 . Vậy Z là Fe. 3 Dung dịch (A) : MgCl2 ; CaCl2 ; FeCl2 Phương trình hoá học: MgCl2 + 2NaOH → Mg(OH)2 ↓ + 2NaCl 4x 4x CaCl2 + 2NaOH → Ca(OH)2 ↓ + 2NaCl 1,5x 1,5x (50% kết tủa) FeCl2 + 2NaOH → Fe(OH)2 + 2NaCl 2x 2x 4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3 2x 2x Từ (4), (5), (6), (7) ⇒ 58.0,04 + 74.0,015 + 107.0,02 = 5,57 gam 2. a. Đặt A là Na2X ; B là Na2Y, ta có sơ đồ : Na2X → Na2Y + Z n A = nB = n z = (4) (5) (6) (7) 6,16.273 = 0,25 (mol) 300,3.22,4 Hai công thức có thể là H2S, SO2. Cứ 0,25 mol thì lượng A khác lượng B là 16,0 gam. Vậy cứ 1 mol thì lượng A khác lượng B là m 48 ⇒m = 16,0 = 64 (gam) 0,25 Hay một phân tử A ≠ một phân tử B là 64 đvC. A, B có thể là Na2S, Na2SO3, Na2SO4. So sánh các cặp chất thấy A: Na2S; B: Na2SO4 Phương trình hoá học: Na2S + H2SO4 → Na2SO4 + H2S ↑ b. Tính m1, m2: m1 = 78 . 0,25 = 19,5 gam m2 = 19,5 + 16,0 = 142 . 0,25 = 35, 5 gam CHƯƠNG 2 : HALOGEN 49 I.1. Đặc điểm cấu tạo nguyên tử Nguyên tố Flo Clo Brom Iot Atatin Z 9 17 35 53 85 Cấu hình electron [He]2s22p5 [Ne]3s23p5 [Ar]4s24p5 [Kr]5s25p5 [Xe]6s26p5 I1, eV A, eV 17,42 13,01 11,84 10,45 9,50 3,58 3,81 3,56 3,29 - Bán kính, antron N.tử Ion, X0,64 1,33 0,99 1,81 1,14 1,96 1,33 2,20 1,4 2,30 Các halogen có cấu hình elecron lớp ngoài cùng ns2np5 nên dễ kết hợp thêm 1 electron tạo thành cấu trúc vỏ khí hiếm. Do đó, halogen là các nguyên tố phi kim rất điển hình. Năng lượng ion hoá rất lớn của flo giải thích sự không tồn tại của ion flo dương, nhưng hi vọng các ion dương của clo, brôm, iot có thể tồn tại. Một dẫn chứng tốt là sự có mặt cation I+ tự do ở dung dịch ICl trong H 2SO4 đậm đặc hay trong oleum. Ngoài ra còn có một số hợp chất trong đó Iot ở dạng cation I + như ICN, IClO4, ICH3CO2 và ở dạng I3+ như IPO3, I (CH3CO2)3. Trong hợp chất với hầu hết nguyên tố, các halogen có số ôxi hoá -1. Flo không có số ôxi hoá dương, còn các halogen khác có số oxi hoá dương từ +1 đến +7 ở trong các hợp chất với nhưng nguyên tố âm điện lớn như F, O và N. Từ flo đến iot, số phối trí của các halogen trong các hợp chất tăng lên. Flo thường chỉ tạo nên một liên kết nhưng trong hợp chất polime (SbF 5)n và (ReF2)n, flo có số phối trí bằng 2; clo có số phối trí 4 trong ion ClO −4 ; brôm bằng 5 trong BF5 và iot bằng 6 và 7 trong H5IO6 và IF7. Điều này giải thích bằng sự tham gia càng nhiều hơn của obital d vào các kiểu lai hoá của các obital nguyên tử. Việc sử dụng obital d về nguyên tắc có thể dẫn đến sự tạo thành những liên kết kép trong phân tử clo, brom, iot. I.2. Trạng thái thiên nhiên Là những nguyên tố rất hoạt động, các halogen không tồn tại tự do trong thiên nhiên. Flo và clo là những nguyên tố tương đối phổ biến; trữ lượng của mỗi nguyên tố đó ở trong vỏ quả đất là vào khoảng 0,02% tổng số nguyên tử. Brôm và iot kém phổ biến hơn, trữ lượng của Brôm là 3.10-5% và của Iot là 4.10-6%. Phần lớn flo tập trung trong hai khoáng vật chính là florit CaF 2, criolit Na3AlF6 và floapatit Ca5(PO4)3F. Clo tồn tại chủ yếu dưới dạng muối ăn (NaCl) có ở trong nước biển hoặc trong mỏ muối. Ngoài ra, clo còn có trong khoáng vật xinvinit (NaCl. KCl), cacnalit (KCl.MgCl2.6H2O) và trong thành phần tất cả các cơ thể sống. 50 Brôm và iot thường đi kèm với clo trong nước biển và nước ở hồ nước mặn, nước khoan dầu mỏ. Nước biển chứa 2% clo, 0,007 % brom và 5.10 -5 % iot. Trong nước của lỗ khoan dầu mỏ có 0,01 - 0,5% brôm và khoảng 1.10 -4÷ 0,003% iot. Iot còn có trong một số rong biển. Trong cơ thể người, flo có trong xương và men răng clo có trong máu dưới dạng NaCl và trong dịch vị dưới dạng HCl. Iot có trong tuyến giáp trạng, còn Brôm chỉ có dưới dang vết. I.3. Thành phần đồng vị Flo có 1 đồng vị tự nhiên là 199 F. Clo có 2 đồng vị bền là 35Cl (75,4%) và 37Cl (24,6%) Brôm có 2 đồng vị tự nhiên là 37Br (50,52%) và 80Br (49,48%). Iot có 1 đồng vị tự thiên là 127I. Atatin: có nhiều đồng vị đều không bền, đồng vị sống lâu nhất cũng chỉ có chu kỳ bán huỷ là 8,28 giờ là đồng vị 210At. Bằng phương pháp nguyên tử đánh dấu, người ta xét đoán At có tính chất tương tự iot. I.4. Phương pháp điều chế Nguyên tắc chung: oxi hoá muối halogenua (chứa ion X -) bằng các chất oxi hoá mạnh hoặc bằng dòng điện. Flo có tính oxi hoá mạnh nhất trong tất cả các chất nên phương pháp duy nhất dùng điều chế flo là điện phân nóng chảy. Thực tế trong công nghiệp người ta điện phân hỗn hợp KF + 3HF dễ nóng chảy (660C) ở trong thùng điện phân bằng thép hoặc đồng với cực âm cũng bằng thép hoặc đồng và cực dương bằng than chì. Sản phẩm thu được là F 2 và H2. Clo cũng được điều chế bằng phương pháp điện phân dung dịch axit clohidric hoặc dung dịch muối clorua. Trong công nghiệp người ta điện phân dung dịch NaCl bão hoà có hoặc không có màng ngăn. Trong PTN Clo được điều chế bằng tác dụng của axti HCl với một trong những chất oxi hoá mạnh như: MnO2, KMnO4, K2Cr2O7, Ca(OCl)2, HNO3, Pb3O4, PbO2… MnO2 +4HCl → MnCl2 + 2H2O + Cl2 2 KMnO4 + 16HCl → 2KCl + 2MnCl2 + 8H2O + 5Cl2 K2Cr2O7 + 14 HCl → 2KCl + 2CrCl2 + 7H2O + 3Cl2 Ca(OCl)2 + 4HCl → 2CaCl2 + Cl2+ 2H2O Pb3O4 + 8HCl → 3PbCl2 +4H2O + Cl2 PbO2 + 4HCl → PbCl2 + 2H2O + Cl2 HNO3 + 3HCl → NOCl + 2H2O + Cl2 51 Phương pháp thường dùng để điều chế brôm và iod ở trong công nghiệp cũng như trong PTN là dùng khí clo đẩy brôm và iod ra khỏi dung dịch muối bromua và iođua. Nguồn chính để sản xuất brôm trong công nghiệp là nước biển và nước hồ muối. Axit hoá nước biển (hay nước hồ muối) bằng axit H2SO4 và cho khí clo sục qua: Cl2 + NaBr → Br2 + 2NaCl Chưng cất dung dịch đồng thời dùng dòng không khí để lôi cuốn brom đi vào dung dịch xôđa cho đến khi bão hoà. 3Br2 + 3Na2CO3 → 5NaBr + NaBrO3 + 3CO2 Sau cùng axit hoá dung dịch bằng axit H2SO4. 5NaBr + NaBrO3 + 3H2SO4 → 3Na2SO4 + 3Br2 + 3H2O Nguồn chính để điều chế iot trong công nghiệp là nước lỗ khoan dầu mỏ và rong biển. Chẳn hạn người ta phơi khô rong biển, đốt thành tro, ngâm tro trong nước để hoà tan hết các muối. Gạn lấy dung dịch đem cô cho đến khi các muối kết tinh; phần lớn muối clo và sunfat lắng xuống, còn muối iodua ở lại trong dung dịch. Cho dung dịch sau cùng này tác dụng với một lượng khí clo đã tính trước (không dư) hoặc với MnO 2 và H2SO4. II. TÍNH CHẤT VẬT LÝ II.1. Đặc điểm cấu tạo phân tử Ở cả 3 trạng thái rắn, lỏng và khí, các halogen đều gồm những phân tử hai nguyên tử X2 . Theo thuyết VB, liên kết trong phân tử halogen là liên kết σ, được hình thành do sự xen phủ của hai obital np Theo thuyết MO, phân tử X2 có cấu hình chung là: (δslk ) 2 (δ*s ) 2 (δlkz )2 ( πlkx ) 2 ( πlky ) 2 ( π*x ) 2 ( π*y ) 2 Flo không có khả năng tạo liên kết π đó, nên năng lượng liên kết của F 2 bé hơn Cl2.. Từ Cl2 đến I2 năng lượng liên kết giảm dần. Từ Flo đến iot, độ bền nhiệt biến đổi phù hợp với chiều biến đổi của năng lượng liên kết trong phân tử: F 2 bắt đầu phân huỷ ở 4500C, Cl2 ở 8000C, Br2ở 6000C và I2 ở 4000 C. II.2. Tính chất vật lý II.2.1. Đặc điểm chung của đơn chất Nguyên tố F Nhiệt độ, 0C N.chảy Sôi -219,6 -187,9 159 1,42 -506 52 Cl Br I At -101,9 -7,3 113,6 - -34,1 58,2 184,5 - 242 192 150 117 1,90 2,28 2,67 - -376 -343 -297 - II.2.2. Nhiệt độ nóng chảy, nhiệt độ sôi, độ tan Lực tưng tác giữa các phân tử X2 là lực Van de van. Lực này tăng lên theo chiều tăng của kích thước phân tử và khả năng bị cực hoá của phân tử, do đó từ flo → atatin, nhiệt độ nóng chảy và nhiệt độ sôi tăng lên. Ở điều kiện thường, flo và clo là chất khí, brôm là chất lỏng, iot và atatin là chất rắn. Các halogen không có cực nên tan ít ở trong nước ở 25 0C, một lít H2O có thể hoà tan 6,4g Clo, 33,6g brôm và 033 gam iot. Khi làm lạnh dung dịch nước, các halogen tách ra dưới dạng tinh thể hiđrat X2.8H2O. Đây là những chất bao được tạo nên nhờ sự xâm nhập của phân tử hlogen và trong khoảng trống của những tập hợp gồm những phân tử nước liên kết với nhau bằng liên kết hiđrô. Lực tương tác giữa phân tử X 2 và phân tử H2O là lực vandecvan. Các halogen tan nhiều trong những dung môi hữu cơ như: C 6H6 , CS2, CCl4, ete và rượu…Bởi vậy người tư thường dùng các dung môi hữu cơ không trộn lẫn với H 2O để chiết Brôm và iot ra khỏi các hỗn hợp. II.2.3. Một số tính chất đặc trưng của iot Trong dung môi hữu cơ mà phân tử không chứa oxi (C 6H6, dầu hỏa, CS2…) iot cho dung dịch màu tím, còn trong dung môi hữu cơ mà phân tử chứa oxi (rượu, ete và axeton) iot cho dung dịch màu nâu. Trong dung dịch màu tím, iot ở dạng phân tử I 2 giống như trong thái hơi, còn trong dung dịch màu nâu, iot tạo nên với dung môi những solvat không bền. Trong dung dịch hồ tinh bột loãng, iot dù chỉ đang vết cũng cho màu xanh thẫm, cho nên hoá phân tích dựa vào tính chất này để phát hiện ra iot. Màu xanh đó biến mất khi đun nóngvà trở lại khi để nguội. Giữa I 2 và tinh bột không có phản ứng hoá học, mà I2 xâm nhập vào những lỗ trống của những phân tử khổng lồ tinh bột. Iot tan nhiều trong nước có chứa iotua nhờ phản ứng kết hợp. I2 + I - € I 3− K = 500 Dung dịch I 3− có màu vàng chanh và có tính chất của một hỗn hợp phân tử I 2 và ion I -. III. TÍNH CHẤT HÓA HỌC III.1. Tính chất hóa học 53 Tính chất hóa học điển hình của halogen là oxi hoá mạnh. Hoạt tính đó giảm dần từ F2 đến I2. Tuy có ái lực electron bé hơn clo nhưng flo có năng lượng liên kết bé hơn nên vẫn hoạt động hơn clo. Trong các halogen, flo có hoạt tính hoá học lớn nhất, nó có thể tác dụng hầu hết nguyên tố (trừ N2) ở nhiệt độ thường hay nhiệt độ cao. Flo cũng phản ứng với nhiều hợp chất khác và phá huỷ chúng tạo ra florua. Clo tác dụng hầu hết nguyên tố (trừ O, N, C và Ir). Brom tác dụng với số nguyên tố giống như clo, nhưng các phản ứng xảy ra kém mãnh liệt hơn. Iot chỉ tác dụng trực tiếp với một số nguyên tố ít hơn. Với cùng một nguyên tố, phản ứng của các halogen xảy ra theo mức độ mãnh liệt giảm dần từ flo đến iot. III.1.1. Tác dụng phi kim III.1.1. 1. Với Hidro Phản ứng F2 + H2 → 2HF Cl2+H2 → 2HCl Br2 +H2 → 2HBr I2 + H2 → 2HI Điều kiện Nhiệt độ - 2520C đun nóng 200-3000C 300-4000C Đặc điểm ∆H0 Nổ mạnh, dây chuyền Có thể nổ - 288,6 - 92,3 - 36,0 + 25,9 Xúc tác Pt Pt Thuận nghịch, khó III.1.1. 2. Với các phi kim khác - Flo: Hoá hợp trực tiếp với hầu hết phi kim (trừ N 2), He, Ne và Ar tạo ra hợp chất cộng hoá trị ứng với bậc oxi hoá cao của nguyên tố phi kim đó. S + 3F2 → SF6 2P + 5F2 → 2PF5 - Clo, brom, iot PCl3 + Cl2 → PCl5 (rắn) III.1.2. Tác dụng với kim loại III.1.2.1. Flo - Các kim loại kiềm, kiểm thổ phản ứng xảy ra mãnh liệt. - Các kim loại: Al , Zn, Cr, Ni, Sn, Pb, AG phản ứng mạnh khi đun nóng. - Các kim loại Cu, Au, họ Pt phản ứng với flo khi đun nóng mạnh. Sản phẩm tạo thành là các florua kim loại ứng với bậc oxi hoá cao của kim loại đó. 2Fe + 3F2 → 2FeF3. - Chú ý rằng một số kim loại có phản ứng bề mặt khi tác dụng với flo. Ví dụ Cu, Ni khi phản ứng flo đã tạo ra một lớp CuF2 và NiF2 rắn chắc cho che phủ bề mặt kim loại nên không bị flo ăn mòn. 54 III.1.2. 2. Clo, brom, iot Hầu hết các kim loại đều hoá hợp với halogen tạo ra halogen ion hoặc halogenua cộng hoá trị. Với clo phản ứng xảy ra mạnh hơn so với brôm, trong khi đó với iot cần phải đun nóng ở nhiệt độ cao. Sản phẩm tạo thành ứng với bậc oxi hoá cao của kim loại đó. III.1.3. Phản ứng hoán vị Một halogen hoạt động có thể tác dụng với muối halogen giải phóng ra halogen kém hoạt động hơn. Flo có khả năng dời chỗ các halogen khác ra khởi các hợp chất ion hoặc hợp chất cộng hoá trị. Khi Flo tác dụng với KCl rắn, lanh tạo ra Cl 2 và KF, với KBr tạo ra BF3và với KI tạo ra IF5. Clo đẩy brôm từ brômua, iot từ iodua. Khi cho brôm tác dụng với dung dịch KI tạo ion phức KI3 đồng thời có cả kết tủa màu tím đen của iot. III.1.4. Phản ứng với các hợp chất - Với NH3 Clo phản ứng mãnh liệt với NH3 đặc khi có ánh sáng đỏ xúc tác 2NH3 (đặc) + 4Cl2 → N2 + 6HCl 6NH3+ 6HCl → 6NH4Cl. Brom phản ứng tương tự. 8NH3 + 3Br2 → N2 + 6NH4Cl - Với H2S Khi cho hiđro sunfua hỗn hợp với clo hoặc hơi brôm hoặc cho đi qua dung dịch chứa brom hay iot, sẽ có S kết tủa. III.1.5. Phản ứng với dung dịch bazơ - Với dung dịch NaOH loãng, lạnh X2 + NaOH → NaX + NaOX + H2O (X = Cl, Br, I) - Với dung dịch kiềm đặc nóng o t 3Cl2 + 6NaOH (đặc) = 5NaCl + NaClO3 + 3H2O Brom và iot phản ứng cũng xảy ra như trên. o t 3Br2 +6NaOH (đặc) = 5NaBr + NaBrO3 + 3H2O - Phản ứng cũng xảy ra tương tự với các dung dịch hiđroxit kim loại nhóm IA khác và các kim loại nhóm IIA (Ca, Sr, Ba). 2Cl2 + 2Ba(OH)2 → BaCl2 + Ba(OCl)2 + 2H2O 6Cl2 + 6Ca(OH)2 → 5CaCl2 + Ca(ClO3)2 + 6H2O III.1.6. Phản ứng với các hợp chất của kim loại - Nước clo và nước brôm oxi hoá dung dịch muối Fe2+→ Fe3+ 55 2Fe2+ + Cl2 → Fe3++ 2Cl2Fe2++ Br2 → Fe3+ + 2Br-. - Nước clo, brôm cũng oxi hoá dung dịch K4[Fe(CN)6] thành K3 [Fe(CN)6] 2K4[Fe(CN)6] + Cl2 → 2K3[Fe(CN)6] + 2KCl - Clo, brom và iot đều oxi hoá hợp chất Sn2+ →Sn4+ Sn2+ + I2 → Sn4+ + 2IIII.1.7. Tính khử Khả năng khử thể hiện ở flo; clo thể hiện khuynh hướng tự oxi hóa-tự khử; từ brom đến iot, tính khử tăng. 5Cl2 + Br2 + 6H2O → 2HBrO3 + 10HCl 5HOCl + 2At + H2O → 2HAtO3 + 5HCl III.2. Ứng dụng - Flo: Dùng để điều chế freon (CF2Cl2) dùng trong các thiết bị làm lạnh; điều chế các polime bền với hóa chất, ví dụ teflon. - Clo: Tẩy trắng vải, bột giấy, diệt trùng nước sinh hoạt, tổng hợp axit clo hiđric và công nghiệp hóa chất. - Brom: thêm vào etxăng chạy động cơ. - Iot: sử dụng trong dược phẩm và phân tích hóa học. IV. HIDRO HALOGENUA IV.1. Cấu tạo phân tử - Theo thuyết VB, phân tử hidro halogenua được hình thành do sự xen phủ giữa obital 1s của hidro và obital np của halogen. - Theo thuyết MO, phân tử hidro haligenua hình thành do sự tổ hợp tuyến tính các obital nguyên tử 1s và np. Những phân tử hidro halogenua có cấu hình 4 chung: (σnp)2(npx)2(npy)2(σ*np)2 IV.2. Tính chất vật lý Ở điều kiện thường, tất cả các hiđro halogen đều là khí không màu. Một số đặc điểm của hiđro halogen được ghi ở bảng sau: Tính chất Năng lượng liên kết H-X, kJ/mol Độ dài liên kết H-X, antron Momen lưỡng cực, D Nhiệt độ nóng chảy, 0C Nhiệt độ sôi, 0C Hằng số axit, Ka HF 565 0,92 1,91 -8,3 +19,5 10-3,2 HCl 431 1,27 1,07 -114,2 -84,9 107,4 HBr 364 1,41 0,79 -88 -66,7 HI 297 1,60 0,38 -50,8 -35,8 1010 IV.2.1. Sự biển đổi nhiệt độ nóng chảy, nhiệt độ sôi 56 Các phân tử HX tương tác với nhau bằng tương tác Van de van. Từ HF đến HI, tương tác định hướng giảm do độ phân cực của phân tử giảm; tương tác khuếch tán tăng do kích thước phân tử tăng và sự giảm độ phân cực của liên kết trong dãy. Vậy từ HCl đến HI, năng lượng tương tác khuếch tán chiếm ưu thế so với tương tác định hướng nên nhiệt độ sôi và nhiệt độ nóng chảy theo chiều tăng của khối lượng phân tử. Riêng HF có nhiệt độ sôi và nhiệt độ nóng chảy cao một cách bất thường do hiện tượng trùng hợp phân tử nhờ liên kết hiđrô. Các phân tử HF có khả năng trùng hợp ngay cả ở trạng thái khí. Ở nhiệt độ trên 900C, khí hiđro florua mới hoàn toàn gồm những đơn phân tử. Liên kết hiđrô vững bền giữa các phân tử HF làm cho HF lỏng có hằng số điện môi lớn (ε = 40 ở 00C) và là dung môi ion hoá tốt (sau H2O) đối với nhiều chất vô cơ và hữu cơ. Bản thân HF lỏng tinh khiết tự ion hoá: HF + HF → H2F+ + Fvà F- + HF → HF-2 IV.2.2. Độ tan Là những hợp chất có cực, các hiđrô halogenua tan nhiều trong nước. HF tan vô hạn ở trong nước, các hiđrô halogenua khác có độ tan lớn và xấp xỉ với nhau (1 lít H 2O ở 200C hoà tan 450 lít HCl). Do có độ tan lớn trong nước, các hiđrô halogenua bốc khói trong không khí ẩm. Các hiđro halogenua tạo nên với nước những hỗn hợp đồng sôi có thành phần và nhiệt độ sôi không đổi theo thời gian. Hợp chất HF HCl HBr HI Thành phần % (về khối lượng) 35,4 20,2 47 57 Nhiệt độ sôi (0C) 1200 110 126 127 IV.3. Tính chất hóa học IV.3.1. Tính axit 57 Trong dãy HF - HCl - HBr - HI, độ dài liên kết tăng, năng lượng liên kết giảm làm tăng khả năng phân li proton, tính axit tăng nhanh. Các axit HCl, HBr, HI đều là những axit mạnh, riêng HF là một axit yếu và khi tác dụng với dung dịch kiềm thu được muối axit do ion F - dễ kết hợp với HF nhờ tạo thành liên kết hidro bền. F- + HF = F-…HF Axti HF cũng tác dụng với thuỷ tinh nên người ta không dùng chai thuỷ tinh mà dùng chai bằng nhựa hay cao su để đựng axit này. IV.3.2. Tính khử Theo chiều giảm độ bền nhiệt của phân tử, tính khử của các hiđrôhalogenua tăng lên. HF hoàn toàn không thể hiện tính khử; HCl chủ yếu thể hiện tính khử khi tác dụng với những chất oxi hoá mạnh; còn HBr và nhất là HI có tính khử mạnh. H 2SO4 đặc bị HBr khử đến khí SO2 và bị HI khử đến H2S. 2HBr + H2SO4 → Br2 + SO2 + 2H2O 8HI + H2SO4 → 4I2 + H2S + 4H2O Các dung dịch HBr và HI khi để lâu trở nên có màu vàng nâu vì bị oxi không khí oxi hoá dần dần giải phóng halogen tự do, còn các dung dịch HF và HCl không hề biến đổi. Tương tác của HCl và O2 chỉ xảy ra trong pha khí khi đun nóng và có xúc tác CuCl2: O2 + 4HCl → 2H2O + 2Cl2 ∆H0 = - 117 Kj II.4. Ứng dụng - HCl: Được sử dụng nhiều, chỉ sau axit sunfuric và nitric; Điều chế vinyl clorua, muối clorua kim loại, amoni clorua; dược phẩm và phẩm nhuộm. - HF: Điều chế criolit nhân tạo, dùng trong sản xuất uran và khắc thủy tinh. - HBr, HI: sử dụng trong tổng hợp hữu cơ. IV.5. Điều chế - HF: Cho muối florua (thường là CaF2) tác dụng với axit sunfuric đặc ở 2500C: CaF2 + H2SO4 → CaSO4 + 2HF - HCl: Điều chế từ các đơn chất; Cho muối ăn tác dụng với axit sunfuric đặc. - HBr, HI: Thủy phân photpho halogenuatương ứng: PBr3 + 3H2O → H3PO3 + 3HBr PI3 + 3H2O → H3PO3 + 3HI V.1. Axit hipohalogenơ V.1.1. Cấu tạo phân tử 58 Dãy axit hipohalogenơ HXO gồm: HFO - HClO - HBrO - HIO. Cấu trúc phân tử HClO V.1.2. Độ bền nhiệt Từ clo đến iot, năng lượng liên kết O-X giảm, nên độ bền nhiệt giảm. Các axit hipohalogenơ chỉ tồn tại trong dung dịch và dễ phân huỷ thành hiđro halogenua và oxi. V.1.3. Tính axit Từ clo đến iot, độ âm điện giảm, mức độ phân cực trong liên kết O-X tăng lên. Do hiệu ứng cảm ứng, độ phân cực trong liên kết O-H giảm, tính axit giảm. Axit HCIO HBrO HIO Ka 2,9 x 10-3 5,0 x 10-9 1,0.10-11 Chẳng hạn HClO bị axit cacbonic đẩy ra khỏi các dung dịch muối: NaClO + CO2 + H2O → NaHCO3 + HClO. Riêng HIO còn phân ly theo kiểu bazơ. HIO € I+ + OHKb = 3.10-10. V.1.4. Tính oxi hóa Axit hipohalogenơ là các chất oxi hóa mạnh. Trong dãy HClO - HBrO - HIO, độ bền trạng thái oxi hóa +1 của halogen tăng, tính oxi hóa giảm, thể hiện qua các giá trị thể điện cực trong môi trường axit. HXO + H+ + 2e E0, V → X- + H2O X = Cl 1,50V X = Br 1,34V X=I 0,99V Trong môi trường axit, HClO có thể oxi hóa Fe 2+ thành Fe3+, Cl- thành Cl2, Ithành I2: HClO + 2Fe2+ + H+ → 2Fe3+ + Cl- + H2O HClO + Cl- + H+ → Cl2 + H2 O HClO + 2I- + H+ → I2 + Cl- + H2O V.1.5. Muối hipohalogenit V.1.5. 1. Độ bền nhiệt Trong môi trường kiềm, ion hipohalogenit XO - (X =Cl, Br,I) phân huỷ chủ yếu theo phản ứng dị phân: 3XO- → 2X- + O33KClO → 2KCl + KClO3 59 Ion ClO- do phân rất chậm ở nhiệt độ thường, nhưng bị di phân nhanh chóng ở nhiệt độ trên 750C. Bởi vậy khi Cl2 tác dụng với dd kiềm ở nhiệt độ thường theo phản ứng. Cl2 + 2KOH → KCl + KClO +H2O Và khi đun nóng theo phản ứng: 3Cl2 + 6KOH → 5KCl +KClO3 + 3H2O Ion BrO- phân huỷ bị li châm ở 00C, phân huỷ nhanh ở nhiệt độ thường. Ion IO- phân huỷ bị li ở tất cả các nhiệt độ cho nên iot chỉ tác dụng với dung dịch kiềm theo phản ứng: 3I2 + 6KOH → 5KI +KIO3 + 3H2O Như vậy, tuỳ theo những điều kiện cụ thể, halogen tác dung với dd kiềm sẽ cho dd chứa ion XO- hay chứa ion XO3-. V.1.5. 2. Tính oxi hóa Axithipohalogenơ và muối hipohalogenit đều là chất oxi hoá mạnh, tính oxi hoá giảm dần từ ClO- đến IO- biểu hiện thông qua giá trị thế điện cực chuẩn: Cặp oxi hóa - khử XO-/X2 XO-/X- X = Cl 0,40V 0,88V X = Br 0,45V 0,76V X=I 0,45V 0,49V Quan trọng hơn hết đối với thực tế là muối hipoclorit. Ở trong dung dịch, hipoclorit có thể oxi hoá các ion mangan, crom, sắt, … thành hiđrôxit của kim loại có số oxi hoá cao hơn, ví dụ: 2ClO- + Mn(OH)2 + 2OH- → MnO 24− + 2Cl- + 2H2O 3ClO- + 2MnO2 + 2OH- → MnO 24− + 3Cl- + H2O 3ClO- + 2Cr(OH)3 + 4OH- → 2CrO 24− + 3Cl- + 5H2O Oxi hoá NH3 thành N2; H2O2 thành H2O và O2; brom thành bromat, iot thành iodat. Ví dụ: 3NaClO + 2NH3 → N2+ 3NaCl + 3H2O NaClO + H2O2 → H2O + O2 + NaCl. Dựa trên đặc tính oxi hoá của hipoclorit, người ta thường dùng 2 hoá phẩm chứa muối hipoclorit là nước Javen và clorua vôi để tẩy trắng vải và sát trùng. V.2. Các oxiaxit của clo Trong dãy oxiaxit HClO - HClO2 - HClO3 - HClO4, độ bền nhiệt tăng dần, tính axit tăng dần và tính oxi hóa giảm dần Trong dãy gốc oxiaxit của clo, độ bền nhiệt tăng dần. Điều này được giải thích bằng sự tăng độ bội liên kết Cl - O và độ dài liên kết bị rút ngắn lại. 60 Anion dlk (Cl – O), antron ClO1,7 ClO-2 1,64 ClO31,57 ClO41,45 Do sự tăng độ bền trong dãy ClO- - ClO −2 - ClO 3− - ClO −4 , tính oxi hoá của các oxiaxit và các muối tương ứng giảm xuống. Ví dụ, ion ClO- có khả năng oxi hoá mạnh trong bất kì môi trường nào: NaClO + 2KI + H2O → NaCl + I2 + 2KOH Nhưng ion ClO 3− chỉ oxi hoá trong môi trường axit: NaClO3 + 6KI + 3H2SO4 → NaCl + I2 + 3K2SO4 +3H2O Còn ion ClO −4 thực tế không có khả năng oxi hoá ở trong nước và không bị điện phân trong dung dịch. Bài tập vận dụng: Bài 1. So sánh và giải thích ngắn gọn năng lượng liên kết của a) Các phân tử halogen: F2; Cl2; Br2 và I2. b) Các hiđrohalogenua: HF; HCl; HBr và HI. Câu 2. Viết phương trình phản ứng( ghi rõ điều kiện) khi: a) Cho clo lần lượt phản ứng với Ca(OH)2; H2S. b) Cho flo lần lượt phản ứng với H2S; NH3; SiO2. c) Cho HI lần lượt phản ứng với H2SO4; O2; FeCl3. d) Cho Cl2O; ClO2; Cl2O6; Cl2O7 lần lượt phản ứng với dung dịch NaOH. Câu 3. 1. Giải thích hiện tượng xảy ra khi: a) Dẫn từ từ luồng khí Cl 2 vào dung dịch KI không màu sẽ trở nên có màu đỏ sẫm, nhưng nếu ngừng dẫn khí Cl2 vào thì sau đó dung dịch trở lại không màu? b) Dẫn liên tục cho tới dư luồng khí Cl 2 vào dung dịch KI không màu sẽ trở nên màu đỏ sẫm, sau đó dung dịch trở lại không màu 2. Vì sao trong phân tử Cl 2, Br2, I2 ngoài liên kết σ còn có liên kết π ? Vì sao độ bền nhiệt tăng từ F2 đến Cl2, sau đó lại giảm từ Cl2 đến I2? Câu 4. 1. Khi sục khí Cl2 qua dung dịch Ca(OH)2, tuỳ điều kiện phản ứng có thể cho muối CaOCl2 hay Ca(ClO)2. a. Viết phương trình phản ứng. 61 b. Sục khí CO2 từ từ tới dư qua dung dịch CaOCl 2 và dung dịch Ca(ClO)2.Viết các phương trình phản ứng xảy ra. 2. Điclo oxit ClO2 là một chất khí được dùng để tẩy trắng trong sản xuất giấy. Phương pháp tốt nhất để điều chế ClO 2 trong phòng thí nghiệm là cho hỗn hợp KClO 3 và H2C2O4 tác dụng với H2SO4 loãng. Trong công nghiệp ClO2 được điều chế bằng cách cho NaClO3 tác dụng với SO2 có mặt H2SO4 4M. a) Viết các phương trình phản ứng xảy ra. b) ClO2 là hợp chất dễ gây nổ, tại sao điều chế ClO 2 trong phòng thí nghiệm theo phương pháp trên tương đối an toàn? Câu 5. a. Viết công thức Lewis, nêu trạng thái lai hóa của nguyên tử trung tâm và dạng hình học của các phân tử sau: KrF2, IF3, SeF4, KrF4, IF5, AsF5. Cho: As (Z = 33); Se (Z = 34); Kr (Z = 36). b. Sắp xếp theo thứ tự tăng dần (có giải thích) góc liên kết OSX trong các phân tử sau: SOF2; SOCl2; SOBr2. Câu 6. 1. Cho Cl2 vào dung dịch KOH loãng , sau đó đun nóng dung dịch dần lên tới 700 0C. Viết phương trình phản ứng xảy ra trong quá trình trên. Ở 7000C thu được chất gì? 2. Trong phòng thí nghiệm nguời ta thuờng điều chế khí Cl2 bằng cách nào ? Nêu cụ thể điều kiện điều chế và giải thích tại sao phải làm nhu vậy? Câu 7. 1. Trong phòng thí nghiệm thu khí Cl 2 bằng cách nào? Nếu phải thu khí Cl 2 bằng cách dời chỗ nước thì phải làm như thế nào? Giải thích? 2. Điều chế Cl2 trong công nghiệp bằng phương pháp điện phân muối ăn, do điều kiện không đảm bảo ngoài Cl2 thu được còn tạo thành một lượng ClO2 và một số chất khác. Hãy lập các phương trình hoá học giải thích sự tạo thành các chất trên. So sánh các phản ứng và các sản phẩm khi cho mỗi chất Cl2 và ClO2 tác dụng với H2O, với dung dịch NaOH. Câu 8. 1. Chứng minh tính oxi hoá giảm dần từ F2 đến I2. 62 2. Nêu cách điều chế flo F2? 3. Cách nhận biết khí clo? Câu 9. Viết các phương trình phản ứng xảy ra ( nếu có) của khí clo, tinh thể iot tác dụng với : a. Dung dịch NaOH ( ở nhiệt độ thường , khi đun nóng ) b. Dung dịch NH3 . Câu 10. a) Phương pháp sunfat có thể điều chế được chất nào: HF , HCl , HBr , HI ? Nếu có chất không điều chế được bằng phương pháp này, hãy giải thích tại sao? Viết các phương trình phản ứng và ghi rõ điều kiện (nếu có) để minh hoạ. b) Trong dãy oxiaxit của clo, axit hipoclorơ là quan trọng nhất. axit hipoclorơ có các tính chất: a) Tính axit rất yếu, yếu hơn axit cacbonic; b) Có tính oxi hoá mãnh liệt; c) Rất dễ bị phân tích khi có ánh sáng mặt trời, khi đun nóng. Hãy viết các phương trình phản ứng để minh hoạ các tính chất đó. Câu 11. Một hợp chất gồm 2 nguyên tố halôgen có công thức XYn. Cho 5,2 gam hợp chất trên tác dụng với khí SO2 dư trong nước theo sơ đồ phản ứng sau: XYn+ H2O + SO2 → HX + HY + H2SO4 Dung dịch thu được cho phản ứng với dung dịch Ba(NO 3)2 dư thì thu được 10,5 gam kết tủa. Lọc bỏ kết tủa lấy dung dịch thu được cho tác dụng với dung dịch AgNO 3 dư thì thu được hỗn hợp kết tủa 2 muối bạc. - Viết các phương trình phản ứng xảy ra. - Đề nghị công thức phân tử của hợp chất đầu. Biết rằng sai số trong thực nghiệm khoảng 1%. Câu 12. a) Viết phương trình phản ứng xảy ra trong những trường hợp sau: 1. Ozon oxi hóa I- trong môi trường trung tính 2. Sục khí CO2 qua nước Javel 3. Cho nước Clo qua dung dịch KI 4. Sục khí Flo qua dung dịch NaOH loãng lạnh 63 5. Sục Clo đến dư vào dung dịch FeI2 Câu 13. Hợp chất A chứa S, O và halogen. Trong mỗi phân tử A chỉ có 1 nguyên tử S. Thuỷ phân hoàn toàn A được dd B. Người ta sử dụng những thuốc thử cho dưới đây để nhận biết những ion nào có trong B? Thuốc thử Hiện tượng a. AgNO3 + HNO3 Có kết tủa vàng nhạt b. Ba(NO3)2 Không có kết tủa c. NH3 + Ca(NO3)2 Không hiện tượng d. KMnO4 + Ba(NO3)2 Mất màu, có kết tủa trắng e. Cu(NO3)2 Không có kết tủa Qua đó có thể đưa ra công thức phù hợp của A là gì? Để xác định chính xác người ta lấy 7,19g A hòa tan vào nước thành 250ml dung dịch. Lấy 25 ml dd thêm một it HNO3 và AgNO3 dư thu được 1,452g kết tủa khô sạch. Xác định công thức phân tử và công thức cấu tạo A? Câu 14. 1. Hãy hoàn thành các PTPƯ điều chế clo trong phòng thí nghiệm theo sơ đồ chuyển hoá sau: (1) (2) (3) (4) (5) → KCl + ... + Cl2 ... + ...  → PbCl2 + ... + Cl2 ... + ...  t ... + ... → ... + ... + Cl2  → ... + ... ... + ... + ... + Cl2 t ... + ... → ... + ... + ... + Cl2 0 0 t (6) ... + ... + ... → ... + MnSO4 + ... + ... + Cl2 2. Chất rắn A là kim loại hoặc là một trong các chất MnO 2, KMnO4, K2Cr2O7, CaOCl2. 0 Khi hoà tan 15 gam A vào dd HCl thì tạo ra 8,4 lít đơn chất khí B bay ra (đktc). Hãy chứng minh rằng B không thể là Cl2 . Câu 15. Để xác định hàm lượng oxi tan trong nước người ta lấy 100,00 ml nước rồi cho ngay MnSO4(dư) và NaOH vào nước . Sau khi lắc kĩ (không cho tiếp xúc với không khí) Mn(OH)2 bị oxi oxi hoá thành MnO(OH)2 . Thêm axit (dư) , khi ấy MnO(OH)2 bị Mn2+ khử thành Mn3+. Cho KI ( dư ) vào hỗn hợp , Mn 3+ oxi hoá I- thành I3-. Chuẩn độ I3- hết 10,50 ml Na2S2O3 9,800.10-3 M. 64 a. Viết các phương trình ion của các phản ứng đã xảy ra trong thí nghiệm . b. Tính hàm lượng ( mmol / l ) của oxi tan trong nước . Câu 16. X là muối có công thức NaIOx. Hoà tan X vào nước thu được dung dịch A. Cho khí SO 2 đi từ từ qua dung dịch A, thấy dung dịch xuất hiện màu nâu, tiếp tục sục SO 2 vào thì mất màu nâu và thu được dung dịch B.Thêm một ít dung dịch HNO 3 vào dung dịch B và sau đó thêm lượng dư dung dịch AgNO 3, thấy xuất hiện kết tủa màu vàng.Thêm dung dịch H2SO4 loãng và KI vào dung dịch A, thấy xuất hiện dung dịch màu nâu và màu nâu mất đi khi thêm dung dịch Na2S2O3 vào. a. Viết các phương trình phản ứng xảy ra dưới dạng ion thu gọn. b. Để xác định chính xác công thức của muối X người ta hoà tan 0,100g X vào nước, thêm lượng dư KI và vài mililít dung dịch H 2SO4 loãng, dung dịch có màu nâu. Chuẩn độ I2 sinh ra bằng dung dịch Na2S2O3 0,1M với chất chỉ thị màu là hồ tinh bột cho tới khi mất màu, thấy tốn hết 37,4ml dd Na2S2O3. Tìm công thức X. Câu 17. Dung dịch X là dung dịch HCl. Dung dịch Y là dung dịch NaOH. Cho 60 ml dung dịch vào cốc chứa 100 gam dung dịch Y, tạo ra dung dịch chỉ chứa một chất tan. Cô cạn dung dịch, thu được 14,175 gam chất rắn Z. Nung Z đến khối lượng không đổi, thì chỉ còn lại 8,775 gam chất rắn. a. Tìm nồng độ CM của dung dịch X, nồng độ C% của dung dịch Y và công thức của Z. b. Cho 16,4 gam hỗn hợp X1 gồm Al, Fe vào cốc đựng 840 ml dung dịch X. Sau phản ứng thêm tiếp 1600 gam dung dịch Y vào cốc. Khuấy đều cho phản ứng hoàn toàn, lọc lấy kết tủa, đem nung ngoài không khí đến khối lượng không đổi, thu được 13,1 gam chất rắn Y1. Tìm thành phần % theo khối lượng của mỗi kim loại trong hỗn hợp X1. Câu 18. Muối KClO4 được điều chế bằng cách điện phân dung dịch KClO 3. Thực tế khi điện phân ở một điện cực, ngoài nửa phản ứng tạo ra sản phẩm chính là KClO 4 còn đồng thời xẩy ra nửa phản ứng phụ tạo thành một khí không màu. Ở điện cực thứ hai chỉ xẩy ra nửa phản ứng tạo ra một khí duy nhất. Hiệu suất tạo thành sản phẩm chính 65 chỉ đạt 60%. 1. Viết ký hiệu của tế bào điện phân và các nửa phản ứng ở anot và catot. 2. Tính điện lượng tiêu thụ và thể tích khí thoát ra ở điện cực (đo ở 25 0C và 1atm) khi điều chế được 332,52g KClO4. Câu 19. a. Làm thế nào có thể tách riêng được HClO ra khỏi hỗn hợp với HCl? b. Từ KCl làm thế nào điều chế được KClO3? c. Làm thế nào để tách được từng chất ra khỏi hỗn hợp từ KClO3 và NaClO3 . Câu 20. Clo, brom, iot có thể kết hợp với flo tạo thành các hợp chất dạng XF m. Thực nghiệm cho thấy rằng m có 3 giá trị khác nhau nếu X là Cl hoặc Br, m có 4 giá trị khác nhau nếu X là I. a) Hãy viết công thức các hợp chất dạng XFm của mỗi nguyên tố Cl, Br, I. b) Dựa vào cấu tạo nguyên tử và độ âm điện của các nguyên tố, hãy giải thích sự hình thành các hợp chất trên. Cho: Độ âm điện của F là 4,0; Cl là 3,2; Br là 3,0; I là 2,7. 66 Hướng dẫn giải Câu 1 a) Năng lượng liên kết tăng dần từ F 2 đến Cl2 và giảm dần từ Cl2 đến I2 vì F2 chỉ có 1 liên kết đơn giữa hai nguyên tử, còn Cl 2, Br2, I2 ngoài 1 liên kết xích ma tạo thành giống nguyên tử F2 còn có một phần liên kết pi do sự xen phủ một phần AO-p với AO-d, vì vậy năng lượng liên kết của Cl2 cao hơn của F2. Còn từ Cl2 đến I2 năng lượng liên kết giảm dần vì độ dài liên kết dX-X lớn dần nên năng lượng cần thiết để phá vỡ liên kết là giảm dần. b) Năng lượng liên kết từ HF đến HI giảm dần vì độ dài liên kết d H-X lớn dần, hiệu độ âm điện giảm dần nên năng lượng cần thiết để phá vỡ liên kết là giảm dần. Câu 2 a) Cl2 tác dụng với dd Ca(OH)2 ở nhiệt độ thường, ở 70 – 100 0C và Ca(OH)2 dạng huyền phù( 3 ptpư) Cl2 tác dụng với khí H2S; dung dịch H2S ( 2 ptpư) b) 4F2 + H2S → SF6 + 2HF 3F2(k) + 4NH3(k) → NCl3(k) + 3NH4F c) 2HI + H2SO4(đ) → I2 + SO2 + 2H2O H2S 4HI + O2 → 2I2 + 2H2O 2HI + 2FeCl3 → I2 + 2FeCl2 + 2HCl d) Cl2O + 2NaOH → 2NaClO + H2O 2ClO2 + 2NaOH → NaClO2 + NaClO3 + H2O Cl2O6 + 2NaOH → NaClO3 + NaClO4 + H2O Cl2O7 + 2NaOH → 2NaClO4 + H2O Câu 3 1. a) Ban đầu sinh ra I2 tự do nên dung dịch có màu đỏ sẫm, nhưng sau đó có phản ứng tạo phức KI3 nên dung dịch trở lại không màu Cl2 + 2KI → 2KCl + I2 KI + I2 → KI3 Không màu b) Ban đầu cũng xuất hiện màu đỏ sẫm của iot tự do sinh ra nhưng sau đó do phản ứng của iot tự do với nước clo tạo ra các axit không màu: Cl2 + 2KI → 2KCl + I2 5Cl2 + I2 + 6H2O → 10HCl + 2HIO3 2. Ngoài liên kết σ , trong phân tử Cl2, Br2, I2 còn có một phần liên kết π tạo ra bởi sự xen phủ của các obitan d. Liên kết π được hình thành đó là liên kết cho nhận ( π p→d ) gây ra bởi cặp electron của một nguyên tử này với obitan d trống của nguyên tử kia Sự hình thành một phần liên kết π đã làm cho phân tử các halogen bền hơn. Flo không có khả năng này do không có obitan d nên phân tử F 2 có năng lượng liên kết nhỏ hơn phân tử Cl2. Từ Cl2 đến I2 bán kính nguyên tử tăng, độ dài liên kết tăng nên năng lượng liên kết giảm, chính vì vậy nên độ bền nhiệt giảm dần từ Cl2 đến I2 Câu 4. 1. a. 2Cl2 + Ca(OH)2 → CaCl2 + Ca(ClO)2 + 2H2O Cl2 + Ca(OH)2 (sữa vôi) 300C→ CaOCl2 + H2O 67 CO2 + 2CaOCl2 + H2O → CaCO3 + CaCl2 + HClO CO2 + H2O + CaCO3 → Ca(HCO3)2 CO2 + Ca(ClO)2 + H2O → CaCO3 + 2HClO 2. a. 2KClO3 + H2C2O4 + 2H2SO4 → 2ClO2 + K2SO4 + 2CO2 + 2H2O 2NaClO3 + SO2 + H2SO4 → 2 ClO2 + 2NaHSO4 b. CO2 sinh ra pha loãng ClO2 nên làm giảm khả năng nổ của ClO2 Câu 5. a. b. sp3d, đường thẳng sp3d, chữ T sp3d, bập bênh sp3d2, vuông phẳng sp3d2, chóp đáy vuông sp3d, lưỡng tháp tam giác b. Thứ tự : OSF < OSCl< OSBr Do độ âm điện của F > Cl > Br, độ âm điện càng thấp thì cặp electron liên kết S-X càng ở xa nguyên tử trung tâm S, lực đẩy nhau giữa liên kết S=O với S-X sẽ càng nhỏ, góc liên kết sẽ tăng lên Câu 6. 1. Cl2 + 2KOH → KClO + KCl + H2O 3KClO → KClO3 → KClO4 → KClO3 + 2KCl ( 70- 80oC) KClO4 + KCl ( 400oC ) KCl + 2O2 ( 700oC) ở 700C ta thu đuợc chất rắn là KCl 2. Phòng TN điều chế khí Cl2 bằng cách cho tinh thể KMnO 4 tác dụng với dung dịch HCl đặc và đun nóng nhẹ. Giải thích: Dựa vào pt nerst: dùng tinh thể KMnO 4, HCl đặc làm tăng nồng độ [], [H +], nhiệt độ tăng, làm tăng khả năng ôxi hóa của MnO4[Cl-] tăng làm giảm ECl2/Cl- nen E phản ứng tăng , phản ứng xảy ra mạnh hơn. Câu 7. 1. Thu khí Cl2 bằng cách dời chỗ của không khí 68 Nếu thu khí Cl2 bằng cách dời chỗ nước thì cho thêm NaCl vào nước để làm giảm khả năng hòa tan của Cl2 trong nước.Do có ion Cl- làm cân bằng dịch chuyển theo chiều ngịch. Cl2 + H2O = HCl + HClO 2. Điều chế Cl2 trong công nghiệp: − Điện phân 2NaCl + 2H2O (có vách ngăn) → H2 + Cl2 + 2NaOH − Sự tạo ClO2 do: 4Cl2 + 3O2 + 2H2O → 4ClO2 + 4HCl − 6ClO2 + 3H2O → HCl + 5HClO3 Cl2 + H2O → HCl + HClO 2ClO2 + 2NaOH → NaClO2 + NaClO3 + H2O Cl2 + 2NaOH → NaCl + NaClO + H2O − Bản chất của các phản ứng này giống nhau, đều là phản ứng tự oxi hoá, tự khử. Nhưng khác nhau: − Cl ← Cl2 → Cl+ còn Cl3+ ← Cl4+ → Cl5+. Câu 8. 1. 1. Cách 1. phản ứng với H2. dựa vào điều kiện xảy ra phản ứng . - Thước đo của phản ứng là năng lượng. Cách 2: Halogen mạnh đẩy halogen yếu ra khỏi muối. - F2 + NaCl(khan)  NaF + Cl2. - Các halogen khác chủ yếu trong dung dịch. - Thước đo của phản ứng là thế điện cực. Cách 3: Phản ứng với Fe: F2, Cl2 , Br2 cho sản phẩm muối sắt (III) còn I2 cho sản phẩm là muối Fe(II) Phản ứng với H2O. Phản ứng không cùng kiểu  khó so sánh. 2. F2 là chất oxi hoá rất mạnh nên không thể dùng chất oxi hoá để oxi hoá F 1 – thành F2, mà phải đpnc hỗn hợp KF và HF ở 660C, với điện cực trơ. 3. Dùng quỳ tím ẩm. Quỳ hoá đỏ sau đó mất màu. Câu 9. a. Các phương trình phản ứng của khí clo , tinh thể iot với dung dịch NaOH (ở t o thường , khi đun nóng) : nguội Cl2 + 2 NaOH → NaCl + NaOCl + H2O nóng 3 Cl2 + 6 NaOH → 5 NaCl + NaClO3 + 3 H2O 3 I2 + 6 NaOH → 5 NaI + NaIO3 + 3 H2O b.Các phương trình phản ứng của khí clo , tinh thể iot với dung dịch NH3 : 3 Cl2 + 8 NH3 → N2 + 6 NH4Cl 3 I2 + 5 NH3 → NI3.NH3 + 3 NH4I Câu 10. a) Phương pháp sunfat là cho muối halogenua kim loại tác dụng với axit sunfuric đặc, nóng để điều chế hiđrohalogenua dựa vào tính dễ bay hơi của hiđrohalogenua. 69 Phương pháp này chỉ áp dụng để điều chế HF , HCl, không điều chế được HBr và HI vì axit H2SO4 là chất oxi hoá mạnh còn HBr và HI trong dung dịch là những chất khử mạnh, do đó áp dụng phương pháp sunfat sẽ không thu được HBr và HI mà thu được Br2, I2. Các phương trình phản ứng: CaF2 + H2SO4 đ, nóng → 2 HF ↑ + CaSO4 NaCl + 2 NaCl + NaBr + 2 HBr + NaI + H2SO4 đ, nóng → HCl ↑ + H2SO4 đ, nóng → 2 HCl ↑ + NaHSO4 Na2SO4 H2SO4 đ, nóng → NaHSO4 + HBr H2SO4 đ, nóng → SO2 + 2 H2O + H2SO4 đ, nóng → NaHSO4 + HI Br2 6 HI + H2SO4 đ, nóng → H2S + 4 H2O + 4 I2 b) Axit hipoclorơ : - Tính axit rất yếu, yếu hơn axit cacbonic NaClO + CO2 + H2O → NaHCO3 + HClO Tính oxi hoá mãnh liệt, đưa chất phản ứng có số oxi hoá cao nhất +6 4 HClO + PbS-2 → 4 HCl + PbSO4 - Dễ bị phân tích : as to HClO → HCl + O ; 3 HClO → 2 HCl + HClO3 Câu 11. XYn+ (n+1)H2O + n +1 n +1 SO2 → HX + nHY + H2SO4 2 2 Tính số mol BaSO4 = 0,045 ⇒ số mol H2SO4 = 0,045 ⇒ số mol XYn = Tính ra M (của XYn ) = 5, 2(n + 1) = 57,8(n+1) 0, 09 0, 09 n +1 Vì X và Y đều tạo ra kết tủa không tan trong nước nên X hoặc Y không phải là Flo vì AgF tan trong nước, do đó X và Y chỉ có thể là Cl, Br hoặc I Vì số oxi hoá của các halogen trong hợp chất là các số lẻ –1, +1, +3, +5, +7 Nếu n = 1 ⇒ M = 115,6 ⇒ XY có thể là BrCl ( có PTK là 115,5 ) Nếu n = 3 ⇒ M = 231,2 ⇒ XY3 có thể là ICl3 ( có PTK là 233,5) Nếu n = 5 hoặc n = 7 không có công thức phù hợp Câu 12. 1. O3 + 2I- + H2O → O2 + I2 + 2OH2. CO2 + NaClO + H2O → NaHCO3 + HClO 3. Cl2 + 2KI → 2KCl + I2 ; Nếu KI còn dư: KI + I2 → KI3 Nếu Clo dư : 5Cl2 + 6H2O + I2 → 2HIO3 + 10HCl 4. 2F2 + 2NaOH(loãng, lạnh) → 2NaF + H2O + OF2 2FeI2 + 3Cl2 → 2FeCl3 + 2I2 ; 5Cl2 + I2 + 6H2O → 2HIO3 + 10HCl Câu 13. 70 AgNO3 : thuốc thử ion Cl-( kt trắng) ; Br- ( kt vàng nhạt) ; I- ( kt vàng sẫm) Ba(NO3)2 : thuốc thử ion SO42- ( kt trắng) NH3 + Ca(NO3)2 : thuốc thử ion F- (kt CaF2 trắng) KMnO4 + Ba(NO3)2 : thuốc thử ion SO32- ( kt BaSO4) Cu(NO3)2 : thuốc thử ion I- ( I2 + CuI kt trắng) • Từ htg trên kết luận A có S+4, có Br- là SOBr2 hoặc SOBrCl. • SOBr2 + 2H2O ---> H2SO3 + 2HBr và SOBrCl + 2H2O ---> H2SO3 + HCl + HBr Từ số liệu tính toán ra kết quả: A là SOBrCl. C.t.c.t Cl O S Br Câu 14. 1. (1) KClO3(r) + 6HCl(đặc) → KCl + 3H2O + Cl2 (2) PbO2 + 4HCl(đặc) → PbCl2 + 2H2O + Cl2 (hoặc Pb3O4 + 8HCl(đặc) → 3PbCl2 + 4H2O + Cl2) t (3) MnO2(r) + 4HCl(đặc) → MnCl2 + 2H2O + Cl2 (4) 2KMnO4(r) + 16HCl(đặc) → 2KCl + 2MnCl2 + 8H2O + 5Cl2 t (5) K2Cr2O7(r ) + 14HCl(đặc) → 2KCl + 2CrCl3 + 7H2O + 3Cl2 t (6) 2NaCl + MnO2 + 3H2SO4 → 2NaHSO4 + MnSO4 + 2H2O + Cl2. + Các PTPƯ: 2 0 0 0 MnO2 + 4H+ + 2Cl- → Mn2+ + Cl2↑ + 2H2O (1) + 2+ 2MnO4 + 16H + 10Cl → 2Mn + 5Cl2↑ + 8H2O (2) 2+ 3+ Cr2O7 + 14H + 6Cl → 2Cr + 3Cl2↑ + 7H2O (3) 2+ OCl2 + 2H → Cl2↑+ H2O (4) + Để thu được 8,4 lít Cl2 (0,375 mol) thì cần 0,125 ≤ số mol A ≤ 0,375 → 23,7g ≤ mA ≤ 47,6 g → trái với giả thiết là mA = 15g. Vậy B không thể là Cl2. Câu 15. 1) a. Các phương trình phản ứng : Mn2+ + 2 OHMn(OH)2 ↓ 2 Mn(OH)2 + O2 2 MnO(OH)2 (1) + 2+ 3+ MnO(OH)2 ↓ + 4 H + Mn = 2 Mn + 3 H2 O (2) 3+ 2+ 32 Mn + 3I = 2 Mn + I (3) 322I + 2 S2O3 = S4O6 + 3I (4) n O2 = 9,8.10 −3.10,50 = 0,0257 mmol 2.2 nA = nB = nZ = 0,0257. 1000 = 0,257 mmol / l 100 6,16.273 = 0,25( mol) 300,3..22,4 Câu 16. 2IOx- + (2x-1)SO2 + (2x-2)H2O → I2 +(2x-1)SO42- + (4x-4)H+ (1) 71 SO2 + I2 + 2H2O → Ag+ + I- → 2I- + SO42- + 4H+ (2) AgI↓ (3) (2x – 1)I- + IOx- + 2xH+ → xI2 + xH2O I2 + 2S2O32- → S4O62- + 2I- (4) (5) nNa2S2O3 = 0,1.0,0374 = 3,74.10-3 (mol) Từ (5): nI2 = 1/2.nNa2S2O3 = 1,87.10-3 (mol) - Từ (4): nIox = 1/x. nI2 ⇒ MNaIOx = 1,87.10 −3 = (mol) x 0,100.x = 53,5x ⇔ 23 + 127 + 16x = 53,5x ⇒ x = 4 1,87.10 −3 Vậy: X là NaIO4 Câu 17. (a) HCl + NaOH → NaCl + H2O NaCl + n H2O → NaCl.nH2O Z NaCl.nH2O → NaCl + n H2O Do dung dịch thu được chỉ chứa một chất tan nên HCl và NaOH phản ứng vừa đủ với nhau. Có: nHCl = nNaOH = nNaCl = 8,775: 58,5 = 0,15 mol. C M ( HCl ) = 0,15 = 2,5M 0,06 C %( NaOH ) = 0,15 × 40 × 100% = 6% 100 Áp dụng định luật bảo toàn khối lượng ta có: nH2O = 14,175 - 8,775 = 5,4 gam; nH2O = 0,3 mol => n = 0,3: 0,15 = 2; Vậy công thức của Z là NaCl.2H2O. (b) Số mol HCl có trong 840 ml dung dịch X: nHCl = 0,84.2,5 = 2,1 mol Số mol NaOH có trong 1600 gam dung dịch Y: n NaOH = 1600 × 6 = 2,4 mol 100 × 40 Al + 3 HCl → AlCl3 + 3/2 H2 (1) a 3a a Fe + 2 HCl → FeCl2 + H2 (2) b 2b b Giả sử X1 chỉ có Al. Vậy số mol HCl cần dùng để hòa tan hết lượng Al là: nHCl = 16,4 × 3 = 1,82 < 2,1 27 Giả sử X1 chỉ có Fe. Vậy số mol HCl cần dùng để hòa tan hết lượng Fe là: nHCl = 16,4 × 2 = 0,59 < 2,1 56 Vậy với thành phần bất kì của Al và Fe trong X 1 thì HCl luôn dư. Khi thêm dung dịch Y: HCl + NaOH → NaCl + H2O (3) 2,1 - (3a + 2b) 2,1 - (3a + 2b) FeCl2 + 2 NaOH → Fe(OH)2 + 2 NaCl (4) b 2b b AlCl3 + 3 NaOH → Al(OH)3 + 3 NaCl (5) 72 a 3a a Đặt số mol của Al và Fe trong 16,4 gam hỗn hợp X1 lần lượt là a và b. Có: 27a + 56b = 16,4 (*) Tổng số mol NaOH tham gia các phản ứng (3), (4) và (5) là 2,1 mol => số mol NaOH dư là: 2,4- 2,1 = 0,3 mol. Al(OH)3 + NaOH → NaAlO2 + 2 H2O a 0,3 Trường hợp 1: a ≤ 0,3, Al(OH)3 bị hòa tan hoàn toàn, kết tủa chỉ có Fe(OH)2. 4 Fe(OH)2 + O2 → 2 Fe2O3 + 4 H2O b b/2 Chất rắn Y1 là Fe2O3. b/2 = nFe2O3 = 13,1: 160 = 0,081875; => b = 0,16375 mol (*) => a = 0,2678 mol (≤ 0,3) => %Al = 27. 0,2678 .100: 16,4 = 44,09%; %Fe = 55,91%. Trường hợp 2: a > 0,3, Al(OH)3 bị hòa tan một phần, kết tủa có Fe(OH) 2 và Al(OH)3 dư. 2 Al(OH)3 → Al2O3 + 3 H2O a - 0,3 (a - 0,3)/2 4 Fe(OH)2 + O2 → 2 Fe2O3 + 4 H2O b b/2 Chất rắn Y1 có Al2O3 và Fe2O3. 51 (a - 0,3) + 80 b = 13,1 (**) Từ (*) và (**) suy ra: a = 0,4; b = 0,1 => %Al = 27. 0,4 .100: 16,4 = 65,85%; %Fe = 34,15%. Câu 18. 1. Kí hiệu của tế bào điện phân: Pt  KClO3 (dd)  Pt Phản ứng chính: anot: ClO3- - 2e + H2O → ClO4 - + 2H+ catot: 2H2O + 2e → H2 + 2OHClO3- + H2O → ClO4- + H2 Phản ứng phụ: anot: catot: H2O - 2e → 2H+ + 1 O2 2 2H2O + 2e → H2 + 2OHH2O → 2. M KClO = 39,098 + 35,453 + 64,000 = 138,551 1 O2 + H2 2 4 332,52 = 2,4mol 138,551 c 100 = 8.F = 8(96485 C) = 771880 C q = 2,4 mol . 2F . mol 60 n KClO4 = q = 771880 C 8F = 4 mol 3. Khí ở catot là hydro: n H 2 = 2F / mol nRT 4.0,08205.298 = = 97,80 lit V H2 = P 1 73 Khí ở anot là oxy: nF tạo ra O2 = 8 . 0,4 = 3,2 F n O2 = 3,2 F = 0,8 mol 4F / mol nRT 0,8.0,08205.298 = = 19,56 lit V O2 = P 1 Câu 19. a. Cho hỗn hợp hai axit tác dụng với CaCO 3 chỉ có HCl tác dụng. Chưng cất hỗn hợp sau phản ứng HclO bay hơi và phân hủy : HClO = Cl2O + H2O Hòa tan Cl2O vào nước thu được HClO b. Điện phân dung dịch KCl rồi cho Cl2 + KOH , 700C c. Dựa vào độ tan khác nhau của các muối trong hỗn hợp Câu 20 a) Công thức các hợp chất XFm: X là Cl có ClF; ClF3; ClF5 (a); X là Br có BrF; BrF3; BrF5 (b); X là I có IF; IF3; IF5; IF7 (c). b) Các hợp chất trên đều có liên kết cộng hóa trị, mỗi liên kết được tạo thành do 2 electron có spin đối song song của 2 nguyên tử góp chung. * F có Z = 9; n = 2 nên có 4 AO hóa trị, vì vậy cấu hình chỉ có 1 electron độc thân: * Cl (Z = 17; n = 3), Br (Z = 35; n = 4), I (Z = 53; n = 5) giống nhau đều có 9 AO hóa trị, có thể có: 1 electron độc thân: hoặc 3 electron độc thân: 5 electron độc thân: 7 electron độc thân: - Hợp chất ClF7 không tồn tại vì thể tích nguyên tử clo rất nhỏ, lực đẩy của các vỏ nguyên tử flo sẽ phá vỡ các liên kết trong phân tử. Hợp chất BrF 7 cũng được giải thích tương tự hợp chất ClF7 (BrF7 hiên nay chưa điều chế được). - - Hợp chất IF7 tồn tại vì thể tích nguyên tử I rất lớn so với thể tích nguyên tử F, lực đẩy của các vỏ nguyên tử flo không phá vỡ được các liên kết trong phân tử; mặt khác, sự chênh lệch năng lượng giữa các phân mức của lớp ngoài cùng trong nguyên tử I không lớn nên dễ xuất hiện cấu hình 7 electron độc thân và có sự chênh lệch lớn về độ âm điện giữa I so với F nên hợp chất IF7 bền. 74 Bài tập không có lời giải: Bài 1. Clo được dùng làm chất chống tạo rong rêu trong vệ sinh bể bơi theo phản ứng sau: Ca(OCl)2 + 2H2O → 2HClO + Ca(OH)2 Canxi hipoclorit phản ứng với nước tạo axit hipoclorơ là một tác nhân hoạt động. ở pH bằng 7,0 có 27,5% axit ion hoá thành ion hipoclorit không hoạt động( thụ động). Phần axit hipoclorơ còn lại (72,5%) chuyển thành clo dùng làm sạch hồ bơi. Trong hồ bơi, mức clo được duy trì ở 3 ppm hay 4,23.10 -5 M. Cần bao nhiêu Canxi hipoclorit để thêm vào hồ chứa 80.000 lít nước để clo đạt tiêu chuẩn vệ sinh là 3 ppm ở pH bằng 7,0? Bài 2. Vào một ngày mùa hè, lúc một giờ trưa, trời nắng gay gắt, các công nhân của một tổ hợp sản xuất hoá chất bắt đầu đi làm. Khi đó có một toán công nhân vô ý làm nổ một bình gaz, một luồng khí A có màu vàng đã thoát ra từ bình gaz và bay lên nền trời xanh thẳm, toả rộng ra khắp mọi nơi rồi sau đó khí A từ từ rơi xuống đất, khi chạm vào lá cây, trong một khoảng thời gian rất ngắn, các lá cây bị khô và quắt lại ngay, các lá cây tiếp xúc nhiều với khí A thì chuyển thành màu đen, các lá cây tiếp xúc ít (do cây ở xa) thì chuyển thành màu trắng và sau đó vài ngày các lá cây bị rụng hết. Mặt khác, có một số công nhân chỉ hít phải một ít khí A thì đều cảm thấy ngẹt thở, cuống họng bị khô, rát, nhức đầu, chống mặt và hỗn hợp sặc sụa. Một số công nhân khác do hít phải nhiều hơn thì bị ói mửa và bất tỉnh. 1. Từ những dữ kiện trên, các em hãy dự đoán xem khí A là gì? Có độc không? 2. Hẫy giải thích các hiện tượng sau: a. Vì sao khí A không bay thẳng luôn lên trời mà lại từ từ rơi xuống đất? Điều này cho thấy khối lượng phân tử của A phải lớn hơn một giá trị nào đó (dự đoán giá trị khối lượng phân tử A cực tiểu cần phải có). b. Vì sao khi khí A tiếp xúc với lá cây thì lá cây lại bị chuyển từ màu xanh sang màu trắng hoặc màu đen. Giải thích và viết phản ứng minh hoạ , nếu có. c. Vì sao các lá cây bị khô và quắt lại ngay. 3. Để có những số liệu chính xác hơn, một toán học sinh chuyên Hoá khối 10, đã được cử ngay đến hiện trường để quan sát, điều tra, nghiên cứu để làm một vài thử nghiệm với khí A để xác định chính xác khí A là gì, có những tính chất gì và đã gửi về bảng báo cáo như sau: a. A là một đơn chất có công thức phân tử A 2. Cho A tác dụng hoàn toàn với 27,3 gam kẽm , sau phản ứng thu được 57,12 gam muối kẽm. Xác định khối lượng phân tử và tên của A. Viết cấu hình electron của A và xác định loại liên kết có trong phân tử của A và của muối kẽm. 75 b. Thí nghiệm 1: A dễ tan trong nước tạo thành dung dịch A. Nhúng giấy quỳ tím vào dung dịch A thì thấy quỳ tím bị đổi màu. Hãy cho biết quỳ tím đổi sang màu gì? Cho vài giọt phenolphthalein vào dung dịch natrihidroxit (quan sát có màu gì?). Nếu thêm tiếp một lượng dư dung dịch natrihidroxit vào dung dịch B thì thu được một dung dịch C. Cho biết màu của dung dịch C. Viết các phương trình phản ứng xảy ra. c. Thí nghiệm 2: Để dung dịch A ở ngoài ánh sáng rồi cho tác dụng với dung dịch bạc nitrat . Quan sát có hiện tượng gì xảy ra hay không? Viết phản ứng , nếu có. d. Thí nghiệm 3: Cho khí sunfurơ vào dung dịch A rồi cho tiếp một ít dung dịch bariclorua . Quan sát có hiện tượng gì xảy ra? Viết phương trình phản ứng, nếu có. Cho khí A vào một dung dịch E không màu (chứa muối kali) thì thấy dung dịch E bị hoá nâu. Cho tiếp một ít hồ tinh bột thì được một dung dịch có màu xanh dương. Xác định tên dung dịch E. Bài 3. Muối ăn là một gia vị không thể thiếu để thức ăn thêm đậm đà. Bên cạnh đó muối ăn còn là một nguyên liệu quan trọng trong công nghệ ướp muối thịt, cá…nhằm giữ sản phẩm được lâu hơn tiện cho việc chế biến và sản xuất thực phẩm.Muối ăn làm tăng tính bền vững của sản phẩm, sát khuẩn nhẹ, ở nồng độ 4,4% có thể làm ngừng sự phát triển của một số vi sinh vật gây bệnh , giảm độ ẩm của sản phẩm, ức chế các vi sinh vật hiếu khí , ion clo kết hợp với các protein ở các dây nối peptid của enzim phân huỷ protein làm cho các enzim đó ngừng hoạt động. Theo tính toán, để ướp muối thịt mức độ vừa thì lượng muối cho vào là 1 kg thịt là 30 gam muối . Em hãy tính xem khối lượng muối ăn mà một phân xưởng ướp muối thịt của nhà máy Vissan cần dùng trong một ngày, biết rằng phân xưởng đó cần ướp 1 tấn thịt mỗi ngày. Ruộng muối Muối mỏ Bài 4. Muối ăn khi khai thác từ nước biển, mỏ muối, hồ muối thường có lẫn nhiều tạp chất như MgCl2 , CaCl2 , CaSO4…. Làm cho muối có vị đắng chát và dễ bị chảy nước gây ảnh hưởng xấu tới chất lượng muối nên cần loại bỏ. Một trong những phương pháp loại bỏ tạp chất ở muối ăn là dùng hỗn hợp Na2CO3 , NaOH, BaCl2 tác dụng với dung dịch nước muối để loại tạp chất dưới dạng các chất kết tủa : CaCO3 , Mg(OH)2 , BaSO4. Một mẫu muối thô thu được bàng phương pháp bay hơi nước biển vùng Bà Nà- Ninh Thuận có thành phần khối lượng như sau: 96,525% NaCl; 0,190% MgCl 2; 1,224% CaSO4 ; 0,010% CaCl2 ; 0,951% H2O. a. Viết các phương trình phản ứng xảy ra khi dùng hỗn hợp A gồm Na 2CO3 , NaOH, BaCl2 để loại bỏ tạp chất ở mẫu muối trên. b.Tính thành phần phần trăm các chất trong hỗn hợp A. Tính lượng Na 2CO3 , NaOH, BaCl2 tối thiểu dùng để loại bỏ hết các tạp chất có trong 3 tấn muối có thành phần như trên . Bài 5. 76 Trên thị trường hiện có bán một đồ dùng bằng điện để cho các gia đình tự chế dung dịch tiêu độc. Chỉ cần dẫn nước máy vào dụng cụ, cho ít muối ăn vào rồi cắm điện . Một lát sau ta sẽ có dung dịch tiêu độc dùng để rửa rau, quả, dụng cụ nhà bếp; giặt khăn mặt, giẻ lau…và còn có tác dụng tẩy trắng nữa. a. Có phản ứng gì xảy ra trong dụng cụ đó khi cho nước máy, muối ăn rồi cắm điện. b.Vì sao dung dịch thu được có tác dụng tiêu độc và tẩy trắng? Bài 6. Kali iotua trộn trong muối ăn để làm muối iot là một chất rất dễ bị oxi hoá thành I2 rồi bay hơi mất nhất là khi có nước hoặc các chất oxi hoá có trong muối hoặc khi ở nhiệt độ cao. Theo nghiên cứu thì sau 3 tháng kali iotua trong muối ăn sẽ bị mất hoàn toàn. Để đề phòng điều đó người ta thường làm một số biện pháp như sau: Hạn chế hàm lượng nước trong muối iot không vượt quá 3,5% về khối lượng (theo tiêu chuẩn của Liên Xô). Cho thêm chất ổn định muối iot như Na 2S2O3. Lượng Na2S2O3 cho vào bằng 1% khối lượng KI. Khi đó có thể giữ lượng KI trong muối iot khoảng 6 tháng. a.Tính lượng nước tối đa cho phép trong 1 tấn muối iot theo tiêu chuẩn của Liên Xô? b. Tính lượng Na2S2O3 cần cho vào 1 tấn muối iot ( trộn theo tỉ lệ : 25 gam KI trộn với 1 tấn muối ăn) c. Hãy nêu phương pháp bảo quản muối iot và cách dùng muối iot khi nấu thức ăn nhằm hạn chế sự thất thoát iot? Bài 7. Khi nước cấp cho sinh hoạt có hàm lượng nguyên tố flo nhỏ hơn 0,5 mg/lít thì phải pha thêm hợp chất chứa flo như natriflorua vào nước.Nếu hàm lượng flo trong nước là 1mg/lít thì sẽ làm giảm bệnh sâu răng ở trẻ em tới 65% và làm cho răng được chắc, khoẻ. Tính lượng natriflorua cần phải pha vào trong nước cấp sinh hoạt cho thành phố Hà Nội mỗi ngày sao cho hàm lượng flo từ 0,5mg/lít tăng đến 1mg/lít . Biết rằng, Hà Nội có khoảng triệu dân, mỗi người dùng khoảng 200 lít nước sạch mỗi ngày. Giả sử natriflorua không bị thất thoát trong quá trình pha trộn và cung cấp đến người tiêu dùng. 77 CHƯƠNG 3 : NITƠ - PHOTPHO VÀ HỢP CHẤT I. ĐẶC ĐIỂM CHUNG I.1. Đặc điểm cấu tạo nguyên tử N0 1 2 3 4 5 6 7 Tính chất Số thứ tự Electron hóa trị Bán kính n.tử (antron) Bán kính ion X3- (antron) Bán kính ion X5+ (antron) Thế ion hóa I1, eV Độ âm điện N 7 2s22p5 0,71 1,48 0,15 14,53 3,0 P 15 3s23p3 1,30 1,86 0,35 10,48 2,1 As 33 4s24 p3 1,48 1,92 0,47 9,81 2,0 Sb 51 5s2p3 1,61 2,08 0,62 8,64 1,9 Bi 83 6s26p3 1,82 2,13 0,74 7,29 1,9 Với cấu hình lớp ngoài cùng ns2np3, các nguyên tố nhóm Va có thể tạo nhận 3 electron hoặc góp chung 3 electron trong các liên kết cộng hóa trị, tạo thành hợp chất với số ôxi hoá -3 hoặc +3. Ni tơ có khả năng tạo liên kết π p – p nên nitơ tồn tại dạng phân tử hai nguyên tử, liên kết với nhau bằng liên kết ba N ≡ N. Trừ nittơ, các nguyên tử nguyên tố nhóm Va có thể dùng obital d để xen phủ với các obital p của nguyên tố khác tạo nên liên kết π p →d. I.2. Trạng thái thiên nhiên Nitơ tồn tại trong thiên nhiên chủ yếu dưới dạng phân tử 2 nguyên tử. Trong không khí, nitơ chiếm 78,03% thể tích. Ngoài ra, nitơ còn có trong diêm tiều Chile (NaNO3), diêm tiêu Ấn Độ (KNO3) cũng như trong mọi sinh vật. Nitơ có 2 đồng vị bền là 14N (99,635%) và 15N (0,365%) với tỉ lệ 272: 1. I.3. Đặc điểm cấu tạo phân tử Theo thuyết VB, liên kết trong phân tử N 2 là liên kết ba, bao gồm 2 liên kết π và 1 liên kết σ Theo thuyết MO, liên kết trong phân tử N2 là liên kết ba Cả hai thuyết đều giải thích thỏa đáng sự hình thành liên kết trong phân tử N 2, phù hợp với năng lượng liên kết lớn trong phân tử (940 kJ/mol). I.4. Tính chất vật lý N2 là khí không màu, không mùi, không vị và không duy trì sự sống. Do ít bị cực hóa nên nitơ là chất khó hóa lỏng, khó hóa rắn. Nitơ ít trong nước, ở O0C, 1 lít nước hoà tan 23,5 mL khí N2. 78 I.5. Tính chất hóa học Phân tử N2 có liên kết ba, năng lượng liên kết rất lớn nên phân tử N 2 rất bền với nhiệt. Vì vậy, ở nhiệt độ thường, N 2 khá trơ về mặt hóa học nhưng ở nhiệt độ cao trở lên hoạt động hơn, nhất là khi có xúc tác. Ở nhiệt độ thường, N2 chỉ phản ứng được với Li tạo thành nitrua: 6Li + N2 →2Li3N Ở nhiệt độ thường N2 được đồng hoá trực tiếp bởi một số vi sinh vật như một số vi khuẩn trong nốt sần của rễ cây họ đậu. Ở nhiệt độ cao N2 phản ứng với các phi kim, quan trong nhất là với hidro để tổng hợp amoniac: 0 C , Fe N2 + 3H2 450 2NH3 € Phản ứng với oxi trong tự nhiên khi có mưa dông, kèm theo tia lửa điện: N2 + O2 € 2NO Khi đốt nóng, nitơ tác dụng với nhiều kim loại, tạo thành nitrua. C N2 + 3Ca 700  → Ca3N2 I.6. Điều chế 0 - Trong công nghiệp: Chưng cất phân đoạn không khí lỏng; - Trong phòng thí nghiệm: Đun nóng muối NH4NO2 trong dung dịch: NH4NO2 → N2 + H2O NH4Cl + NaNO2 → N2 + NaCl + H2O (đun nóng) Nhiệt phân muối natri azit: 2NaN3 → 2Na + 3N2 II. AMONIAC II.1. Đặc điểm cấu tạo phân tử Theo thực nghiệm, phân tử NH3 có cấu tạo chóp, góc liên kết HNH bằng 107 0; năng lượng liên kết N-H bằng 385 kJ/mol; momen lưỡng cực 1,48D. Cấu trúc phân tử NH3 có thể được giải thích theo thuyết VB. Theo đó, trong phân tử NH3, nguyên tử N ở trạng thái lai hóa sp 3. Ba obital lai hóa của N xen phủ với ba AO1s của H tạo thành 3 liên kết σ, nguyên tử N còn 1 obital lai hóa chứa cặp electron không liên kết hướng về 1 đỉnh tứ diện. II.2. Tính chất vật lý 79 NH3 là chất khí không màu, mùi khai và xốc. Do hình thành liên kết hidro liên phân tử nên NH3 dễ hóa lỏng và dễ hóa rắn (nhiệt độ nóng chảy bằng -77,75 0C; nhiệt độ sôi là -33,350C). Khí NH3 dễ tan trong nước (ở 20 0 C, 1 lít nước hòa tan được 700 lít khí NH 3) do tạo được liên kết hidro với dung môi nước. Amoniac có nhiệt hoá hơi (22,82 kJ/mol) rất cao so với hợp chất tương tự. Do vậy, NH3 lỏng thường được sử dụng trong các thiết bị làm lạnh. II.3. Tính chất hóa học Do có cặp electron không liên kết trên obital lai hóa có khả năng cho nên phân tử NH3 thể hiện tính bazơ Lewis. II.3.1. Tính bazơ yếu - Phản ứng với nước Hằng số bazơ của NH3 trong nước là Kb = 1,8.10-5. - Phản ứng với axit NH3 + HCl → NH4Cl 2NH3 + H2SO4 → (NH4)2SO4 - Phản ứng với một số dung dịch muối, tạo hidroxit kim loại AlCl3 + 3NH3 + 3H2O → Al(OH)3 + 3NH4Cl - Phản ứng tạo phức AgCl + 2NH3 → [Ag(NH3)2]Cl Cu(OH)2 + 4NH3 → [Cu(NH3)4](OH)2 II.3.2. Tính khử yếu - Khí NH3 - Cháy trong oxi không có xúc tác tạo thành N2. - Khi có xúc tác Pt, khí NH3 tác dụng với oxi tạo ra sản phẩm chính NO: C , Pt 4NH3 + 5O2 850  → 4NO + 6H2O - Khử mọt số oxit kim loại thành kim loại, ví dụ: 0 t 3CuO + 2NH3 → 3Cu + N2 + 3H2O - Dung dịch NH3 8NH3 + 3Cl2 → N2 + 6NH4Cl III.4. Điều chế - Trong công nghiệp Tổng hợp từ các đơn chất: tỉ lệ N 2:H2 = 1: 3; nhiệt độ 450-5000C; áp suất = 2001000 atm; xt: Fe. - Phòng thí nghiệm 0 80 Đun nóng dung dịch NH3 đặc với xút rắn; Cho vôi bột tác dụng với muối amoni. II.5. Ứng dụng - Tổng hợp phân bón; - Tổng hợp axit nitric; - Sử dụng trong các thiết bị làm lạnh. II.6. Muối amoni II.6.1. Đặc điểm cấu tạo Ion NH +4 có cấu tạo tứ diện đều với nguyên tử N trung tâm Ion amoni có chứa 1 liên kết cho nhận kém bền nên dễ phân li proton. II.6.2. Tính chất hóa học - Tính axit yếu Trong nước, ion amoni bị thủy phân tạo môi trường axit yếu: NH +4 + H2O € NH3 + H3O+ Ka = 5,6.10-10 - Tính kém bền nhiệt Tất cả các muối amoni đều bị nhiệt phân hủy, ví dụ: t NH4Cl → NH3 + HCl III. AXIT NITRIC 0 III.1. Đặc điểm cấu tạo phân tử Phân tử HNO3 có cấu trúc phẳng. Nguyên tử N ở trạng thái lai hóa sp2. III.2. Tính chất vật lý HNO3 tinh khiết là chất lỏng không màu, bốc khói mạnh trong không khí. Axit nitric có khối lượng riêng d = 1,52g/cm 3. Nhiệt độ nóng chảy là -410C và nhiệt độ sôi là 860C. HNO3 kém bền dễ bị phân huỷ dưới tác dụng của ánh sáng và nhiệt: 4HNO3 → 4NO2 + O2 + H2O Axit nitric tinh khiết tự ion hoá theo phương trình: 2HNO3 € 4NO +2 + NO 3− + H2O Khi tan trong dung môi có khả năng cho proton mạnh hơn như H 2SO4, HClO4 thì HNO3 phân li cho ion NO +2 : 4HNO3 + 2H2SO4 € 2NO +2 + 2HSO −4 + H3O+ Axit HNO3 tan trong H2O theo bất kỳ tỉ lệ nào. Nó tạo với hỗn hợp đồng sôi dưới áp suất thường ở nhiệt độ 121,80C, ứng với nồng độ axit là 69,4%. III.3. Tính chất hóa học III.3.1. Tính axit mạnh 81 HNO3 + H2O → H3O+ + NO 3− Trong dung dịch loãng có nồng độ dưới 2M tác dụng với kim loại hoạt động giải phóng H2. Ví dụ, dung dịch HNO3 1 - 2% (0,3M) tác dụng với Mg và Mn giải phóng H2: Mg + 2HNO3 (≈0,3 M) → Mg(NO3)2 +H2 Mn + 2HNO3 (≈ 0,3M) → Mn(NO3)2 + H2. III.3.2. Tính oxi hóa mạnh - Axit HNO3 là chất oxi hóa mạnh điển hình. Khi tác dụng với các chất khử, tùy điều kiện nhiệt độ, nồng độ axit và bản chất của chất khử, axit HNO 3 sẽ bị khử đến các sản phẩm ứng với số oxi hóa từ -3 đến +4. - Nói chung những kim loại hoạt động mạnh sẽ khử HNO 3 đến N2O, N2 , NH2OH (hoặc NH3OH+), NH3 (hoặc NH +4 ). Ví dụ: Zn có khuynh hướng chủ yếu tạo N2O, nhưng với HNO3l tạo ra NH3 hoặc NH2OH. 4Zn + 10HNO3 → 4Zn(NO3)2 + N2O + 5H2O. 4Zn + 10 HNO3 → 4Zn(NO3)2 + NH4NO3 + 3H2O Fe tác dụng với HNO3 loãng (d = 1,034 - 1,115g/cm3) tạo ra Fe(NO3)2: 4Fe + 10HNO3(l) → 4Fe(NO3)2 + NH4NO3 +3H2O. Với dung dịch có d > 1,115 g/cm3 thì tạo thành Fe3+: Fe + 4HNO3 → Fe(NO3)3 + NO + H2O - Những kim loại khác khử HNO3 đặc đến NO2 và khử HNO3 loãng (3M đến 6M) đến NO.Ví dụ: Pb + 4HNO3 (đặc) → Pb(NO3)2 + 2NO2 + 2H2O Hg + HNO3 (đặc) → Hg(NO3)2 + 2NO2 + 2H2O. - Khi axit nitric tác dụng với kim loại nói riêng và chất khử nói chung, có thể tạo thành nhiều sản phẩm khác nhau, trong đó có 1 sản phẩm chính. - Nhiều phi kim tác dụng với HNO 3 đặc tạo NO2 và HNO3 loãng tạo NO và bản thân phi kim bị oxi hoá tạo ra oxitaxit ứng với bậc ôxi hoá cao, ví dụ: C + 4HNO3 (đặc) → CO2 + 4NO2 + 2H2O P + 5HNO3 → H3PO4 + 5NO2 + H2O I2 + 10HNO3 → 2HIO3 + 10NO2 + 4H2O - HNO3 ôxi hoá được nhiều hợp chất có số oxi hóa trung gian, ví dụ: 3Sn+2 + NO 3− + 7H+ → 3Sn4+ + NH2OH + 2H2O 3Fe2+ + NO 3− + 4H+ → 3Fe3+ + NO + H2O HNO3 + 3HCl → NOCl + Cl2 + 2H2O 82 Au + HNO3 + 4HCl → H[AuCl4] + NO + 2H2O 3Pt + 4HNO3 + HCl → 3H2[PtCP6] + 4NO + 8H2O. - Một số kim loại (Al, Fe, Cr, Co, Ni) bị thụ động hoá bởi HNO 3 đặc, nguội (d≥ 1,45 g/cm3). III.4. Điều chế - Trong công nghiệp N2 → NH3 → NO → NO2→ HNO3 - Phòng thí nghiệm Đun nóng tinh thể muối nitrat kim loại kiềm với axit sunfuric đặc: NaNO3 (t.t) + H2SO4 → NaHSO4 + HNO3 III.5. Ứng dụng - Là axit được sử dụng nhiều thứ hai sau axit sunfuric; - Điều chế thuốc nổ; - Tổng hợp phân bón; - Sử dụng trong lĩnh vực phẩm nhuộm, công nghiệp hóa chất; dược phẩm,… IV.3.6. Muối nitrat Ion nitrat có cấu trúc tam giác đều, nguyên tử N ở trạng thái lai hóa sp 2. Ba obital lai hóa tham gia tạo thành ba liên kết σ với ba nguyên tử O. Một obital 2p của N tạo nên một liên kết π giải tỏa trên 4 nguyên tử - Màu sắc: Ion NO 3− không có màu nên muối nitrat của những cation không màu đều không có màu. - Tính tan: Hầu hết các muối nitrat đều dễ tan trong nước. Một vài muối hút ẩm trong không khí như NaNO3 và NH4NO3. Muối nitrat của những kim loại hoá trị II và III thường ở dạng hidrat. - Độ bền nhiệt: Tất cả các muối nitrat đều bị phân hủy bởi nhiệt. Muối nitrat của kim loại kiềm khá bền với nhiệt, muối của các kim loại khác dễ phân huỷ khi đốt nóng. Nitrat của những kim loại đứng trước Mg trong dãy điện hoá bị nhiệt phân huỷ tạo ra muối nitrit và oxi: 2NaNO3 → 2NaNO2 + O2 Muối nitrat của kim loại từ Mg đến Cu bị nhiệt phân tạo thành oxit kim loại, NO 2 và O2: 2Pb(NO3)2 → 2PbO + 4NO2 + O2 Muối nitrat của những kim loại đứng sau Cu bị phân hủy đến kim loại: Hg(NO3)2 → Hg + 2NO2 + O2. - Tính oxi hóa 83 Trong môi trường axit, muối nitrat có khả năng oxi hoá như HNO 3; trong môi trường trung tính hầu như không có khả năng oxi hoá; nhưng trong môi trường kiềm có thể bị Al, Zn khử đến NH3: NaNO3 + 4Zn + 7NaOH + 6H2O →4Na2[Zn(OH)4] + NH3 IV. PHOTPHO IV. 1. Trạng thái thiên nhiên - Photpho là nguyên tố rất phổ biến trong tự nhiên; - Trên vỏ trái đất, photpho chiếm khoảng 0,04% tổng số nguyên tử; - Photpho có trong thành phần protein động thực vật; trong động vật, photpho tập trung ở răng, xương và mô thần kinh; - Photpho có 2 khoáng vật chính trong tự nhiên là photphotrit Ca 3(PO4)2 và apatit 3Ca3(PO4)2.CaX2; - Tên Latinh phosphoruos xuất phát từ tiếng Hi Lạp có nghĩa là “chất phát quang”. IV. 2. Đặc điểm cấu tạo nguyên tử Nguyên tử P có thể ở các trạng thái lai hóa: sp 3, sp3d và sp3d2; trong đó đặc trưng nhất là trạng thái sp3. IV. 3. Tính chất vật lý Photpho có 3 dạng thù hình là photpho trắng, photpho đỏ và photpho đen. IV. 3.1. Photpho trắng Là khối trong suốt như sáp có mạng lưới lập phương. Kiến trúc mạng lưới đó gồm những phân tử P4 liên kết với nhau bằng lực Van de van. Là chất có mạng lưới tinh thể phân tử, P trắng dễ nóng chảy (nhiệt độ nóng chảy là 0 44 C), dễ bay hơi (nhiệt độ sôi là 287 0C), mềm và dễ tan trong các dung môi không cực như CS2 và benzen. Hơi của P trắng có mùi tỏi và có thể chưng cất ở 100 0C cùng với hơi nước. Ở 7000C, P4 bắt đầu phân huỷ thành P2; ở 17000C, phân huỷ 50%, phân tử P2 có cấu tạo giống N2; ở trên 20000C phân tử P2 phân huỷ thành nguyên tử. Góc PPP trong P4 bé hơn góc giữa các obital nguyên tử 3p nên phân tử P 4 ở vào trạng thái “căng vòng” mạnh và do đó liên kết P - P không bền. Bởi vậy P trắng rất hoạt động hoá học và hết sức độc. IV. 3.2. Photpho đỏ Là chất bột màu đỏ, ở nhiệt độ cao, P đỏ thăng hoa tạo thành hơi gồm những phân tử P4. Hơi này ngưng tụ lại thành P trắng. Pđỏ là chất ở dạng polime, gồm một số dạng khác nhau mà kiến trúc của chúng đến nay chưa được xác định. 84 Là chất có mạng lưới tinh thể nguyên tử, P đỏ không tan trong bất kỳ dung môi nào. IV. 4. Tính chất hóa học So sánh với nitơ, photpho hoạt động hơn mặc dù có độ âm điện nhỏ hơn. Điều đó được giải thích là do liên kết đơn P - P kém bền hơn nhiều so với liên kết ba trong phân tử N2. Các hợp chất của P hầu hết đều là hợp chất cộng hóa trị. Mặt khác, sự khác nhau về kiến trúc của ba dạng thù hình của phôt pho dẫn đến sự khác nhau nhiều về tính chất hoá học. P trắng hoạt động nhất và P đen kém hoạt động nhất. Ở điều kiện thường, P trắng bị ôxi hoá chậm bởi O2 không khí nên phải bảo quản trong nước; phôtpho đỏ và đen đều bền. P trắng tự bốc cháy trong không khí ở nhiệt độ 40 0C; P đỏ ở trên 2500C và P đen ở trên 4000C. Phôt pho vừa có tính ôxi hoá vừa có tính khử. Tuy nhiên tính chất cơ bản của photpho là tính khử. Khi cháy trong ôxi dư, P tạo P4O10 và trong điều kiện khí oxi không dư tạo nên P4O6 và P4O10. Khói trắng và đậm sinh ra khi phốt pho cháy trong không khí là axit metaphotfphoric (HPO3) do P4O10 kết hợp với hơi nước tạo nên. Phot pho trắng có thể giải phóng kim loại ra khỏi dung dịch muối của vàng bạc, chì và đồng: P4 + 10CuSO4 + 16H2O → 4H3PO4 + 10Cu + 10H2SO4. Phot pho đỏ có thể bốc cháy khi va chạm với những chất ôxi hoá mạnh như KClO 3, K2Cr2O7 , KNO3. Tính chất này dẫn đến công dụng chủ yếu của P đó là làm diêm. Khi tương tác với dung dịch kiềm, phôt pho trắng thể hiện khả năng oxi hoá khử: P4 + 3KOH + 3H2O → PH3 + 3K[H2PO2] 2P4 + 3Ba(OH)2 + 6H2O →2PH3 + 3Ba(H2PO2) IV.5. OXIT VÀ OXIAXXIT CỦA PHOTPHO IV.5. 1. Oxit của photpho IV.5. 1.1. Photpho(III) oxit Trong phân tử P4O6, góc POP = 1280; OPO = 990; dP-O = 1,65 antron, ngắn hơn liên kết đơn (1,84 antron), nghĩa là có mức độ kép rõ rệt. Ở đây liên kết π được tạo nên do cặp electron tự do 2p của oxi xen phủ với obital 3d trống của photpho theo kiểu πp→d. 85 Photpho (III) oxit là tinh thể trắng, mềm giống như sáp. Nhiệt độ nóng chảy bằng 23,80C và nhiệt độ sôi bằng 1750C. Photpho (III) oxit dễ tan trong ete, CS2, cloropom và benzen. Nó độc gần như phốt pho trắng. Ở nhiệt độ thường, phôtpho (III) oxit bền với oxi không khí, ở 50 -60 0C bị oxi hoá thành phôtpho (V) oxit: P4O6 + 2O2 → P4O10 Quá trình này phát quang mạnh. Đến 700C photpho (III) oxit bốc cháy. Khi lắc mạnh với nhiều nước lạnh, photpho (III) oxit tạo axit photphorơ: P4O6 + 6H2O → 4H3PO3 Nhưng với nước nóng, phản ứng xảy ra mãnh liệt và phức tạp, tạo nên hỗn hợp sản phẩm gồm có P, PH3 và H3PO4. Với dung dịch HCl, photpho (III) xxit cũng tạo nên axit photphorơ: P4O6 + 6HCl → 2H3PO3+ 2PCl3. IV.5. 1.2. Photpho (V) oxit Phot pho (V) oxit được tạo nên khi đốt chấy phot pho trong điều kiện có dư không khí khô. Phot pho (V) oxit là chất ở dạng tinh thể lục phương có màu trắng , thăng hoa ở 0 359 C dưới áp suất 1atm. Mạng lưới của tinh thể đó gồm những phân tử P 4O10 liên kết với nhau bằng lực Van de van. Phân tử P4O10 có cấu tạo tương tự phân tử P4O6 nhưng có thêm 4 nguyên tử oxi liên kết với 4 nguyên tử photpho. Sự rút ngắn độ dài liên kết P-O (dP-O = 1,39 antron) cho thấy, có thêm Điều này xác minh thêm liên kết theo kiểu πp→d. Phot pho (V) oxit hút ẩm rất mạnh và là một trong những chất làm khô tốt nhất đối với các khí. Nó có thể lấy nước của các axit như HNO 3, H2SO4 biến chúng thành anhiđrit và lấy nước của các chất hữu cơ. Khi tương tác với nước lạnh, tạo nên axit metaphotphoric: P4O10 + 2H2O →4HPO3 Phản ứng với nước nóng, dư, tạo nên axit octophotphocric: P4O10 + 6H2O →4H3PO4 IV.5.2. Oxiaxit của photpho Các oxiaxit quan trọng: H3PO2, H3PO3 và H3PO4. Trong dãy oxiaxit của photpho, độ bền nhiệt tăng dần, tính axit tăng dần và tính khử giảm dần. IV.5.2.1. Axit hipophotphorơ Là tinh thể không màu, nóng chay ở 270C, dễ tan trong nước, khi đun nóng đến 1030C bị phân huỷ theo phản ứng: 86 3H3PO2 →2H3PO3 + PH3 H3PO2 là axit mạnh, 1 nấc, muối tương ứng đều dễ tan trong nước. Axit H3PO2 và muối là chất khử mạnh, nhưng phản ứng xảy ra chậm. Tương tác với halogen biến thành axit phopphoric. Giải phóng kim loại từ dung dịch muối của các kim loại quí như Au, Ag, Pd và một số kim loại nặng như Cu, Hg, Bi: H3PO2 + 2CuSO4 + 2H2O →2Cu + 2H2SO4 + H3PO4. Tuy nhiên H3PO2 có thể bị Zn trong H2SO4 khử đến photphin. Điều chế: 2P4 + 3Ba(OH)2 + 6H2O →3Ba(H2PO2)2 + 2PH3 Ba(H2PO2)2 + H2SO4 → BaSO4 + 2H3PO2 IV.5.2.2. Axit photphorơ Là tinh thể không màu, nóng chảy ở 74 0C, chảy rữa trong không khí và dễ tan trong nước. Ở 2000C, phân huỷ thành H3PO4 và photpin: 4H3PO3 →3H3PO4 + PH3 Là axit 2 nấc và có độ mạnh trung bình (K1= 1.10-2; K2=3.10-7) Muối của nó gọi là phophit, không có màu, thường khó tan trong nước. Axit H3PO3 là chất khử mạnh, phản ứng thường chậm và phức tạp. Nó tương tác với halogen, làm kết tủa kim loại từ dung dịch d muối của kim loại nặng và bản thân nó biến thành H3PO4: H3PO3 + 2AgNO3 + H2O →H3PO4 + 2Ag +2HNO3 Tuy nhiên trong dung dịch H2SO4, H3PO3 bị Zn khử đến photpin. IV.5.2.3. Axit photphoric Axit photphoric rất bền, không có khả năng thể hiện tính oxi hóa ở dưới nhiệt độ 350-4000C. Nhưng ở nhiệt độ cao hơn chúng là chất oxi hóa yếu, có thể tương tác với kim loại. Axit octhophotphoric tinh khiết được dùng chủ yếu trong công nghiệp dược phẩm. Axit kỹ thuật dùng chủ yếu để sản xuất phân bón vô cơ, nhuộm vải và sản xuất men sứ. H3PO4 có thể điều chế bằng tương tác của PCl 5 hay P4O10 với nước; hoặc tương tác của P với dung dịch HNO3 < 52%. Trong công nghiệp, H3PO4 kỹ thuật được điều chế cho axit H 2SO4 có nồng độ trung bình tác dụng với photphat thiên nhiên. Ca3(PO4)2 + 3H2SO4 →3CaSO4 + 2H3PO4 BÀI TẬP ÁP DỤNG 87 Bài 1. Viết phương trình phản ứng khi cho NO tác dụng với H 2, H2S, SO2, O2, Cl2, KMnO4. Bài 2. Viết phương trình phản ứng khi cho NO 2 tác dụng với: Cl2, H2, Cu, CO, SO2, O3, H2O2. Trong mỗi phản ứng NO2 thể hiện tính chất gì? Bài 3. Hòa tan Fe bằng dung dịch H2SO4 loãng dư nhận được dung dịch A. Cho hỗn hợp NO và NO2 đi qua dung dịch A thu được dung dịch B. Viết các phương trình phản ứng xảy ra. Bài 4. Viết cấu tạo các phân tử NO, N 2O, NO2, N2O3, N2O4 và N2O5. Nêu rõ dạng hình học của mỗi chất. Bài 5. Hỗn hợp X gồm 2 kim loại Al và Cu. Cho 18,2 gam X vào 100ml dung dịch Y chứa H2SO4 12M và HNO3 2M, đun nóng tạo ra dung dịch Z và 8,96 lít (đktc) hỗn hợp T gồm NO và khí D không màu. Hỗn hợp T có tỷ khối so với hidro = 23,5. Tính khối lượng mỗi kim loại trong hỗn hợp đầu và lượng mỗi muối trong dung dịch Z Bài 6. Hòa tan a gam hỗn hợp Cu và Fe (trong đó Fe chiếm 30% về khối lượng) bằng 50 ml dung dịch HNO3 63% (d = 1,38 g/ml), khuấy đều cho tới phản ứng hoàn toàn thu được chất rắn A cân nặng 0,75a gam , dung dịch B và 6,104 lít hỗn hợp khí NO và NO 2 (đktc). Hỏi cô cạn dung dịch B thu được bao nhiêu gam muối khan? Bài 7. Hòa tan 17,4 gam hỗn hợp 3 kim loại Al, Cu, Fe trong dung dịch HCl dư thấy thoát ra 8,96 lít khí(đktc). Nếu cho 34,8 gam hỗn hợp trên tác dụng với dung dịch CuSO4 dư rồi lọc chất rắn tạo ra hòa tan bằng HNO 3 thì thoát ra 26,88 lít khí (đktc) có tỷ khối so với oxi = 1,27. Viết các phương trình phản ứng và tính thành phần hỗn hợp ban đầu. Bài 8. Trộn CuO với một oxit kim loại đơn hóa trị II theo tỷ lệ mol 1:2 được hỗn hợp A. Dẫn một luồng khí H2 dư đi qua 3,6 gam A nung nóng thu được hỗn hợp B. Để hòa tan hết B cần 60 ml dung dịch HNO 3 nồng độ 2,5M và thu được V lít khí NO duy nhất(đktc) và dung dịch chỉ chứa nitat kimloại. Xđ kim loại hóa trị II nói trên và tính V. Bài 9. X,Y là kim loại đơn hóa trị II và III . Hòa tan hết 14,0 gam hỗn hợp X,Y bằng axit HNO3 thoát ra 14,784 lít (27,30C và 1,1atm) hỗn hợp 2 khí oxit có màu nâu và có tỷ khối so với He = 9,56 , dung dịch nhận được chỉ chứa nitrat kim loại. Cùng lượng hỗn hợp 2 kim loại trên cho tác dụng với axit HCl dư thì cũng thoát ra 14,784 lít khí (27,3 0C và 1atm) và còn lại 3,2 gam chất rắn không tan. 88 Xác định X, Y và tính % lượng mỗi kim loại trong hỗn hợp đầu. Bài 10. Cho 21,52 gam hỗn hợp A gồm kim loại X đơn hóa trị II và muối nitrat của nó vào bình kín dung tích không đổi 3 lít (không chứa không khí) rồi nung bình đến nhiệt độ cao để phản ứng xảy ra hoàn toàn, sản phẩm thu được là oxit kim loại. Sau phản ứng đưa bình về 54,60C thì áp suất trong bình là P. Chia đôi chất rắn trong bình sau phản ứng: phần 1 phản ứng vừa đủ với 667ml dung dịch HNO3 nồng độ 0,38M thoát ra khí NO duy nhất và dung dịch chỉ chứa nitrat kim loại. Phần 2 phản ứng vừa hết với 300ml dung dịch H2SO4 loãng 0,2M thu được dung dịch B. a) Xác định kim loại X và tính % lượng mỗi chất trong A. b) Tính P. Bài 11. Hòa tan hoàn toàn 2,52 gam hỗn hợp Mg và Al bằng dung dịch HCl thu được 2,688 lít hidro (đktc). Cũng lượng hỗn hợp này nếu hòa tan hoàn toàn bằng H 2SO4 đặc nóng thì thu được 0,03 mol một sản phẩm duy nhất hình thành do sự khử S+6. a) Xác định sản phẩm duy nhất nói trên. b) Nếu hòa tan hoàn toàn cũng lượng hỗn hợp trên bằng dung dịch HNO3 10,5% (d =1,2 g/ml) thì thu được 0,03 mol một sản phẩm duy nhất hình thành do sự khử N+5. Tính thể tích tối thiểu dung dịch HNO3 đã dùng. Bài 12. Một miếng Mg bị oxihóa một phần được chia làm 2 phần bằngnhau: - Phần 1 cho hòa tan hết trong dung dịch HCl thì thoát ra 3,136 lít khí. Cô cạn dung dịch thu được 14,25 gam chất rắn A. - Phần 2 cho hòa tan hết trong dung dịch HNO3 thì thoát ra 0,448 lít khí X nguyên chất. Cô cạn dung dịch thu được 23 gam chất rắn B. a) Tính % số mol Mg đã bị oxihóa.(các thể tích khí đều đo ở đktc) b) Xác định khí X. Bài 13. Cho 23,52g hỗn hợp 3 kim loại Mg, Fe, Cu vào 200ml dung dịch HNO 3 3,4M khuấy đều thấy thoát ra một khí duy nhất hơi nặng hơn không khí, trong dung dịch còn dư một kim loại chưa tan hết, đổ tiép từ từ dung dịch H 2SO4 5M vào, chất khí trên lại thoát ra cho dến khi kim loại vừa tan hết thì mất đúng 44ml, thu được dd A. Lấy 1/2 dd A, cho dd NaOH cho đến dư vào, lọc kết tủa, rửa rồi nung ngoài không khí đến khối lượng không đổi thu được chất rắn B nặng 15,6g. 1-Tính % số mol mỗi kim loại trong hỗn hợp. 89 2-Tính nồng độ các ion (trừ ion H+-, OH-) trong dung dịch A. Bài 14. Hoà tan hoàn toàn hỗn hợp FeS và FeCO 3 bằng dung dịch HNO3 đặc, nóng thu được hỗn hợp (B) gồm 2 khí X và Y có tỷ khối đối với H 2 là 22,8 và còn dung dịch (A) có pH < 3. a)Tính tỷ lệ số mol các muối Fe2+ trong hỗn hợp ban đầu. b)Làm lạnh hỗn hợp khí (B) xuống nhiệt độ thấp hơn được hỗn hợp (B′) gồm 3 khí X,Y,Z có tỷ khối so với H2 bằng 28,5. Tính phần trăm theo thể tích của hỗn hợp khí (B′). c) Ở -11oC hỗn hợp (B′) chuyển sang (B″) gồm 2 khí. Tính tỷ khối của (B″) so với H2. Bài 15. Cho từ từ khí CO qua ống chứa 6,4gam CuO đun nóng. Khí ra khỏi ống được hấp thụ hoàn toàn bằng 150ml dung dịch nước vôi trong nồng độ 0,1M thấy tách ra 1,0 gam kết tủa trắng, đun sôi phần nước lọc lại thấy có vẩn đục. Chất rắn còn lại trong ống được cho vào 500ml dung dịch HNO3 0,32M thoát ra V1 lít khí NO2 nếu thêm 760ml dung dịch HCl 1,333M vào dung dịch sau phản ứng thì lại thoát ra thêm V 2 lít khí NO nữa. Nếu tiếp tục thêm 24 gam Mg thì thấy thoát ra V 3 lít khí hỗn hợp khí N2 và H2, lọc dung dịch cuối cùng thu được chất rắn X. a/ Viết phương trình phản ứng và tính V1,V2,V3(đktc). b/ Tính thành phần X( giả thiết các phản ứng xảy ra hoàn toàn). Bài 16. 1) Bằng phương pháp nhiễu xạ tia X khảo sát cấu trúc tinh thể NH 4Cl người ta đã ghi nhận được kết quả sau: Ở 200C phân tử NH4Cl kết tinh dưới dạng lập phương với hằng số mạng a = 3,88 A 0 và khối lượng riêng d = 1,5 g/cm3. Ở 2500C phân tử NH4Cl kết tinh dưới dạng lập phương với hằng số mạng a = 6,53 A 0 và khối lượng riêng d = 1,3 g/cm3. Từ các dữ kiện trên hãy cho biết: a) Kiểu tinh thể lập phương hình thành ở 200C và 2500C. b) Khoảng cách N – Cl theo A0 cho từng kiểu tinh thể đã xác định ở câu (a). Bài 17. 1.Các nguyên tử C, N, O có thể sắp xếp theo ba thứ tự khác nhau để tạo ra ba anion CNO-, CON- và NCO90 a. Viết công thức Lewis cho các cách sắp xếp nguyên tử như trên. b. Với cách sắp xếp trên hãy: - Tìm điện tích hình thức của mỗi nguyên tử. - Sắp xếp độ bền của ba anion trên. Giải thích? 2. So sánh và giải thích bán kính của các nguyên tử và ion sau: Cs+, As, F, Al, I-, N HƯỚNG DẪN GIẢI Bài 1. Viết phương trình phản ứng khi cho NO tác dụng với H 2, H2S, SO2, O2, Cl2, KMnO4. 2NO + 2H2 → N2 + 2H2O 2NO + 2H2S → N2 + 2S + 2H2O 2NO + SO2 → N2O + SO3. 2NO + Cl2 → 2NOCl (nitrozoni có ion NO+) 10NO + 6KMnO4 + 9H2SO4 → 10HNO3 + 3K2SO4 + 6MnSO4 + 4H2O Bài 2. Viết phương trình phản ứng khi cho NO 2 tác dụng với: Cl2, H2, Cu, CO, SO2, O3, H2O2. Trong mỗi phản ứng NO2 thể hiện tính chất gì? 2NO2 + Cl2 → 2NO2Cl (Nitroni) (tính khử) 2NO2 + 7H2 → 2NH3 + 4H2O NO2 + Cu → Cu2O + NO (tính oxihóa) (tính oxihóa) NO2 + CO → CO2 + NO (tính oxihóa) NO2 + SO2 → SO3 + NO (tính oxihóa) 2 NO2 + O3 → O2 + N2O5. (tính khử) NO2 + H2O2 → 2HNO3. (tính khử) Bài 3. Hòa tan Fe bằng dung dịch H2SO4 loãng dư nhận được dung dịch A. Cho hỗn hợp NO và NO2 đi qua dung dịch A thu được dung dịch B. Viết các phương trình phản ứng xảy ra. Fe + H2SO4 → FeSO4 + H2 NO2 +3 FeSO4 + H2SO4 → Fe2(SO4)3 + Fe(NO)SO4 + H2O NO + FeSO4 → Fe(NO)SO4. Bài 4. Viết cấu tạo các phân tử NO, N 2O, NO2, N2O3, N2O4 và N2O5. Nêu rõ dạng hình học của mỗi chất. 91 NO: N N2O: cấu O trúc N N O N hay N thẳng NO2: (N lai hóa sp2), N O O O hay N N O đường - cấu trúc tam giác phẳng - Có 1 e độc thân trên N → dễ dime hóa và có màu. tạo nên phân tử N2O4. O O N N2O3 : (hỗn hợp NO và NO2) N O N2O5: cấu tạo phẳng Bài 5. O O MT =23,5 . 2 = 47 → MNO = 30 < 47 < MD. → D là SO2 = 64 Suy ra số mol NO = 0,2 mol và SO2 = 0,2 mol Thực chất phản ứng theo các phương trình sau: Al → Al3++ 3e. Với số mol Al = x và số mol Cu = y Cu → Cu2+ + 2e. Tổng số e nhường = 3x + 2y NO3- + 4H+ + 3e → NO + 2H2O SO42– + 4H+ + 2e → SO2 + 2H2O (Tổng số mol e thu = 0,6 + 0,4 = 1 ) Số mol H+ trong Y = 1,2 . 2 + 0,2 = 2,6 > số mol H+dự phản ứng = (0,2 + 0,2) 4= 1,6 Nên kim loại tan hết. Vậy ta có hệ phương trình: 27x + 64y = 18,2 3x + 2y = 1 → giải pt cho x = y = 0,2 Vì NO3– phản ứng = NO3– trong Y nên dung dịch Z không có NO3–- và chỉ có Al3+, Cu2+, SO42–. Lượng Al2(SO4)3 = 0, 2 . 342 = 34,2 gam 2 Lượng CuSO4 = 0,2 . 160 = 32 gam Bài 6. Phần hỗn hợp tan = 0,25a gam < 0,3a gam nên Fe còn dư và Cu chưa phản ứng Các phản ứng: Fe + 4 HNO3 → Fe(NO3)3 + NO ↑+ 2H2O Fe + 6 HNO3 → Fe(NO3)3 + 3NO2 ↑+ 3H2O Do Fe dư nên còn các phản ứng: Fe + 2Fe(NO3)3 → 3Fe(NO3)2 Tức là trong dung dịch B chỉ có Fe(NO3)2 Và lượng muối = lượng Fe + lượng NO3– 92 Mà số mol NO3– còn lại trong B = tổng số mol NO3– – số mol khí = 0,69 – 0,2725 = 0,4175 mol Vậy lượng muối khan = Bài 7. 0, 4175 . 180 = 37,575 gam 2 2Al + 6 HCl → 2AlCl3 + 3H2↑ (1) Fe + 2 HCl → FeCl2 + H2↑ (2) 2Al + 3CuSO4 → Al2(SO4)3 + 3Cu↓ Fe + CuSO4 → FeSO4 + Cu↓ (3) (4) Khí có 30 < MTB = 40,64 < 46 là hỗn hợp NO và NO 2 (cần chú ý là trong các sản phẩm chứa N tạo ra khi tác dụng với HNO3 ngoài muối, Cu chỉ tạo NO và NO2 ) Cu + 4HNO3 → Cu(NO3)2 + 2NO2 ↑+ 2H2O (5) 3Cu + 8HNO3 → 3Cu(NO3)2 + 2NO ↑+ 4H2O (6) Từ MTB = 40,64 và tổng số mol = 1,2 tính được NO = 0,4 mol và NO2= 0,8 mol Theo pt (5), (6) Cu = 0,4 + 0,6 = 1,0 mol So sánh (1), (2) với (3), (4) thấy số mol Cu↓ = H2↑= 0,8 mol (TN 2 lấy lượng gấp đôi) Suy ra Cu ban đầu = 1, 0 − 0,8 = 0,1 mol ∼ 6,4 gam → Al + Fe = 11 gam 2 Từ hệ pt về tổng lượng Al + Fe và tổng số mol H2↑ tính được Al = 5,4 g và Fe = 5,6 g Bài 8. Gọi oxit kim loại phải tìm là MO và a và 2a là số mol CuO và MO trong A. Vì hidro chỉ khử được những oxit kim loại đứng sau nhôm trong dãy điện hóa nên có 2 khả năng xảy ra: * Trường hợp 1: M đứng sau nhôm trong dãy điện hóa CuO + H2 → Cu MO H2 → M + + + H2O H2O 3Cu + 8HNO3 → 3Cu(NO3)2 + 2NO ↑+ 4H2O 3M + 8HNO3 → 3 M(NO3)2 + 2NO ↑+ 4H2O 80a + ( M + 16).2a = 3, 6  16a Ta có hệ pt:  8a Giải hệ pt cho a = 0,01875 và M = 40 ∼ Ca = 0,15  3 + 3 Trường hợp này loại vì Ca đứng trước Al trong dãy thế điện hóa. * Trường hợp 2: M đứng trước nhôm trong dãy điện hóa 93 CuO + H2 → Cu + H2O 3Cu + 8HNO3 → 3Cu(NO3)2 + 2NO ↑+ 4H2O MO + 2HNO3 → M(NO3)2 + 2H2O 80a + ( M + 16).2a = 3, 6   8a Giải hệ pt cho a = 0,01875 và M = 24 ∼ Mg 4a = 0,15  3 + Ta có hệ pt: Nghiệm này hợp lý và V= Bài 9. % CuO = 41, 66% 0, 01875. 2 . 22,4 = 0,28 lít. →  3 % MgO = 58,34% Số mol khí = 0,66 và 0,6. Từ MTB= 9,56. 4 = 38,24 suy ra NO2 > 38,24 nên khí còn lại phải là NO = 30 < 38,24 Và tính được NO = 0,32 mol và NO2 = 0,34 mol 3X + 8HNO3 → 3X(NO3)2 + 2NO ↑+ 4H2O Y + 4HNO3 → Y(NO3)3 + NO ↑+ 2H2O X + 4HNO3 → X(NO3)2 + 2NO2 ↑+ 2H2O Y + 6HNO3 → Y(NO3)3 + 3NO2 ↑+ 3H2O X + 2HCl → XCl2 + H2 ↑ hoặc 2Y + 6HCl → 2YCl3 + 3H2 ↑ Biện luận: * Nếu kim loại Y không tan trong axit HCl 10,8 Theo pt: số mol X = 0,6 và lượng X = 10,8 gam nên X = 0, 6 = 18 (không thỏa mãn kim loại nào) * Vậy kim loại X không tan trong axit HCl 10,8 Theo pt: số mol Y = 0,4 và lượng Y = 14- 3,2= 10,8 gam nên Y = 0, 4 = 27 ∼ Al Đặt số mol X bằng a:  Al− 3e → Al3+  tổng số e nhường = 0,4. 3 + 2a = 1,2 + 2a 2+  X − 2 e → X  N +5 + 3e → N +2  +5 +4 tổng số e thu = 0,32. 3 + 0,34 = 1,30  N + 1e → N Theo qui tắc bảo toàn số mol e: 1,2 + 2a = 1,3 → a = 0,05 3, 2 Vậy X = 0, 05 = 64 ∼ Cu và % Al = 77,14% ; %Cu = 22,86% Bài 10. số mol HNO3 = 0,38. 0,667 = 0,25346 và số mol H2SO4 = 0,3. 0,2 = 0,06 Đặt số mol X(NO3)2 và X ban đầu là a và b. 94 2X(NO3)2 → 2XO + 4NO2 + O2 ↑ a a 2a 0,5a 2X + O2 → 2XO do phản ứng với HNO3 có khí NO↑ nên X có dư và a 0,5a a phần dư = b – a (mol) XO + 2HNO3 → X(NO3)2 + H2O 3X + 8HNO3 → 3X(NO3)2 + 2NO ↑+ 4H2O XO + H2SO4 → XSO4 + H2O X + H2SO4 → XSO4 + H2↑ Theo pt: số mol HNO3 phản ứng = 2a + 4 (b - a) = 0,253 hay a + 2b = 0,38 (1) 3 Biện luận: * Nếu M đứng trước hidro trong dãy điện hóa thì theo pt a+ 1 (b - a) = 0,06 hay a + b = 0,12 (2). Giải (1)(2) cho a = – 0,14 < 0 (loại) 2 * Vậy M đứng sau hidro trong dãy điện hóa và không tác dụng với H2SO4 loãng, khi đó a = 0,06 → b = 0,16 và 0,06(M + 124) + 0,16M = 21,52 → M = 64 ∼ Cu Suy ra % Cu = 47,5 % và % Cu(NO3)2 = 52,5% Sau khi nung trong bình chứa 0,12 mol NO2 nên P = Bài 11. a) 0,12.0, 082.327, 6 = 1,07 atm. 3 Mg + 2HCl → MgCl2 + H2↑ 2Al + 6HCl → 2AlCl3 + 3H2↑ Lập hệ pt và giải hệ pt cho Mg = 0,06 mol và Al = 0,04 mol Đặt số oxihóa của lưu huỳnh trong sản phẩm là x ta có: Al → Al3+ + 3e Mg → Mg2+ +2e tổng số mol e nhường = 0,04. 3 + 0,06. 2 = 0,24 S6+ + (6 – xe) → S x tổng số mol e thu = (6 - x). 0,03 Theo quy tắc bảo toàn số mol e: (6 - x). 0,03 = 0,24 → x = – 2 → sản phẩm là H2S b) N5+ + (5 – ye) → S y tương tự: (5 - x). 0,03 = 0,24 → x = – 3 → sản phẩm là NH3 4Mg +10 HNO3 → 4Mg(NO3)2 + NH4NO3 + 3H2O 8Al +30 HNO3 → 8Al(NO3)3 + 3NH4NO3 + 9H2O Theo pt: số mol HNO3 phản ứng = 0,06. 2,5 + 0,04. 3,75 = 0,3 → VHNO3 = 150 ml. Bài 12. a) số mol khí H2 = 0,14 và số mol khí X = 0,02 95 2Mg + O2 → 2MgO Mg + 2HCl → MgCl2 + H2↑ MgO + 2HCl → MgCl2 + H2O Theo pt: Mg chưa bị oxihóa = 0,14 mol → MgO = 14, 25 – 0,14 = 0,01 mol 95 0, 01 % Mg bị oxihóa = 0,15 . 100% = 6,67% Mg + HNO3 → Mg(NO3)2 + X + H2O b) MgO + 2HNO3 → Mg(NO3)2 + 2H2O Biện luận: Theo tính toán trên số mol Mg(NO3)2 = 0,15 nên lượng Mg(NO3)2 = 0,15. 148 = 22,2 gam < 23 Vậy trong B không chỉ có Mg(NO3)2 mà còn phải có NH4NO3 = 23 − 22, 2 = 0,01 mol 80 4Mg + 10HNO3 → 4Mg(NO3)2 + NH4NO3 + 3H2O 0,04 0,01 (5x-2y)Mg + (12x-4y)HNO3 → (5x-2y)Mg(NO3)2 + 2NxOy ↑ + (6x-2y)H2O 0,14 – 0,04 = 0,1 Theo pt: Bài 13. 0,02 5x − 2 y 2 = → 5x – 2y = 10 → x = 2; y = 0 → khí X là N2. 0,1 0, 02 Gọi x, y, z là số mol Mg, Fe, Cu trong hỗn hợp, ta có : ↔ 3x + 7y + 8z = 2,94 24x + 56y + 64z = 23,52 (a) Đồng còn dư có các phản ứng: Cho e: Nhận e: Mg → Mg2++ 2e (1) Fe → Fe3+ + 3e (2) Cu → Cu2+ + 2e (3) NO3- + 3e + 4H+ → NO + 2H2O Cu +2Fe3+ → Cu2+ + 2Fe2+ (4) (5) Phương trình phản ứng hoà tan Cu dư: 3Cu + 4H2SO4 + 2NO3- → 3CuSO4 + SO42- + 2NO + H2O Từ Pt (6) tính được số mol Cu dư: = (6) 0,044.5.3 = 0,165 mol 4 Theo các phương trình (1), (2), (3), (4), (5): số mol e cho bằng số mol e nhận: 2(x + y + z – 0,165) = [3,4.0,2 – 2(x + y + z – 0,165)].3 96 → x + y + z = 0,255 + 0,165 = 0,42 (b) Từ khối lượng các oxit MgO; Fe2O3; CuO, có phương trình: x y z .40 + .160 + . 80 = 2 4 2 15,6 (c) Hệ phương trình rút ra từ (a), (b), (c): 3x + 7y + 8z = 2,94 x + y + z = 0,42 x + 2y + 2z = 0,78 Giải được: x = 0,06; y = 0,12; z = 0,24. % lượng Mg = 6,12% ; % lượng Fe = 28,57% ; % lượng Cu = 65,31% 0,06 [Mg2+] = 0,244 = 0,246 M 2/ Tính nồng độ các ion trong dd A (trừ H+, OH-) [Cu2+] = 0,984 M ; Bài 14. a) PT pứ: [Fe2+] = 0,492 M ; [SO42-] = 0,9 M ; [NO3-] = 1,64 M FeS + 12HNO3 → Fe(NO3)3 + H2SO4 + 9NO2↑ + 5H2O FeCO3 + 4HNO3 → Fe(NO3)3 + CO2 + NO2↑ + 2H2O Đặt: nFeS = a mol , nFeCO3 = b mol → nNO2 = 9a + b Ta có : và nCO2 = b 46(9a + b) + 44b = 22,8 → a:b = 1:3 → n FeS : n FeCO3 = 1: 3 (b = 3a) 2(9 a + 2 b) b) Làm lạnh B có phản ứng : 2NO2 N2O4 khi đó M (N2O4) = 92 làm M tăng và = 57 Gọi x là số mol N2O4 trong hỗn hợp B, vậy B′ gồm: NO2 = (9a + b) – 2x = 4b - 2x ; N2O4 = x và CO2 = b → 46(4b - 2x) + 92x + 44b = 57 (4b − 2 x + x + b) → b = x → Tổng B’ = 4b gồm NO2 = 2b ∼ 50% ; N2O4 = b ∼ 25% ; CO2 = b ∼ 25% c) ở – 110C phản ứng dime hoá xảy ra hoàn toàn, B′′ gồm N2O4 = 2b và CO2 = b 92.2b + 44.b tỉ khối so với hidro = 2(b + 2b) = 38 Bài 15. a) CO + CuO → Cu + CO2 số mol CO2 = 0,02 CO2 + Ca(OH)2 → CaCO3 + H2O số mol Cu = 0,02 2CO2 + Ca(OH)2 → Ca(HCO3)2 số mol CuO = 0,06 Ca(HCO3)2 → CaCO3 + CO2↑+ H2O số mol HNO3 = 0,16 CuO + 2H+ → Cu2+ + H2O 97 3Cu + 8H+ + 2NO3– → 3Cu2+ + 2NO↑ + 4H2O 0,015 Theo pt: Khi thêm 0,04 0,01 V1 = 0,01. 22,4 = 0,224 lít ; V2 = 1 V1 = 0,07467 lít 3 3, 04 mol HCl, phản ứng lại tiếp tục xảy ra 3 5Mg + 12H+ + 2NO3– → 5Mg2+ + N2↑ + 6H2O Thêm 1 mol Mg: Mg + Cu2+ → Mg2+ + Cu Mg + 2H+ → Mg2+ + H2↑ mà số mol N2 = 1 0, 04 0, 22 (0,16 )= 2 3 3 và H2 = V3 = VN2 + VH2 1  3, 04 0, 04 2, 64  − −  ÷ = 0, 06 2 3 3 3   0, 22  + 0, 06 ÷= 2,9867 lít  3  nên V3 = 22,4  b) Suy ra Cu = 0,08. 64 = 5,12 gam chiếm 30,19%  và Mg = 1 −  1,1  − 0, 06 − 0, 08 ÷.24 = 11,84 gam chiếm 69,81% 3  Bài 16. Số phân tử NH4Cl trong một ô mạng lập phương được tính theo công thức: n= d .N A .a 3 M NH 4Cl Thay số với các trường hợp 200C : n= 1,5.6, 02.1023.(3,88.10−8 )3 ≈1 53,5 2500C: n= 1,3.6, 02.1023.(6,53.10−8 )3 ≈4 53,5 Từ kết quả tính => ở 20 0C NH4Cl tồn tại ở dạng lập phương đơn giản, mạng NH 4+ và Cl – chèn vào nhau có thể tịnh tiến trùng nhau. Ở 2500C : NH4Cl kết tinh dưới dạng lập phương tâm diện. b) Tính khoảng cách: 200C: d N −Cl = a 3 = 3,36 A0 2 98 a 2 ở 2500C: d N −Cl = = 3, 27 A0 Bài 17. a. Viết công thức Lewis cho Ba anion CNO-, CON- và NCOC N - O C O N - N C O N C O - b. - Điện tích hình thức của mỗi nguyên tử. C -1 N +1 - O C -1 O -1 N - +2 -2 - 0 0 -1 - Ion NCO- bền nhất vì điện tích hình thức nhỏ nhất. Ion CON- kém bền nhất vì điện tích hình thức lớn nhất. 2. Bán kính của các nguyên tử và ion: Cs+< I->As>Al> N>F Nguyên tử Al có bán kính lớn hơn nguyên tử F do nguyên tử Al nằm ở chu kì dưới và bên trái nguyên tử F trong BHTTH. As có bán kính lớn hơn nguyên tử Al do As thuộc chù kì dưới. Cs+ và I- có cùng cấu hình electron, nhưng anion có kích thước lớn hơn anion nên kích thước I- > Cs+ I- > As do I nằm ở chu kì dưới so với As trong BTTH. N >F do N nằm ở bên trái F trong cùng một chu kì. Kết luận: Kích thước nguyên tử F là nhỏ nhất, kích thước ion I - là lớn nhất, ngoại trừ Cs+. Chúng ta có thể sắp xếp theo chiều giảm kích thước như sau: Cs +< I->As>Al> N>F, và Cs+< I- CHƯƠNG 4: CACBON- SILIC VÀ HỢP CHẤT I. ĐẶC ĐIỂM CHUNG I.1. N0 1 2 Đặc điểm cấu tạo nguyên tử Tính chất Số thứ tự Electron hóa trị C 6 2s2p2 Si 14 3s2p2 Ge 32 4s24p2 Sn 50 5s25p2 Pb 82 6s2p2 99 3 4 5 7 Bán kính n.tử, antron Bán kính ion X4+, antron Thế ion hóa I1, eV Độ âm điện 0,77 0,45 11,26 2,5 1,34 0,41 8,15 1,8 1,39 0,44 7,88 1,8 1,58 0,67 7,33 1,8 1,75 0,84 7,42 1,8 Do tổng năng lượng ion hoá khá lớn nên không thể mất 4e để tạo ion 4+; mặt khác độ âm điện cũng không lớn để có thể kết hợp 4e để tạo ion 4-. Để tạo cấu hình electron bền những nguyên tử nguyên tố nhóm IVa tạo nên những liên kết cộng hóa trị với số oxi hoá -4, +2 và +4. Trong những số oxi hoá dương đặc trưng, khuynh hướng cho số oxi hoá +4 giảm và số oxi hoá +2 tăng từ C đến Pb. Năng lượng liên kết E-X giảm xuống từ Si -X đến Pb - X; nhưng từ C đến Si, trong nhiều trường hợp năng lượng liên kết lại tăng lên vì Si có khả năng tạo liên kết π p→d giữa cặp electron tự do của F, Cl, O… với obital d trống của Si. Các nguyên tố nhóm IVA có khả năng tạo mạch đồng nguyên tử E-E và khả năng này giảm từ C đến Pb. Sự giảm khuynh hướng đó có thể giải thích được một phần bằng sự giảm độ bền của liên kết E -E. Trong các hợp chất, số phối trí tăng từ từ 4 ở C đến 8 ở Pb do sự tăng số obital nguyên tử tham gia lai hoá từ kiểu sp2 và sp3 đến sp3d2 và sp3d2f2. I.2.Trạng thái thiên nhiên Cacbon không phải là nguyên tố phổ biến nhất, chỉ chiếm 0,14% tổng số nguyên tử, nhưng hợp chất của cacbon là cơ sở của mọi sinh vật. Cacbon tồn tại trong thiên nhiên lượng lớn nằm ở 2 khoáng vật là canxit (CaCO 3) và đolomite (CaCO3.MgCO3). Ngoài ra, cacbon còn tồn tại ở than mỏ, dầu mỏ, CO 2, trong hợp chất hữu cơ của mọi sinh vật. Trong thiên nhiên, cacbon ở dưới 2 dạng đồng vị bền 12C (98,9) và 13C (1,1%). Dưới tác dụng của tia vũ trụ, một lượng nhỏ đồng vị phóng xạ β là 14C cũng được tạo thành trong khí quyển: 14 7 1 N + 10 n → 14 6 C + 1 H . Dựa trên hàm lượng 14 C trong bã thực vật người ta xác định được tuổi của cây cối và cổ vật. I.3 Tính chất vật lý Cacbon có 2 dạng thù hình cơ bản là kim cương và than chì. I.3.1 Kim cương Tinh thể kim cương thuộc hệ lập phương. Trong tinh thể, mỗi nguyên tử C ở trạng thái lai hoá sp3 và tạo liên kết cộng hóa trị với 4 nguyên tử C khác. 100 Tinh thể cacbon có mạng lưới nguyên tử điển hình. Toàn bộ tinh thể có kiến trúc rất đều đặn cho nên thực tế tinh thể là một phân tử khổng lồ kim cương có tỉ khối lớn (3,51g/cm3) và cứng nhất trong tất cả chất. Kim cương không dẫn điện vì các electron hoá trị đều được liên kết bền vững trong liên kết C-C. Tinh thể kim cương hoàn toàn trong suốt, không màu, chỉ số khúc xạ rất lớn nên trông lấp lánh rất đẹp. Bột kim cương dùng để đánh bóng hạt kim cương và những vật liệu rất cứng khác. I.3.2.Than chì Than chì có kiến trúc lớp, trong đó mỗi nguyên tử C ở lai hoá sp 2. Mỗi nguyên tử C tạo 3 liên kết σ với 3 nguyên tử C và đóng góp 1e vào liên kết π giải tỏa trong toàn bộ tinh thể. Khác với kim cương, than chì có màu xám, có ánh kim và dẫn điện (trên thực tế, than chì được dùng làm điện cực). Do kiến trúc lớp, một số tính chất lý hoá phụ thuộc vào phương ở trong tinh thể. mật độ dẫn điện và độ cứng của than chì theo phương song song với lớp tinh thể đều lớn hơn so với phương vuông góc với lớp. Giống kim cương, than chì có nhiệt độ nóng chảy rất cao, bột than chì thường được sử dụng làm chất bôi trơn trong các thiết bị nhiệt độ cao. I.4 Tính chất hóa học Ở nhiệt độ thường tương đối trơ, nhưng ở nhiệt độ cao trở nên hoạt động, có thể phản ứng với nhiều phi kim và kim loại. Cháy trong không khí: C + O2 → CO2 ∆H0 = - 393 kJ/mol Ở nhiệt độ cao, C khử CO2: CO2 + C →2CO ∆H0 = 172,4 kJ/mol Cacbon tác dụng với nhiều kim loại tạo cacbua kim loại. Ở nhiệt độ cao, cacbon khử được nhiều hợp chất như: hơi H2O, clorat, nitrat; khi đun nóng, tác dụng được với axit nitric, axit sunfuric tạo ra CO2. Đặc biệt khử được nhiều oxit kim loại giải phóng kim loại, ví dụ: t CuO + C → Cu + CO2 II. CACBON OXIT II.1. Đặc điểm cấu tạo Theo thực nghiệm, phân tử CO có năng lượng liên kết rất lớn (1070 kJ/mol) và momen lưỡng cực 0,12D. o 101 Cấu trúc phân tử CO có thể được giải thích theo thuyết VB. Theo đó, trong phân tử CO, nguyên tử C ở trạng thái lai hóa sp. Một obital lai hóa của C xen phủ với AO2p của O tạo thành 1 iên kết σ, hai obital không lai hóa của C tạo 2 liên π với 2 AO2p còn lại của O. Theo thuyết MO, phân tử CO có giản đồ năng lượng giống với phân tử N2. II.2. Tính chất vật lý CO là chất khí không màu, không mùi. Do phân tử phân cực yếu nên nên CO khó hóa lỏng và hóa rắn (nhiệt độ nóng chảy -2040C; nhiệt độ sôi -191,50C). Khí CO ít tan trong nước và là khí rất độc. II.3. Tính chất hóa học Giống nitơ, cacbon oxit kém hoạt động ở nhiệt độ thường nhưng khác nitơ, ở khả năng khử tăng mạnh. II.3.1. Tính khử Ở khoảng 7000C, CO cháy trong không khí cho ngọn lửa màu lam nhạt, phát nhiều nhiệt và có thể gây nổ: 2CO + O2 → 2CO2 ΔH0 = - 283 kJ/mol Ở 5000C và trong bóng tối, CO phản ứng với Cl2 tạo thành photgen: CO + Cl2 → COCl2 ΔH0 = - 111,3 kJ/mol CO khử được oxit của một số kim loại thành kim loại Fe2O3 + 3CO → 2Fe + 3CO2 Trong dung dịch, CO khử được muối của các kim loại quí như: Au, Pt, Pd đến kim loại: PdCl2 + H2O + CO → Pd + 2HCl + CO2 II.3.2. Tính bazơ Do có cặp electron không liên kết trên obital lai hóa ở C, phân tử CO còn có thể kết hợp với nhiều chất. CO kết hợp với một số kim loại chuyển tiếp tạo cacbonyl kim loại: Ni + 4CO → Ni(CO)4 Fe + 5CO → Fe(CO)5 Liên kết trong phức chất cacbonyl giữa kim loại M và CO gồm 1 liên kết σ và một liên kết π M → CO CO kết hợp với một số muối tạo phức (cấu tạo phân tử phức tạp): CuCl + CO + 2H2O → CuCl.CO.2H2O III. CACBON DIOXIT III.1. Đặc điểm cấu tạo 102 Theo thuyết VB, trong phân tử CO2, nguyên tử C ở trạng thái lai hóa sp. Hai obital lai hóa của C tạo thành với 2 nguyên tử oxi 2 liên kết σ; hai obital không lai hóa của C tạo 2 liên π. Phân tử CO2 có cấu trúc thẳng, không phân cực, năng lượng liên kết C=O lớn (803 kJ/mol) nên khá bền nhiệt. III.2. Tính chất vật lý Cacbon dioxit là khí không màu, vị hơi chua, dễ hoá lỏng và dễ hoá rắn (nhiệt độ nóng chảy -570C ở 5atm). Ở 60 atm và nhiệt độ thường, CO 2 biến thành khối rắn màu trắng giống như tuyết gọi là tuyết cacbonic. Cacbon dioxit khá bền, không độc, không duy trì sự sống. CO 2 tan nhiều trong nước (ở 00C, 1 lít nước hòa tan 1,7 lít CO2). Trên giản đồ pha của CO 2 (hình 8-7), điểm ba nằm cao hơn áp suất khí quyển nên tuyết cacbonic thăng hoa ở - 78,50C dưới áp suất thường. III.3. Tính chất hóa học Khi tan trong nước, phần lớn CO2 dạng hiđrat hoá hoá và phân nhỏ tác dụng với nước tạo axit cacbonic: CO2 + xH2O → CO2.xH2O Axitcacbonic không bền và không tách ra được ở điều kiện thường. Nó là axit 2 nấc (K1 = 4,16.10-7, K2 = 6,84.10-11) Ở điều kiện thường, khí CO2 khô có thể kết hợp với khí amoniac khô tạo amoni cabamat. Muối này không bền, khi đun nóng trong không khí phân huỷ ra CO 2 và NH3. Khi đun nóng đến 1800C và dưới P = 200atm amoni cacbamat sẽ mất nước biến thành ure. III.4. Điều chế -Trong công nghiệp: Là sản phẩm đốt cháy nhiên liệu hóa thạch và nhiệt phân muối cacbonat. - Phòng thí nghiệm Nguyên tắc: Dựa trên tính kém bền của axit cacbonic; Phương pháp: cho muối cacbonat, hidrocacbonat tác dụng với axit loãng: CaCO3 + 2HCl → CaCl2 + CO2 + H2O III.5. Ứng dụng - Trong công nghiệp hóa học: tổng hợp phân đạm ure; sản xuất xô đa; axit salixilic; - Trong công nghiệp thực phẩm: Nén vào nước giải khát, nước hoa quả, nước khoáng; - Công nghệ hạt nhân: Khí CO2 có nhiệt dung lớn và ít hấp thụ nơtron nhiệt nên được dùng làm nguội một số lò hạt nhân. 103 III.6. Muối cacbonat và hidrocacbonat III.6.1. Cấu tạo Axit cacbinic tạo nên 2 loại muối: cacbonat và hiđrocacbonat. Anion cacbonat có cấu trúc tam giác đều, nguyên tử C lai hóa sp 2 nằm ở tâm, 3 nguyên tử O ở đỉnh của tam giác đều. III.6.2. Màu sắc, độ tan Ion cacbonat và hidrocacbonat không có màu nên các muối của cation không màu đều không có màu. Chỉ muối cacbonat kim loại kiềm và amoni là dễ tan. Dung dịch muối tan có phản ứng kiềm vì muối bị thuỷ phân. Muối hiđrocacbonat dễ tan hơn cacbonnat. III.6.3. Độ bền nhiệt Chỉ các muối hidrocacbonat của kim loại kiềm (trừ Li) và amoni là tách được ở trạng thái tinh thể, các hidrocacbonat của các kim loại khác chỉ tồn tại trong dung dịch. Cacbonat kim loại kiềm bền với nhiệt, khi nóng chảy mà không phân huỷ. Những cacbonat khác phân huỷ giải phóng CO2. III.6.4. Phản ứng thủy phân Anion cacbonat và hidrocacbonat trong dung dịch bị thủy phân tạo môi trường bazơ yếu. BÀI TẬP ÁP DỤNG Bài 1: 1) Cacbon than chì có hai dạng tinh thể là lục phương và mặt thoi. Hãy nêu sự giống nhau và khác nhau giữa hai dạng tinh thể đó?(Có hình vẽ). Từ hình vẽ cho biết cách xác định bán kính cộng hoá trị và bán kính vadevan? 2) Sự tương tác giữa cacbon than chì với hơi kim loại kiềm hoặc kim loại kiềm thổ ở áp suất cao tạo thành những hợp chất mới có thành phần ứng với công thức công thức nguyên MCx(M là kim loại). Trong tinh thể mới sinh ra, kim loại nằm ở tâm của lăng trụ, đáy là lục giác đều có số phối trí bằng 12 a. Nếu cứ 5 lăng trụ có một kim loại, tính x trong MCx? b. Cho bán kính cộng hoá trị và bán kính vadevan của cacbon trong tinh thể than chì tương ứng là: 0,7A0; 1,67A0. Nếu tâm lăng trụ có K thì chiều cao lăng trụ trong tinh thể hợp kim là 5,4A0. Hãy cho biết tâm của lăng trụ là nguyên tử K hay ion K+? 104 c. Nếu tâm ở lăng trụ có Ba thì khoảng cách giữa hai lớp là bai nhiêu cho biết bán kính của K ,K+, Ba, Ba2+ tương ứng là: 2,35A0; 1,33A0; 2,21A0; 1,35A0. 3)Một dạng tinh thể của Bonitrua (công thức (BN) n) có tên gọi là than chì trắng. Hãy cho biết tinh thể than chì trắng co điểm gì giống với tinh thể than chì đen? Bài 2: Giải thích vì sao: 1) Khi trộn lẫn các dung dịch: Al2(SO4)3 và K2S hoặc các dung dịch Al(NO3)3 và K2CO3 ta đều được cùng một kết tủa? 2) Trong cùng phân nhóm chính nhóm V nhưng Nito không có tính thù hình, còn phootpho có nhiều dạng thù hình? 3) Vì sao liên kết ba cacbon-cacbon có hoạt tính mạnh, trong khi liên kết ba nito-nito có hoạt tính rất yếu? Bài 3: Hãy cho biết: 1) Tại sao SiO2 có nhiệt độ nóng chảy cao hơn CO2? 2) tại sao người ta thường dùng dung dịch H2O2 để phục hồi các bức tranh cổ bị đen? 3) Tại sao photphin(PH3) có nhiệt độ sôi thấp hơn amoniac(NH 3), nhưng Silan(SiH4) lại có nhiệt độ sôi cao hơn metan(CH4) 4) Si có hòa tan trong dung dịch axit không? Nếu có hãy viết phương trình phản ứng? Bài 4: Trong số các cacbonyl halogenua COX2 người ta chỉ điều chế được 3 chất: cacbonyl florua COF2, cacbonyl clorua COCl2 và cacbonyl bromua COBr2. 1. Vì sao không có hợp chất cacbonyl iođua COI2? 2. So sánh góc liên kết ở các phân tử cacbonyl halogenua đã biết. 3. So sánh nhiệt tạo thành tiêu chuẩno ∆Htth của COF2 (khí) và COCl2 (khí). 4. Sục khí COCl2 từ từ qua dung dịch NaOH ở nhiệt độ thường. Viết phương trình phản ứng xảy ra (nếu có). Bài 5: 1) Bằng thực nghiệm người ta biết rằng kim cương có cấu trúc lập phương tâm diện và 4 hốc tứ diện phân bố đều ở 4 gốc của ô mạng cơ sở. Cho độ dài cạnh ô mạng cơ sở bằng 3,55A0. a. Biểu diễn ô mạng tế bào cơ sở của kim cương, xác định số nguyên tử cacbon trong ô mạng cơ sở đó? 105 b. Trình bày cách tính bán kính nguyên tử cacbon và khoảng cách gần nhất giữa hai nguyên tử cacbon. c. Tính khối lượng riêng của kim cương, biết MC=12g/mol 2) Thực nghiệm xác định được moomen lưỡng cực của phân tử nước là 1,85D, góc liên kết HOH là 104,5A0; độ dài liên kết O-H là 0,0957nm Tính độ ion của liên kết O-H trong phân tử oxi(bỏ qua moomen tạo ra do các cặp e hóa trị không tham gia liên kết của oxi) Cho 1D = 3,33.10-30 Cm Bài 6: 1) Giải thích tại sao (CH3)3NBF3 khá bền hơn so với (SiH3)3NBF3? Trên cơ sở đó dự đoán góc liên kết SiNC tronh hợp chất H3SiNCS(isotiocinatsilic)? 2) Cho biết dạng hình học và trạng thái lai hóa B, C, Si, Te trong các hợp chất: BCl 3; CCl4; SiCl4; TeF6? Trong các hợp chất đó chất nào có tính axit? Vì sao? Viết phương trình phản ứng của các chất trên với nước nếu có? Bài 7: Không giống như cacbon, thiếc có thể tăng số phối trí quá 4, tương tự cacbon thiếc tạo clorua SnCl4 a) Hãy vẽ hai dạng hình học có thể có của SnCl4? b) Các axit lewis như là SnCl4 phản ứng với các bazo Lewis như ion clorua hay amin. Trong trường hợp clorua, quan sát thấy có hai phản ứng SnCl4 + Cl →SnCl5- - SnCl4 + 2Cl - →SnCl6- b) Hãy vẽ ba dạng hình học có thể có của SnCl5 - c) Hãy dùng thuyết VSEPR để dự đoán dạng hình học nào là thích hợp hơn đối với SnCl5 - d) Vẽ ba dạng hình học có thể có của SnCl6 - e) Hãy dùng thuyết VSEPR để dự đoán dạng hình học nào là thích hợp hơn đối với SnCl6 - Bài 8: 106 1) So sánh đặc điểm của kim cương và than chì về kiến trúc mạng tinh thể, trạng thái lai hóa của cacbon, các tính chất vật lý(tỷ khối, độ cứng, khả năng dẫn điện)? 2) Hợp chất của cacbua chia làm mấy loại, những loại cacbua nào có khả năng bị phân hủy dưới tác dụng của nước và axit? So sánh cấu tạo và tính chất của CaC2 và W2C? 3) Các dạng thù hình của Silic? tại sao Silic là chất là chất bán dẫn, còn kim cương là chất cách điện? 4) So sánh và giải thích khả năng tạo thành liên kết π của C và Si Bài 9: 1. Tính bán kính của nguyên tử silic. Cho khối lượng riêng của silic tinh thể bằng 2,33g.cm-3; khối lượng mol nguyên tử của Si bằng 28,1g.mol-1. 2. So sánh bán kính nguyên tử của silic với cacbon (rC = 0,077 nm) và giải thích. Bài 10: Thực nghiệm cho biết cả ba hợp chất CHBr 3, SiHBr3, CH(CH3)3 đều có cấu tạo tứ diện. Có ba trị số góc liên kết tại tâm là 110 o; 111o; 112o(không kể tới H khi xét các góc này). Độ âm điện của H là 2,20; CH3 là 2,27; Csp3 là 2,47; Si là 2,24; Br là 2,50. Dựa vào mô hình sự đẩy giữa các cặp e hóa trị (VSEPR) và độ âm điện, hãy cho biết trị số góc của mỗi hợp chất và giải thích. Bài 11: Cho đến tận thế kỷ XIX thì thuốc súng đen là vật liệu nổ duy nhất mà loài người được biết. Thành phần của thuốc súng đen có thể rất khác nhau nhưng luôn chứa những thành phần cơ bản: diêm tiêu (kali nitrat), lưu huỳnh và than. Tiến hành phân tích hóa học thuốc súng đen cho kết quả là 75% diêm tiêu, 13% cacbon và 12% lưu huỳnh về khối lượng. a) Viết phản ứng thể hiện sự cháy của thuốc súng đen với các thành phần này. Cho biết vai trò của từng loại nguyên liệu. b) Nếu như thành phần các nguyên liệu trong thuốc súng đen có thay đổi thì có thể thu được các loại sản phẩm cháy nào? Minh họa bằng phương trình hóa học. Bài 12 Một nghiên cứu thời cổ đại của một nhà giả kim về một chất được tạo thành như sau : Lấy 11 ounce xương phơi khô của một con chó xù bị giết vào đêm trăng tròn và trộn với 7 ounce dung dịch nhớt của vitriol (axit sunfuric). Thêm vào hỗn hợp này ba phần cát và nghiền nhỏ tất cả hỗn hợp thành vữa. Từ bột này thì ta thêm vào một chất lỏng nhớt gọi là thuỷ tinh nước, khuấy trộn liên tục hỗn hợp này thì sẽ thu được một chất lỏng sền sệt. Bây giờ nếu chúng ta dùng lượng nhớt vitriol gấp đôi lượng đã đề cập rồi thêm vào 11 ounce đá vôi trước khi đổ lên thuỷ tinh nước thì ta sẽ thu được một thành phần khác biệt. Chất thứ hai này gần giống như chất thứ nhất nhưng rất dễ bị cạo đi. 107 a) Viết công thức các chất hóa học đã đề cập ở trên. Cho biết tên hiện đại của các chất này. b) Viết phương trình các phản ứng hóa học đã nói ở trên. Qua các phản ứng này thì ta quan sát đươc sự thay đổi các tính chất vật lý nào? Giải thích. c) Tại sao thuỷ tinh nước lại nhớt ? d) Nhà giả kim định làm gì từ những chất này? Ứng dụng của chúng ngày nay là gì ? e) Cho biết sự khác biệt về cấu trúc và tính chất của chất thứ nhất và chất thứ hai. Giải thích sự khác nhau đó. Chú thích: 1 ounce = 28,3495 gam Bài 13 Khi nghiªn cứu một cổ vật dựa vào 14C (t1/2 = 5730 năm), người ta thấy trong mẫu đã cã cả 11C; số nguyªn tử 14C bằng số nguyªn tử 11C; tỉ lệ độ phãng xạ 11C so với 14C bằng 1,51.108 lần. H·y: a) Viết phương tr×nh phản ứng phãng xạ beta (β) của hai đồng vị đã. b) TÝnh tỉ lệ độ phãng xạ 11C so với 14C trong mẫu này sau 12 giờ kể từ nghiªn cứu trªn. Cho biết 1 năm cã 365 ngày. Bài 14: Cho phản ứng phân li phosgen: COCl2 CO + Cl2 0 5 -2 a) Ở T = 600 C và p = 1,38.10 .m , độ phân li của phosgen bằng 0,9. Phản ứng sẽ diễn ra theo chiều nào nếu áp suất riêng phần của mỗi hợp phần đều bằng 1,013.105N.m-2. b) Ở nhiệt độ T, áp suất 1 at, độ phân li của COCl 2 là 0,25 thì thể tích của hỗn hợp là V =? Người ta thêm vào hỗn hợp này cùng một thể tích đó của Cl 2 ở nhiệt độ T, áp suất 1 át, rồi nén cho thể tích của hệ trở lại như cũ(bằng V). Tính độ phân li của COCl 2 và giải thích kết quả thu được? Bài 15: Đun nóng dung dịch Na2CO3 bão hòa và hòa tan thêm 2 (g) muối khan vào, sau khi để nguội dung dịch đến nhiệt đô ban đầu (t 0C), thấy có 8,6 (g) muối Na 2CO3.10H2O tách ra. a) Tính độ tan của Na2CO3 ở t0C. b) Xác định % khối lượng của Na2CO3 trong dung dịch bão hòa ở t0C. c) Tính độ tan của Na2CO3ở t0C. Bài 16: Hỗn hợp A gồm silic (IV) oxit với magie được đun đến nhiệt độ cao. Phản ứng xảy ra hoàn toàn. Xử lí bã rắn X còn lại cần 365 (g) dung dịch HCl 20% kết quả. - Thu được 1 khí Y bốc cháy ngay trong không khí và 410,4 (g) dung dịch muối có nồng độ 23,67%. 108 - Cặn bã Z còn lại không tan trong axit sẽ tan được dễ dàng trong dung dịch kiềm tạo ra một khí cháy được. a) Tính phần trăm khối lượng từng chất trong A. b) Tính thể tích Y (đktc) và khối lượng Z. Bài 17: Trong một bình kín dung tích không đổi chứa 50 (g) hỗn hợp gồm: a1 (g) FeCO3 chứa a% tạp chất trơ và a 2 (g) FeS2 cũng chứa a% tạp chất trơ và một lượng gấp 1,5 lần lượng cần thiết không khí giàu oxi (70% N2 và 30% O2 về thể tích). Nung nóng bình để phản ứng xảy ra hoàn toàn thu được hỗn hợp oxit B và hỗn hợp khí C, sau đó đưa nhiệt độ bình về trạng thái ban đầu thấy áp suất trong bình vẫn như trước khi nung. Lấy chất rắn trong bình cho vào ống sứ, đốt nóng rồi dẫn một luồng khí CO đi qua. Sau khi kết thúc thí nghiệm, từ chất rắn còn lại trong ống sứ lấy ra được 17,92 (g) sắt, biết rằng chỉ có 80% sắt oxit bị khử thành sắt. Cho hỗn hợp khí C vào bình kín dung tích không đổi 5 lít có mặt xúc tácV 2O5, nung nóng bình ở 5460C đến khi phản ứng oxi hóa SO 2 đạt trạng thái cân bằng thấy áp suất trong bình lúc đó là 38,304 atm. a) Tính % tạp chất trơ a và khối lượng a1, a2. b) Tính hằng số cân bằng phản ứng oxi hóa khử SO2 thành SO3 ở 5460C. Bài 18: Kim loại A phản ứng với phi kim B tạo hợp chất C màu vàng cam. Cho 0,1 mol hợp chất C phản ứng với CO2 (dư) tạo thành hợp chất D và 2,4 (g) B. Hòa tan hoàn toàn D vào nước, dung dịch D phản ứng hết với 100 ml dung dịch HCl 1M giải phóng 1,12 lít CO2 (đktc). Hãy xác định A, B, C, D và viết phương trình phản ứng xảy ra. Biết hợp chất C chứa 45,07% B theo khối lượng; hợp chất D không bị phân tích khi nóng chảy. Bài 19: 1. Để thu hồi vàng có mặt trong các loại đá alumosilicat người ta nghiền vụn đá và cho tác dụng với dung dịch NaCN đồng thời sục không khí vào trong hỗn hợp phản ứng. Ở đây Au sẽ chuyển chậm thành phức chất Au(CN) −2 tan trong nước. Sau khi đạt được cân bằng người ta thu hồi vàng bằng cách tách dung dịch ra và cho tác dụng với Zn. Viết phương trình phản ứng ion trong qui trình tách vàng ở trên. Tính hằng số cân bằng của các phản ứng. 109 2. Vàng trong tự nhiên thường ở dạng hợp kim với bạc và trong quá trình xử lí để thu hồi vàng thì bạc bị những phản ứng tương tự. Viết phương trình phản ứng ion và tính hằng số cân bằng của các phản ứng. 3.Làm bay hơi 500 lit dung dịch chứa Ag(CN) −2 3,0.10-3 M và Au(CN) −2 1,0.10-2M cho đến khi còn ½ thể tích dung dịch ban đầu rồi xử lí với 65 (g) kẽm. Tính nồng độ các ion Au(CN) −2 và Ag(CN) −2 sau khi phản ứng kết thúc. 4. Cần thiết lập nồng độ CN- trong dung dịch Au(CN) −2 là bao nhiêu để 99% mol của vàng tồn tại dưới dạng phức chất Au(CN) −2 . Cho E0 của các cặp lần lượt là: Zn(CN) 24− /Zn = -1,26 V; Ag(CN) −2 /Ag = - 0,31 V; Au(CN) −2 /Au = - 0,6 V; O2/2OH- = 0,404 V. Hằng số tạo thành phức chất Au(CN) −2 β = 4.1028. Bài 20: Thêm 5,64 (g) hỗn hợp K2CO3 và KHCO3 vào 600 ml dung dịch hỗn hợp Na2CO3 và NaHCO3 được dung dịch A. (giả sử VA = 600 ml). Chia dung dịch A làm 3 phần bằng nhau. - Cho rất từ từ 100 ml dung dịch HCl vào phần 1, thu được dung dịch B và 448 (ml) khí (đktc). Thêm nước vôi trong (dư) vào dung dịch B thấy tạo thành 2,5 (g) kết tủa. - Phần 2 tác dụng vừa đủ với 150 ml dung dịch NaOH 0,1M. - Cho khí HBr (dư) đi qua phần 3, sau đó cô cạn thì thu được 8,125 (g) muối khan. 1. Viết phương trình phản ứng dạng ion. 2. Tính nồng độ mol của muối trong dung dịch A và dung dịch HCl đã dùng. Bài 21: Hấp thụ hoàn toàn V lit khí CO2 (đktc) vào 1 lit dung dịch NaOH 0,3M, được dung dịch có pH = 10,328. Tính V. Biết H2CO3 là đi axit có K1 = 4,5.10-7 và K2= 4,7.10-11. Bài 22 : Hoà tan 2,84 gam hỗn hợp hai muối cacbonat của hai kim loại A và B kế tiếp nhau trong phân nhóm IIA bằng 120ml dung dịch HCl 0,5M thu được 0,896 lít khí CO 2 (đo ở 54,60C và 0,9 atm) và dung dịch X. 1. a. Tính khối lượng mol nguyên tử của A và B. b. Tính khối lượng muối tạo thành trong dung dịch X. 110 2. Tính % khối lượng của mỗi muối trong hỗn hợp ban đầu. 3. Nếu cho toàn bộ khí CO 2 hấp thụ bởi 200ml dung dịch Ba(OH)2 thì nồng độ của Ba(OH)2 là bao nhiêu để thu được 3,94 gam kết tủa ? 4. Pha loãng dung dịch X thành 200ml, sau đó cho thêm 200ml dung dịch Na2SO4 0,1M. Biết rằng khi lượng kết tủa BSO4 khôngtăng thêm nữa thì tích số nồng độ của các ion B2+ và SO42- trong dung dịch bằng: [B 2+][SO42-] = 2,5.10-5. Hãy tính lượng kết tủa thực tế được tạo ra. Bài 23: Cho hơi nước qua than nung nóng đỏ thu được 2,24 lít hỗn hợp khí A(đktc) gồm CO, H2, CO2. Cho hỗn hợp A khử 40,14 g PbO dư nung nóng (hiệu suất 100%) thu được hỗn hợp khí B và hỗn hợp chất rắn C. Hòa tan hoàn toàn hỗn hợp C trong HNO 3 2M thu được 1,344 lít khí NO (đktc) và dung dịch D. Khí B được hấp thu hết bởi dung dịch nước vôi trong, thu được 1,4 g kết tủa E; lọc tách kết tủa E, đun nóng nước lọc lại tạo ra m g kết tủa E Cho dung dịch D tác dụng với lượng dư K2SO4 và Na2SO4 tạo ra kết tủa màu trắng G a) Tính phần trăm theo thể tích các khí trong A? b) Tính thể tích dung dịch HNO3 tối thiểu để hòa tan hoàn toàn hỗn hợp C c) Tính khối lượng m? d) Tính khối lượng kết tủa G. Giả thiết các phản ứng tạo ra kết tủa E, G xảy ra hoàn toàn. Bài 24: Đốt cháy x gam than chứa a% tạp chất trơ ta thu được hỗn hợp khí CO, CO 2 với tỷ lệ thể tích là VCO/VCO2 = y. Cho hỗn hợp khí đó đi từ từ qua ống đựng CuO dư đốt nóng. Sau khi kết thúc phản ứng, ta nhận thấy khối lượng chất rắn còn lại trong ống sứ là c gam. Hòa tan chất rắn này b ằng dung d ịch HNO3 đặc dư thấy thoát ra z lít khí màu nâu. Cho khí thoát ra khỏi ống sứ hấp thụ hoàn toàn váo dung dịch Ba(OH) 2 thu được p gam kết tủa và dung dịch X. Đun nóng dung dịch X lại thấy xuất hiện thêm q gam kết tủa. Cho biết các phản ứng xảy ra hoàn toàn, các thể tích khí đo ở đktc a) Viết phương trình phản ứng xảy ra b) lập biểu thức tính x, y, z theo a, b, c, p, q. Áp dụng: a = 4%, b = 20 g, c = 16,8 g, p = 78,8 g; q = 39,4 g c) Trong bình kín chứa hỗn hợp CO, CO2, O2 sau khi đốt cháy và đưa nhiệt độ bình về trạng thái ban đầu thấy áp suất giảm 4%. Tỷ khối hơi của hỗn hợp khí trong bình sau phản ứng so với H2 bằng 91/6. Hỏi tỷ lệ CO, CO2 tronh bình có bằng y(ở phần 2) hay không? HƯỚNG DẪN GIẢI Bài 1: 1. 111 Cấu trúc tinh thể than chì lục phương(grafit). a) Giống nhau: Có từng lớp C, C đều ở trạng thái lai hóa sp 2 và tạo thành vòng 6 cạnh gần giống vòng benzen. b) Khác nhau: - Loại lục phương(than chì-grafit) thì lớp 1 trùng lớp 3, trùng lớp 5,...; lớp 2 trùng lớp 4, trùng lớp 6,... - Loại mặt thoi thì lớp 1 trùng với lớp 4, lớp 7,...; lớp 2 trùng với lớp 5, lớp 8,... c) Cách xác định bán kính: - Bán kính cộng hóa trị là nửa khoảng cách giữa hai nguyên tử C trong một lớp(nửa cạnh lục giác đều) - Bán kính vandevan là khoảng cách giữa hai nguyên tử C ở hai lớp cách nhau 2. a) Một lăng trụ có 12 đỉnh, có 1/6 nguyên tử C => Một lăng trụ có 2 nguyên tử C => 5 lăng trụ có 10 nguyên tử C và một nguyên tử kim loại => x = 10 b) Tâm lăng trụ là Kali 1,4A0 AB = 2.1,4 = 2,8A0(mặt chia làm 6 tam giác đều) A'B = 2.r(kim loại) + 2.r(vandevan của C) (Tính A'B theo pitago) 0 0 d = 5,4A => rKL = 1,33 A => Tâm lăng trụ có ion K+ c) Tâm có Ba2+: Tính tương tự có d = 5,35A0 3. - Các nguyên tử N và B đều lai hóa sp 2, tạo nên các lớp bằng các lục giác đều. Liên kết giữa các nguyên tử trong một lớp là liên kết cộng hóa trị, liên kết giữa các lớp bằng lực Vandevan. - Khoảng cách giữa các nguyên tử trong một lớp và giữa các lớp cũng tương tự như cacbon than chì gần giống vòng benzen Mô hình: 112 Bài 2: 1) Do cùng bản chất về phương trình điện li: * Al2(SO4)3 →2Al3+ + SO42→2K+ + S2K2S Ion S2- bị thủy phân: S2- + H2O →HS- + OHAl3+ +3OH- →Al(OH)3 * Al(NO3)3 →Al3+ + 3NO3→2K+ + CO32K2CO3 Ion CO32- bị thủy phân: CO32- + H2O →H CO3- + OHAl3+ +3OH- →Al(OH)3 2) Do có khả năng hình thành liên kết Π P− P mạnh, vì vậy các nguyên tử N có khuynh hướng kết hợp từng đôi một tạo thành phân tử N 2 rất bền vững nên nito không có tính thù hình. Photpho có khả năng hình thành liên kết Π P− P yếu nên mỗi nguyên tử kết hợp với ba nguyên tử P bằng các liên kết đơn tạo ra các nguyên tử P 4, Pn,..., nên P có tính thù hình. 3) Liên kết ba nito-nito không phân cực, N bão hòa 8e lớp ngoài, còn liên kết ba Cacbon-cacbon chưa bão hòa cấu hình e lớp ngoài nên còn liên kết với nguyên tử hoặc với nhóm nguyên tử khác nên có thể phân cực do các nhóm thế làm tăng hoạt tính của liên kết ba cacbon-cacbon. Mặt khác, năng lượng liên kết ba N-N khá lớn so với liên kết ba cacbon-cacbon, do đó liên kết ba nito-nito có hoạt tính yếu hơn. Bài 3: 1) CO2 có cấu trúc phân tử dạng đường thẳng(C lai hóa sp); mạng tinh thể CO 2 là mạng tinh thể phân tử. SiO2 có cấu trúc mạng tinh thể nguyên tử; nguyên tử Si ở trạng thái lai hóa sp 3, Si ở tâm và 4O ở 4 đỉnh. Quá trình nóng chảy của CO2 không liên quan đến việc cắt đứt liên kết cộng hóa trị còn qua strinhf nóng chảy của SiO 2 liên quan đến việc cắt đứt liên kết cộng hóa trị trong mạng tinh thể nguyên tử. 113 2) Tranh cổ được vẽ bằng bột chì trắng 2PbCO 3.Pb(OH)2 lâu ngày bị đen vì tác dụng với H2S trong khí quyển thành PbS, khi quét dung dịch H 2O2 có phản ứng: 4H2O2 + PbS --> PbSO4 + 4 H2O 3) Giữa các phân tử NH3 có liên kết hidro nên nhiệt độ sôi của NH 3 lớn hơn của PH3. CH4 và SiH4 đều không có liên kết hidro, SiH 4 có phân tử khối lớn hơn nên nhiệt độ sôi cao hơn. 4) 3Si + 4HNO3 + 18HF --> 3H2SiF6 + 4NO + 8H2O Bài 4: Trả lời: 1. Ở phân tử COX2, sự tăng kích thước và giảm độ âm điện của X làm giảm độ bền của liên kết C–X và làm tăng lực đẩy nội phân tử. Vì lí do này mà phân tử COI 2 rất không bền vững và không tồn tại được. 2. Phân tử COX2 phẳng, nguyên tử trung tâm C ở trạng thái lai hoá sp2. X O=C X o o Góc OCX > 120 còn góc XCX < 120 vì liên kết C=O là liên kết đôi, còn liên kết C-X là liên kết đơn. Khi độ âm điện của X tăng thì cặp electron liên kết bị hút mạnh về phía X. Do đó góc XCX giảm, góc OCX tăng. 3. X ∆Hotth C (tc) + 1/2 O2 (k) X2 (k) O=C (k) X o ∆Hth (C)tc -1/2E (O=O) -E (X–X) E (C=O) + 2E (C–X) C (k) + O (k) o + 2X (k) o ∆Htth (COX2)k = ∆Hth (C)tc – 1/2 E (O=O) – E (X–X) + E (C=O) + 2E (C–X) o o ∆Htth (COF2)k – ∆Htth (COCl2)k = E (Cl–Cl) – E (F–F) + 2E (C–F) – 2E (C–Cl) liên kết Cl–Cl bền hơn liên kết F–F E (Cl–Cl) – E (F–F) < 0 liên kết C–F bền hơn liên kết C–Cl 2E (C–F) – 2E (C–Cl) < 0. o o o o Vậy: ∆Htth (COF2)k – ∆Htth (COCl2)k < 0 ∆Htth (COF2)k < ∆Htth (COCl2)k 4. Bài 5: COCl2 + 4 NaOH Na2CO3 + 2 NaCl + 2 H2O 1 8 1 2 b) Số nguyên tử cacbon trong mạng là: 8. = 6. + 4 = 8 Xét tam giác vuông BCD có: 2 2 a a a BD = BC + CD =   +   = 2 2 2 2 2 2 2 a 3a a AD = AB + BD =   + = 2 2 2 2 2 2 2 2 2 114 => AD = a 3 = 4 R => R = 0,768 A 0 2 AD = 2AM => MA = khoảng cách giữa hai nguyên tử cacbon gần nhất = 1,54A0 c) d= m 12 = 8. = 3,56 g / cm 23 V 6,023.10 .(3,55.10 −8 ) 3 d) µ (mô men lưỡng cực) của phân tử bằng tổng các momen của hai liên kết (O-H) Áp dụng hệ thức lượng trong tam giác: Giả thiết độ ion của liên kết O-H là 100%, ta có: µ lt = 0,0957.10 −19.1,6.10 −19 = 4,60 D 3,33.10 −30 => Độ ion của liên kết O-H là: Bài 6: 1) Trong phân tử N(CH3)3, N ở trạng thái lai hóa sp3 => cấu trúc hình tháp trong phân tử N(SiH3)3 do Si còn AO 3d trống nên giữa N và Si có thể xảy ra liên kết d Π - p Π => lai hóa sp2 => cúa trúc phẳng SiH3 N CH3 N CH3 CH3 SiH3 SiH3 Nên trong phân tử(CH3)3NBF3 nito còn cặp e tự do không phân chia để thực hiện liên kết cho nhận với nguyên tử N(SiH3)3 nito không còn căp e tự do => (CH3)3NBF3 khá bền hơn so với (SiH3)3NBF3 p Trong hợp chất H3SiNCS, do Si còn AO d trống => tạo cầu nối d Π - Π => SiN-C thẳng hàng => H3Si- N =C= S 2) BCl3: sp2, tam giác →B còn AO p trống →nhận thêm đôi e →tính axit CCl4: sp3, tứ diện → C không còn AO trống →trung tính 3 SiCl4: sp , tứ diện → Si còn AO d trống →nhận thêm đôi e →tính axit 3 2 TeF6: sp d , lưỡng tháp đáy vuông →Te còn AO d trông →nhân thêm đôi e →tính axit Phản ứng với nước: BCl3 + 3H2O →H3BO3 + 3HCl CCl4 + 2H2O →SiO2 + 4HCl TeF6 + 3H2O → H6TeO6 + 6HF 115 Bài 7: a) Vẽ hai dạng hình học có thể có của SnCl4 Cl Cl Cl Cl Sn Sn Cl Cl Cl Cl - b) Vẽ 3 dạng hình học có thể có của SnCl5 Cl (I) Cl (II) Cl Cl Cl Sn+4 Sn+4 Cl Cl Cl Cl Cl Cl (III) Cl Cl Sn+4 Cl Cl - => Dạng II là phù hớp đối với SnCl5 - c) 3 dạng hình học có thể có của SnCl6 Cl (I) (II) Cl Cl Cl Cl Cl Sn+4 Cl (III) Cl Cl Cl Cl Sn+4 Cl Cl Cl Sn+4 Cl Cl Cl Cl 116 - => Dùng thuyết VSEPR thấy dạng phù hợp với SnCl6 là (I) Bài 8: 1) Tinh thể kim cương thuộc hệ lập phương. Trong tinh thể, mỗi nguyên tử C ở trạng thái lai hoá sp3 và tạo liên kết cộng hóa trị với 4 nguyên tử C khác. Tinh thể kim cương có mạng lưới nguyên tử điển hình. Toàn bộ tinh thể có kiến trúc rất đều đặn cho nên thực tế tinh thể là một phân tử khổng lồ kim cương có tỉ khối lớn (3,51g/cm3) và cứng nhất trong tất cả chất. Kim cương không dẫn điện vì các electron hoá trị đều được liên kết bền vững trong liên kết C-C. Tinh thể kim cương hoàn toàn trong suốt, không màu, chỉ số khúc xạ rất lớn nên trông lấp lánh rất đẹp. Bột kim cương dùng để đánh bóng hạt kim cương và những vật liệu rất cứng khác. Hình 8-2. Ảnh một viên kim cương. Than chì có kiến trúc lớp, trong đó mỗi nguyên tử C ở lai hoá sp 2. Mỗi nguyên tử C tạo 3 liên kết σ với 3 nguyên tử C và đóng góp 1e vào liên kết π giải tỏa trong toàn bộ tinh thể. Khác với kim cương, than chì có màu xám, có ánh kim và dẫn điện (trên thực tế, than chì được dùng làm điện cực). Giống kim cương, than chì có nhiệt độ nóng chảy rất cao, bột than chì thường được sử dụng làm chất bôi trơn trong các thiết bị nhiệt độ cao. 2) Cacbua kim loại là hợp chất của cacbon với kim loại, được tạo nên khi cho hai nguyên tố tương tác trực tiếp với nhau ở nhiệt độ cao trên 2000 0C hoặc khi than tác dụng với oxit kim loại hay kim loại tác dung với hidrocacbua ở nhiệt độ cao. Có hai dạng cacbua kim loại: cacbua ion và cacbua xâm nhập Cacbua ion bị phân hủy dễ dàng bởi nước và axit loãng vì chúng được tạo nên chủ yếu bới các kim loại thuộc nhóm IA, IIA, IIIA. So sánh cấu tạo và tính chất của CaC2(Cacbua ion) và W2C(cacbua thâm nhập): * Canxi cacbua(CaC2) tinh khiết là chất ở dạng tinh thể không màu thuộc hệ lập phương: Những ion Ca2+ và ion C22- chiếm cùng những vị trí của những ion Na +, và ion Cl- trong tinh thể NaCl. CaC2 có tỷ khối là 2,22 và nóng chảy ở 23000C CaC2 tương tác mãnh liệt với nước và giải phóng axetylen CaC2 + 2H2O  Ca(OH)2 + C2H2 Khi đun nóng CaC2 có thể tươn tác với hidro, nito, lưu huỳnh, photpho. CaC2 + N2  CaCN2 + C 117 Khi đun nóng nó có thể khử được oxit clorua của các kim loại C CaC2 + MgO 1440  → CaO + Mg + 2C * Trong tinh thể W2C, nguyên tử C xâm nhập vào lỗ trống bát diện của mạng lưới kim loại đã không làm biến đổi căn bản kiến trúc electron tự do và những đặc tính khác của kim loại tinh khiết mà còn làm bền thêm mạng lưới tinh thể kim loại. Do vậy nó có đặc điểm là có ánh kim, dẫn điện, rất cứng(độ cứng thường vào khoảng 9-10) và rất khó nóng chảy(nhiệt độ nóng chảy = 3000-4000 0C, cao hơn cả những kim loại khó nóng chảy như Be, W và cacbon) 3) Đối với tinh thể cộng hóa trị, giải năng lượng ứng với các MO liên kết(giải hóa trị) và dải năng lượng ứng với các MO phản liên kết(dải dẫn điện) nằm cách biệt nhau. Miền năng lượng ở khoảng giữa được gọi là miền "cấm" và hiệu năng lượng ∆E g giữa giới hạn dưới của dải dẫn điện và giới hạn trên của giải hóa trị được gọi là độ rộng của miền "cấm". Vì mỗi nguyên tử có 1 orbital s và 3 orbital p nên từ đó có 4 orbital lai hóa sp 3. Đối với chất cách điện và chất bán dẫn dải hóa trị có 4N điện tử và hoàn toàn bão hòa, trong khi đó dải dẫn điện hoàn toàn còn trống. Chỉ khi được chuyển lên các MO tự do trong dải dẫn điện, các điện tử mới có khả năng chuyển động tự do dưới tác dụng của điện trường ngoài và có khả năng dẫn điện. Vì có miền cấm nên sự chuyển điện tử từ giải hóa trị lên dải dẫn điện đòi hỏi một năng lượng nhất định(ít nhất bằng ∆E g ). Từ đó một chất sẽ là cách điện khi miềm cấm quá rộng và dưới tác dụng của năng lượng điện, nhiệt hay điện từ các điện tử không chuyển lên được miền dẫn điện. Ở điều kiện bình thường một chất được coi là chất cách điện khi độ rộng của miền cấm có giá trị khoảng 3 eV, chất bán dẫn chỉ khác chất cách điện khi độ rộng của miền cấm nhỏ hơn. Tuy nhiên giữa chất bán dẫn và chất cách điện không có ranh giới rõ ràng. Độ rộng miền “cấm” của một số nguyên tố nhóm IVA Tinh thể Kim cương Si Ge Sn(dạng ) ∆E g (eV) 6 1,10 0,7 0,08 => Từ bảng trên ta thấy kim cương là chất cách điện và các tinh thể còn lại là chất bán dẫn 4) - C và Si cùng nằm trong nhóm IVA (hay nhóm 14 trong Bảng tuần hoàn dạng dài) nên có nhiều sự tương đồng về tính chất hoá học. Tuy nhiên, hai nguyên tố này thể hiện khả năng tạo thành liên kết π khác nhau trong sự tạo thành liên kết của các đơn chất và hợp chất. - Ở dạng đơn chất: Cacbon tồn tại dưới dạng kim cương (chỉ có liên kết đơn C-C) và graphit, cacbin...(ngoài liên kết đơn còn có liên kết bội C=C và C≡C), nghĩa là tạo thành cả liên kết σ và liên kết π. Silic chỉ có dạng thù hình giống kim cương, nghĩa là chỉ tạo thành liên kết σ. - Ở dạng hợp chất: Trong một số hợp chất cùng loại, điển hình là các oxit: cacbon tạo thành CO và CO2 mà phân tử của chúng đều có liên kết π, trong khi silic không tạo thành SiO, còn trong SiO2 chỉ tồn tại các liên kết đơn Si–O. Giải thích: Liên kết π được tạo thành do sự xen phủ của các obitan p. Nguyên tử cacbon (Chu kỳ 2) có bán kính nhỏ hơn nguyên tử silic (Chu kỳ 3) nên mật độ electron trên các obitan của nguyên tử C cao hơn mật độ electron trên các obitan tương ứng của nguyên tử Si. Khi kích thước của các obitan bé hơn và mật độ electron lớn hơn hì sự xen phủ 0 118 của các obitan hiệu quả hơn, độ bền của liên kết cao hơn. Do đó, cacbon có thể tạo thành liên kết π cả ở dạng đơn chất và hợp chất, trong khi silic hầu như không có khả năng này. Bài 9: 1. Trong cấu trúc kiểu kim cương (Hình bên) độ dài của liên kết C-C bằng 1/8 độ dài đường chéo d của tế bào đơn vị (unit cell). Mặt khác, d = a√ 3, với a là độ dài của cạnh tế bào. Gọi ρ là khối lượng riêng của Si. Từ những dữ kiện của đầu bài ta có: ρ= nM 8.28,1 = = 2,33 NV 6, 02.1023.a 3 suy ra: a = [8 . 28,1 / 6,02.1023 . 2,33]1/3 cm = 1,17.10−8 = 0,117 nm. 2. rSi = 0,117 nm > rC = 0,077 nm . Kết quả này hoàn toàn phù hợp với sự biến đổi bán kính nguyên tử của các nguyên tố trong bảng hệ thống tuần hoàn. Bài 10: CÊu t¹o kh«ng gian cña c¸c ph©n tö ®îc biÓu diÔn nh sau: H H Si Br Br H C Br Br Br Br C H3C CH3 CH3 SiHBr3 (1) CHBr3 (2) CH(CH3)3 (3) - Gãc liªn kÕt ®îc t¹o thµnh bëi trôc cña ®¸m m©y electron cña 2 obitan t¹o thµnh liªn kÕt . Sù ph©n bè mËt ®é electron cña c¸c ®¸m m©y nµy phô thuéc vµo ®é ©m ®iÖn cña nguyªn tö trung t©m A vµ phèi tö X. ë c¶ 3 hîp chÊt nguyªn tö trung t©m A ®Òu cã lai ho¸ sp3 v× líp vá ho¸ trÞ cã 4 cÆp electron. Sù kh¸c nhau vÒ trÞ sè cña c¸c gãc chØ phô thuéc vµo ®é ©m ®iÖn t¬ng ®èi gi÷a c¸c nguyªn tö liªn kÕt. - Khi so s¸nh 2 gãc Br – A – Br ë (1) vµ (2), liªn kÕt Si-Br ph©n cùc h¬n liªn kÕt C-Br nªn gãc Br – C – Br cã trÞ sè lín h¬n gãc Br – Si – Br. - Khi so s¸nh 2 gãc Br – C – Br vµ H 3C – C – CH3 ë (2) vµ (3), liªn kÕt C – Br ph©n cùc h¬n liªn kÕt C – CH3 nªn gãc ë (3) lín h¬n ë (2). - Tõ hai so s¸nh trªn thÊy r»ng trÞ sè c¸c gãc t¨ng dÇn theo thø tù sau: Gãc ë (1) < Gãc ë (2) < Gãc ë (3) Bài 11: Tỉ lệ thành phần các nguyên liệu là KNO3 : C : S = 0,743 : 1,08 : 0,375 = 2 : 3 : 1 Điều này phù hợp với phản ứng: 2KNO3 + 3C + S = K2S + N2 + 3CO2 KNO3 là chất oxy hóa, S là chất buộc (binder) còn C là nguyên liệu (chất khử) Các sản phẩm khác có thể có là: KNO2, SO2, K2CO3; K2SO3; K2SO4 119 4KNO3 + C + S = 4KNO2 + CO2 + SO2 4KNO3 + 2C + 3S = 2K2CO3 + CO2 + N2 2KNO3 + C + S = K2SO4 + CO2 + N2 4KNO3 + 3C + 2S = 2K2SO3 + 3CO2 + 2N2 Bài 12: a) Xương chứa chủ yếu Ca3(PO4)2 hay Ca5(PO4)3(OH). Dung dịch nhớt của vitriol là H2SO4. Cát chủ yếu là SiO2. Thuỷ tinh nước là dung dịch đậm đặc của natri silicat mà có thể được biểu diễn dưới dạng đơn giản là Na2SiO3. b) Trước khi viết các phản ứng chúng ta phải tính vài đại lượng. Tỉ lệ mol của H2SO4 so với Ca3(PO4)2 là 7.310 so với 11.98 tức xấp xỉ 2 : 1. Do vậy phương trình phản ứng là: 2H2SO4 + Ca3(PO4)2 = Ca(H2PO4)2 + 2CaSO4 SiO2 không phản ứng với hỗn hợp sản phẩm và được lọc ra. Khi thêm thuỷ tinh nước vào thì phản ứng xảy ra như sau: 3Ca(H2PO4)2 + 3Na2SiO3 = 2Ca3(PO4)2 ↓ + 3H2SiO3 ↓ + 2Na3PO4 Nước ở trong thuỷ tinh nước sẽ liên kết với các sản phẩm tạo thành các hydrat tinh thể CaSO4.2H2O và Na3PO4.12H2O. Trong thực tiễn thì điều đó có nghĩa là các hỗn hợp này sẽ có thành phần tương tự như ximăng. c) Thuỷ tinh nước là chất lỏng nhớt bởi vì anion silicat tồn tại trong dung dịch ở dạng anion mạch dài các anion của axit silixic (H2SiO3)n. Dung dịch nước của natri silicat không thực sự là dung dịch mà là một hệ keo. d) Các hợp chất gần giống nhựa này có thể được dùng để chế tạo các keo dán thuỷ tinh. Có thể xem như chúng cách nhiệt (do không chứa vật liệu hữu cơ) và có khả năng bám dính cao với thủy tinh. Các keo dán này có thể đã được các nhà giả kim sử dụng để dán kín các dụng cụ thí nghiệm bằng thuỷ tinh. Cho tới ngày nay chúng cũng có ứng dụng tương tự. Thành phần này có thể được dùng để chế tạo các loại keo dán thủy tinh, keo dán bê tông và các vật liệu tương tự. 120 e) Nếu hỗn hợp chứa 11 phần H2SO4 và cùng một lượng CaCO3 như vậy (lưu ý rằng số mol của chúng phải xấp xỉ bằng nhau do khối lượng phân tử xấp xỉ nhau) thì xảy ra phản ứng sau: H2SO4 + CaCO3 = CaSO4 + H2O + CO2↑ Một lượng nhỏ CO2 sinh ra phản ứng với thủy tinh nước: CO2 + H2O + Na2SiO3 = H2SiO3 ↓ + Na2CO3 và một lượng khác thì thoát ra ngoài ở dạng khí. Bọt CO2 đi qua thành phần hợp chất thì sẽ tạo thành các lỗ hổng trong cấu trúc. Thành phần thứ hai khác với thành phần thứ nhất do cấu trúc có nhiều lỗ hổng hơn. Bài 13: a) C¸c ph¬ng tr×nh ph¶n øng ho¸ häc h¹t nh©n: 11 11 + β 6C 7N 14 14 + β 6C 7N b) §é phãng x¹ cña mét h¹t nh©n ®îc tÝnh theo biÓu thøc: A = λN (1). Trong ®ã λ lµ h¨ng sè phãng x¹, N lµ sè h¹t nh©n phãng x¹ t¹i thêi ®iÓm t ®ang xÐt. Víi mçi ®ång vÞ trªn, ta cã: C11 A11 = λ11N11 (2) 14 C A14 = λ14N14 (3) •) Theo ®Çu bµi, t¹i thêi ®iÓm ®Çu, cã thÓ coi lµ t¹i t = 0, ta kÝ hiÖu: N11 = (No)11; N14 = (No)14 mµ (No)11 = (No)14 (4) 8 Tõ ®iÒu kiÖn: [A11/A14] = [ λ11(No)11/λ14(No)14] = 1,51.10 , kÕt hîp víi (4), ta 8 cã: λ11 = λ14 × 1,51.10 (5) 14 Víi C ta cã λ14 = (0,6932/t1/2) = (0,6932/5730 × 365 × 24 × 60) = = 2,30210 −10 (phót−1). §a kÕt qu¶ nµy vµo (5), ta tÝnh ®îc: λ11 = 2,302 × 10−10 × 1,51.108 = 3,476.10−2 (phót−1) (6) •) XÐt t¹i t =12 giê: Ta ®· biÕt ®é phãng x¹ cña mét h¹t nh©n ®îc tÝnh theo biÓu thøc: A = λN (1). Sè h¹t nh©n phãng x¹ t¹i thêi ®iÓm t ®îc tÝnh theo ph¬ng tr×nh ®éng häc d¹ng hµm mò cña ph¶n øng mét chiÒu bËc nhÊt N = No e−λt = Noexp [-λt] (7) Víi mçi ®ång vÞ trªn, ta cã: C11 N11 = (No)11exp [-λ11t] (8) 14 C N14 = (No)14exp [-λ14 t] (9) VËy t¹i t = 12 giê, ta cã [A11/A14] = [λ11N11/λ14N14] (10) Thay (8) vµ (9) vµo (10), kÕt hîp (4), ta ®îc: [A11/A14] = [λ11/λ14]exp [t(λ14 - λ11)] = (3,476.10−2/2,30210−10 )exp [12 × 60 ( 2,302 × 10-10 - 3,476.10−2] Thùc tÕ 2,30210−10 > λ14 =2,302 × 10−10phót−1. Do ®ã trong thùc tÕ øng dông ngêi ta chØ chó ý tíi C14. Bài 14: a) COCl2 Ban đầu n Lúc CB n(1- α ) 0 nα CO + Cl2 Tổng số mol khí 0 n nα n(1+ α ) 121 nα α PCO (lúc cân bằng) = PCl2 (lúc cân bằng) = n(1 + α ) P = 1 + α P n(1 − α ) 1−α PCOCl2 (lúc cân bằng) = n(1 + α ) P = 1 + α P PCO .PCl2 = Pα 2 1,38.10 5.0,9 2 = = 5,80 (1 − α 2 ) P0 (1 − 0,9 2 ).1,013.10 5 =>KP = P .P COCl 0 Ở điều kiện khảo sát: ∆G ( pu ) = 8,314.837(ln 1 − ln 5,80) = −12883 J < 0 => Vậy phản ứng tự diễn ra hay phản ứng diễn ra theo chiều thuận b) COCl2 CO + Cl2 Tổng số mol khí Ban đầu n 0 0 n Lúc CB n(1- α ) nα nα n(1+ α ) 2 1−α α α P P P 1+ α 1+ α 1+ α PCO .PCl2 Pα 2 0,25 2 1 = = =>KP = P .P (1 − α 2 ) P 1 − 0,25 2 = 15 COCl 2 0 0 Số mol Cl2 thêm vào hỗn hợp là n(1+ α ) = 1,25n Áp suất phần Pi Gọi P' là áp suất của hỗn hợp cân bằng mới ở nhiệt độ T, thể tích V và α ' là độ phân li của COCl2 ở điều kiện mới ta có: COCl2 CO + Cl2 Tổng số mol khí Ban đầu n 0 1,25n 2,25n ' ' α α α Lúc CB n(1- ) n n( ' +1,25) n(2,25+ α ' ) 1−α' α' P' P' 2,25 + α 2,25 + α ' PCO .PCl2 P 'α ' (α ' + 1,25) 1 = =>KP = P .P (1 − α ' )(α ' + 2,25) = 15 (1) COCl 2 0 Áp suất phần Pi α '+1,25 P' 2,25 + α ' Ở nhiệt độ T, thể tích V, áp suất tỷ lệ với thể tích mol các khí, ta có: P' α '+2,25 = P' = P 1,25 (2) Thay (2) vào (1) ta được: α (α + 1,25) 1 = => 12α ' 2 +6α '−1 = 0 => α ' = 0,06 => P ' = 1,85 (1 − α ' )1,25 15 ' ' Độ phân li của COCl2 giảm vì cân bằng đã chuyển theo chiều nghịch do sự tăng áp suất Bài 15 : Trong 8,6 (g) Na2CO3.10H2O có 3,187 (g) Na2CO3 và 5,412 (g)H2O (3,187 − 2).100 = 21,93 (g) 5,412 21,93 = 17,99% trong dung dịch bão hòa = 100 + 21,93 → s Na2CO3 = % m Na CO 2 3 Giả sử cho 21,91 (g) Na2CO3 vào 100 (g) H2O ở t0C m Na CO .10 H O = 2 3 2 21,93.286 = 59,2 (g) 106 m H O = 100 + 21,93 – 59,2 = 94,36 (g) Bài 16: 2 122 a. Tính % khối lượng từng chất trong A: Phương trình phản ứng: 2Mg + SiO2 → 2MgO + Si (1) → MgO + SiO2 MgSiO3 (2) → 2Mg + Si Mg2Si (3) → MgO + 2HCl MgCl2 + H2O (4) Mg2Si + 4HCl → 2MgCl2 + SiH4 (5) → Si + NaOH + H2O Na2SiO3 + 2H2 (6) + Nếu Mg dư : X gồm : Mg, MgO, Mg2Si. X sẽ tan hết trong HCl, không tạo bã rắn Z ⇒ không thỏa mãn giả thiết. + Nếu SiO2 dư : X gồm : SiO2, Si, MgSiO3. X tác dụng HCl không có khí thoát ra ⇒ không thỏa mãn giả thiết. Vậy X gồm : MgO, Si, Mg2Si. Khí Y: SiH4 Bã rắn Z: Si n Mg = n MgCl = 2 0,2367.401,4 = 1 (mol) → m Mg = 24 (g) 95 m H O (trong dung dịch HCl) = 0,8.365 = 292 (g) m H O (ở dung dịch muối) = 0,7633.401,4 = 306,4 (g) m H O (ở sản phẩm phản ứng 4) = 306,4 – 292 = 14,4 (g) 2 2 2 n SiO = 2 1 1 n MgO = n H 2O 2 2 (ở sản phẩm của phản ứng 4) = 14,4: 18 = 0,4 (mol) ⇒ m SiO2 = 24 (g) Trong A: 50% Mg và 50 % SiO2 về khối lượng. b. Tính VY và m Z n SiH = n Mg Si = 4 2 1 1 (n MgCl2 - n MgO )= (1 - 0,8) = 0,1 (mol) 2 2 ⇒ VY = 2,24 (l) (đktc) nZ = n Si (6) = 0,4 – 0,1 = 0,3 (mol) ⇒ m Z = 8,4 (g) Bài 17: Gọi n FeCO và n FeS lần lượt là x và y Phương trình phản ứng: t 2FeCO3 + 1/2O2 → Fe2O3 + CO2 3 2 0 x x 4 x t 2FeS2 + 11/2 O2 → Fe2O3 + SO2 0 11y y/2 2y 4 x 11y x + 11y n O2 phản ứng = + = 4 4 4 x + 11y ⇒ n O2 ban đầu = 1,5. 4 1,5.7 x + 11y x + 11y n N2 = . = 3,5. 3 4 4 y 123 ⇒ Vậy hỗn hợp C gồm các chất có mol lần lượt là: CO 2 x mol; SO2 2y mol; O2 dư 0,5. x + 11y x + 11y mol; N2 3,5. mol. 4 4 x 11y P1 = P2 nên n1 = n2 ⇒ + = x + 2 y ⇒ x = y (1) 4 4 Fe2O3 +CO  → 2Fe x + y 80 80 . ( x + y) 2 100 100 Ta có x + y 80 17,92 . = 0,32 = 2 100 56 (2) Từ (1) và (2) ta có x = y = 0,2 + Tổng khối lượng FeS2 và FeCO3 là: m FeCO + m FeS = 0,2 .120 + 0,2.116 = 47,2 (g) + Vì phần trăm tạp chất như nhau nên phần trăm nguyên chất như nhau. Ta có tỉ lệ : 3 2 116.0,2 120.0,2 116.0,2 + 120.0,2 47,2 = = = a1 a2 a1 + a 2 50 ⇒ a1 = 24,58 (g) và a2 = 5,42 (g) (a1 − mFeS2 ).100 a= = 2,36% a1 n1 = nC = n SO + n CO + n O 2 2 2 dư + nN 2 0,5(0,2 + 11.0,2) 3,5(0,2 + 11.0,2) + = 3(mol ) 4 4 P2V2 38,304.5 = = 2,85(mol ) 22 , 4 n2 = RT2 (546 + 273) 273 = 0,2 + 2.2,2 + 2SO2 + O2 2SO3 2a a 2a ⇒ 2a + a – 2a = a = 3 – 2,85 = 0,15 ⇒ a = 0,15 (mol) Ở trạng thái cân bằng : n SO = 2y -2a = 2.0,2 – 2.0,15 = 0,1 (mol) 2 n O = 0,5. 2 x + 11y - a = 0,225 (mol) 4 n SO = 2a = 0,3 (mol) V SO = 0,1/5 = 0,02 (l); V O = 0,225/5 = 0,045 (l); V SO = 0,3/5 = 0,06 (l) 3 2 KC = 2 2 3 2 [ SO3 ] 0,06 = = 200 2 [ SO2 ] .[O2 ] 0,02 2.0,045 Bài 18: nHCl = 0,1 mol; nCO 2 = 0,05 m0l - Dung dịch D phản ứng hết 0,1 mol HCl giải phóng khí CO2 → nH + nCO2 = 0,1 1 = 0,05 2 124 ⇒ Hợp chất D là muối cacbonat kim loại. D không bị phân tích khi nóng chảy ⇒ D là cacbonat kim loại kiềm. 2H+ + CO 32− → CO2 + H2O C + CO2 → D + B Vậy C là peoxit hay supeoxit, B là oxi. - Gọi công thức C là AxOy Lượng oxi trong 0,1 mol C (AxOy) là: 16 . 0,05 + 2,4 = 3,2 (g) 3,2.100 mC = 45,07 = 7,1( g ) vậy MC = 7,1/0,1 = 71 (g/mol) mA trong C = 7,1 – 3,2 = 3,9 (g) ⇒x : y = 3,9 3,2 . → M A = 39( g ) M A 16 ⇒ A là K ; B là O2 ; C là KO2 ; D là K2CO3 Phương trình phản ứng : 4KO2 + 2 CO2 → 2K2CO3 + SO2 K2CO3 + 2HCl → 2KCl + H2O + CO2 Bài 19: 1. 2x Au(CN) −2 +1e Zn + 4CN - 2 Au(CN) −2 + Au+2CNZn(CN) 24− + 2e Zn Zn(CN)4 + 2Au K1 K −21 KII KI = 104 (E 10 - E 02 ) /0,059 = 104 (0,404+0,6) /0,059 = 1068 - Thu hồi kim loại Au bằng Zn. - KII = K1 . K −21 = 102(-0,60 + 1,26)/0,059 = 1022 Vì KI và KII đều rất lớn nên coi 2 phản ứng (1) và (2) đều xảy ra hoàn toàn Hòa tan Ag : O2 + H2O + 4e 4OHK1 − 4x Ag + 2CN Ag(CN) 2 + 1e K −21 4Ag +8CN-+O2 H2O KIII Ag(CN) −2 + 2Au −1 4(0,404 + 0,31)/0,059 48 KIII = K1 . K 2 = 10 = 10 Thu hồi kim loại Ag bằng Zn : Ag + 2CNK1 2x Ag(CN) −2 + 1e 2− Zn + 4CN Zn(CN) 4 + 2e K −21 KIV 2Ag(CN) −2 + Zn Zn(CN) 24− + 2Ag −1 2(-0,31 + 1,26)/0,059 32 KIV= K1 . K 2 = 10 = 10 Vì KIII và KIV đều rất lớn nên quá trình điều chế Ag được coi là hoàn toàn. So sánh KII và KIV thì KIV lớn hơn rất nhiều so với KII vậy khi cho Zn vào hỗn hợp dung dịch Ag(CN) −2 và Au(CN) −2 thì Ag(CN) −2 phản ứng trước hay bị khử trước. Các phản ứng: 2Ag(CN) −2 + Zn Zn(CN) 24− + 2Ag Ban đầu 1,5 1 0 0 Phản ứng 1,5 0,75 1,5 0,75 125 Cân bằng 0 0,25 1,5 0,75 2Au(CN) −2 + Zn Zn(CN) 24− + 2Au Ban đầu 10-2.500 0,25 0,75 0 Phản ứng 0,25 0,25 0,25 0,25 Cân bằng 4,75 0 1 0,25 − − Vậy [Ag(CN) 2 ] = 0M; [Au(CN) 2 ] = 0,019M; [Zn(CN) 24− ] = 4.10-3M Trong dung dịch Au(CN) −2 phân li như sau: Au(CN) −2 Au+ + 2CN- β −1 = (4.1028)-1 ⇒β −1 [ Au (CN ) −2 ] [CN − ]2 [ Au + ][CN − ]2 = → = = [CN − ]2 .β − + −1 [ Au (CN ) 2 ] [ Au ] β [ Au (CN ) −2 ] [ Au (CN ) −2 ] [CN − ]2 β 99 ⇒ = = = + − − 2 C Au [ Au ][ Au (CN ) 2 ] 1 + [CN ] .β 100 ⇒ [CN − ]2 .β = 99 → [CN − ] = 5.10 −14 M Bài 20: 2. Các số liệu n CO = 0,02 mol ; n NaOH = 0,15 mol; n CaCO = 0,025 mol Gọi số mol của K2CO3, KHCO3, Na2CO3 và NaHCO3 trong một phần lần lượt là x, y, z, t. Theo bảo toàn nguyên tố cacbon: x + y + z + t = n CO + n CaCO = 0,045 mol (1) n HCO = n OH = n NaOH ⇒ y + t = 0,015 (2) m muối Br- = (2x + y).119 + (2z + t).103 = 8,125 (3) Theo giả thiết khối lượng hỗn hợp K2CO3, KHCO3 trong một phần là 1,88 (g) ⇒ 138 x + 100y = 1,88 (4) ⇒ x, y, z, t ⇒ tính được nồng độ mol. CHCl = 0,05/0,1 = 0,5M 2 3 2 − 3 3 − Bài 21: n NaOH = 0,3 mol + Giả sử dung dịch D chỉ có NaHCO3 CO2 + OH- → HCO3(1) 0,3 0,3 → [NaHCO3] = 0,3M (vì thể tích không đổi) HCO33 HCO + H2O CO32- + H+ H2CO3 + OH K2 = 4,7.10-11 - 10 −14 = 2,22.10 −8 Ktp2 = −7 4,5.10 K tp2 > K 2 nên quá trình thủy phân là chủ yếu. HCO3- + H2O x H2CO3 + OHx Ktp2 = 2,22 .10-8 x 126 + giả sử dung dịch D chỉ có Na2CO3 Ktp2 = x2 = 2,22.10 −8 0,3 − x Vì Ktp2 rất nhỏ nên x rất nhỏ vậy 0,3 – x ≈ 0,3 ⇒ x = [OH-] = 2,22.10 −8.0,3 = 8,16.10 −5 M vậy pH = 9,912. CO2 + 2OH- → CO32- + H2O 0,3 0,15 → [Na2CO3] = 0,15M CO 23 + H2O (3) 3 - y y HCO + OH y 10 −14 = 2,128.10 −4 Ktp1 = −11 4,7.10 2 Ktp1 = y = 2,128.10 − 4 0,15 − y Vì y rất nhỏ nên 0,15 – y ≈ 0,15 ⇒ y = [OH-] = 2,128.10 −4.0,15 = 5,65.10 −3 M vậy pH = 11,52. Thực tế dung dịch D có pH = 10,328 (9,912 x + y + x + 2 y = 2 x + 3 y = 22,4 = 01mol (10) Ta có nNO = 1,34/22,4=0,06 mol. Theo (3), (4), (5) ta có: nPb = 2x + 2y = 3/2 nNO = 3/2.0,06 = 0,09 mol => x = 0,045 -y Thay vào (10) ta có: x = 0,035 mol ; y = 0,01 mol => nCO = 0,035 mol; nCO = 0,01 mol; nH = 0,055 mol a) % thể tích các khí: %CO = 35%; %CO2 = 10%; % H2 = 55% b) nPbO đưa dùng = 40,14/223 =0,18 mol nPbO tham gia (6) = 0,18 - 0,09 = 0,09 mol nHNO3 tham gia (5), (6) = 8/3 .0.09 + 2.0,09 = 0,42 mol VHNO3 cần dùng = 0,42/2 = 0,21 lít = 210 ml 2 2 c) nCO (7) = 2 2 1,4 0,031 0,014mol => nCO2 (8) = 0,01 + 0,035 − 0,014 = 0,031mol => m E = .100 = 1,55 g 100 2 d) Dung dịch D +(K2SO4, Na2SO4 ) dư: Pb2+ + SO42- → PbSO4 => mG = 0,18.303 = 54,54 g Bài 24: Các phương trình phản ứng xảy ra: C + O2 → CO2 (1) 2C + O2 → 2CO (2) CuO + CO → Cu + CO2 (3) CuO + 2HNO3 → Cu(NO3)2 +H2O (4) Cu + 4HNO3 → Cu(NO3)2 + 2NO2 + 2H2O (5) CO2 + Ba(OH)2 → BaCO3 + H2O (6) BaCO3 + CO2 + H2O → Ba(HCO3)2 (7) Ba(HCO3)2 → BaCO3 + CO2 + H2O (8) p + 2q p + 2q = Theo (6, 7, 8) ta có Tổng số mol CO2 = M 197 BaCO Theo (3) khối lượng CuO giảm là do Co đã khử mất oxi của CuO, do đó: 3 b−c b−c = Ao 16 b−c nCO 16 => y = = p + 2 q b − c Thay số vào ta được y = 1/3 nCO2 − 197 16 p + 2q Tinh x: nC ban đầu bằng tổng số mol CO2 = 197 nCO = 129 Vì cacbon chứa trong than chỉ có (100 - a)% nên: x= p + 2q 100 = 10 g .12. 197 100 − a b−c = 0,2 mol => z = 4,48 lít 16 c) Phản ứng cháy trong bình: 2CO + O2 → 2CO2 91 Mhhkhi = .2 = 30,33 => trong bình phải còn CO(M < 30,33) và O 2 đã phản ứng hết. Gọi 6 Tính z: Theo (3, 5) nNO2 = 2nCO = 2. a là số mol CO2 có trong 1 mol hỗn hợp sau phản ứng Ta có: 30,33 = 44a + (1-a)28 => a = 0,146 mol => %CO2 = 14,6% => Tỷ lệ thể tích CO/CO2 không bằng y = 1/3 Bài 25: a) Các phương trình phản ứng: CO2 + Ba(OH)2 → BaCO3 + H2O (1) Fe3O4 + 4CO → 3Fe + 4CO2 (2) → Fe3O4 + 4H2 3Fe + 4H2O (3) Khí C là CO2, hỗn hợp chất rắn B gồm Fe và Fe3O4 dư B + HNO3: Fe + 4HNO3 → Fe(NO3)3 + NO + 2H2O (4) 3Fe3O4 + 28 HNO3 → 9Fe(NO3)3 + NO + 14H2O (5) Gọi x là số mol Fe3O4 bị khử ở (2) và (3). y là số mol Fe3O4 dư để tham gia phản ứng (5) Theo (2, 3, 4, 5) ta có số mol: n NO (4) = n Fe = 3 x 1 n NO (5) = n Fe3O4 3 nHNO3 (4) = 4nFe = 4.3 x 1 3,36  3x + y = = 0,15  3 22,4 1  => = y 3  28 28 y nHNO3 (5) = nFe3O4 = 3 3 => 12x + 28 28 y = 3.1 = 3 3 Ta có hệ phương trình: y  = 0,15   3  Giải hệ phương trình tìm được x = 0,017 mol; y = 0,3 mol 28 y 12 x + = 3  3 3x + Vậy mFe3O4 = 232(x+y)=232.0,317 = 73,544 g b) Khí C + Ba(OH)2: CO2 + Ba(OH)2 → BaCO3 + H2O (6) nCO2 = nCO (trong hỗn hợp A) = 1,97/197 = 0,01 mol Theo (2, 3): nH2 + nCO = 4x = 4.0,017 => nH2 = 0,058 mol Khi cho hơi nước qua than nóng đỏ: C + H2O → CO + H2 (7) C + 2H2O → CO2 + 2H2 (8) 0,058 − 0,01 = 0,024mol 2 0,01 0,058 %VCO = 0,092 .100% = 10,86% ; %VH2 = 0,092 .100% = 63,04% ; %VCO2 = 26,08% Theo (7, 8): n H = nCO + 2nCO => nCO = 2 2 2 130 c) Khi đốt cháy hỗn hợp A: CO + 1/2O2 → CO2 H2 + 1/2O2 → H2O 1000.10,86 1000.63,04 Trong 1m3 hỗn hợp A có: nCO = 22,4.100 = 4,85mol; n H = 22,4.100 = 28,1mol Nhiệt lượng tỏa ra: Q = (408,78.4,85) + (241,84.28,14) - (124,2604,85) = 8209,3 kJ 2 C. BÀI TẬP TỰ GIẢI Bài 1: Một loại đá vôi chứa 80% CaCO3, 10,2% Al2O3 và 9,8% Fe2O3. Nung đá ở nhiệt độ cao (12000C) ta thu được chất rắn có khối lượng bằng 78% khối lượng đá trược khi nung. a. Tính hiệu suất phản ứng phân huỷ CaCO 3 và % khối lượng CaO trong đá sau khi nung. b. Để hoà tan 10 g hỗn hợp sau khi nung cần tiêu tốn bao nhiêu ml dung dịch HCl 0,5M, giả sử các phản ứng xảy ra hoàn toàn. c. Hoà tan 26 g hỗn hợp sau khi nung bằng dung dịch HCl dư và cho tất cả khí thoát ra hấp thụ vào 400ml dung dịch NaOH nồng độ a% (d = 1,18 g/ml) sau đó thêm lượng dư BaCl2 thấy tạo thành 18,715 g kết tủa. Tính a. Cho: H = 1; C = 12 ; O = 16 ; Al = 27 ; Ca = 40 ; Fe = 56 ; Ba = 137. Bài 2: Hoà tan 55 gam hỗn hợp Na2CO3 và Na2SO3 bằng 500ml dung dịch H2SO4 1M (lượng axit vừa đủ) ta thu được hỗn hợp khí A và dung dịch chứa một muối trung hoà duy nhất. a. Cho hỗn hợp khí A vào bình kín dung tích 5 lít có một ít bột xúc tác V 2O5 (thể tích không đáng kể). Tính áp suất trong bình, biết nhiệt độ bình là 27,30C. b. Bơm tiếp oxi vào bình ta thu được hỗn hợp khí B có tỷ khối so với hiđro là 21,27. Tính số mol oxi đã bơm vào bình. c. Nung nóng bình một thời gian ta thu được hỗn hợp khí C, có tỷ khối so với hiđro là 22,35. Tính % thể tích của các khí trong hỗn hợp C. Cho: H = 1, O = 16, C = 12, Na = 23, S = 32. Bài 3: Cho luồng hơi nước qua than nóng đỏ, sau khi loại hết hơi nước thu được hỗn hợp khí X gồm CO, H2 và CO2. Trộn hỗn hợp khí X với oxi dư vào bình kín dung tích không đổi được hỗn hợp khí A ở nhiệt độ 0 0C và áp suất p1. Đốt cháy hoàn toàn hỗn hợp khí A rồi đưa về nhiệt độ 00C thì áp suất của khí trong bình (hỗn hợp B) là p2 = 0,5 p1. Nếu cho NaOH rắn vào bình để hấp thụ hết khí CO 2, còn lại một khí duy nhất, nhiệt độ trong bình là 00C thì áp suất đo được là p3 = 0,3 p1. a. Tính % thể tích các khí trong A. 131 b. Cần bao nhiêu kg than có chứa 4% tạp chất trơ để thu được 1000 m 3 hỗn hợp X đo ở 136,50C và 2,24 atm. Biết rằng có 9% cacbon đã bị đốt cháy. Cho: H = 1, C = 12, O = 16. Bài 4: Nung 58 gam hỗn hợp A gồm A1 (FeCO 3 + tạp chất trơ) và A2 (FeS 2 + tạp chất trơ) với lượng không khí (gồm 20% oxi và 80% nitơ theo thể tích) vừa đủ trong bình kín dung tích 10 lít. Sau khi các phản ứng xảy ra hoàn toàn, thu được hỗn hợp chất rắn A3 và hỗn hợp khí B. Trong A3 chỉ chứa một sắt oxit duy nhất và lượng tạp chất trơ ban đầu. Hỗn hợp B có tỷ khối so với không khí có thành phần cho trên là 1,181. a. Tính khối lượng của A1 và A2 ban đầu, biết rằng % khối lượng tạp chất trong A1 và A2 bằng nhau. b. Tính áp suất của khí trong bình sau khi nung đã đưa về nhiệt độ 136,5 0C, giả sử dung tích của bình không đổi. c. Nếu cho B phản ứng với oxi dư (có xúc tác V2O5), sau khi phản ứng hoàn toàn, hoà tan khí vào 600 gam H2O được dung dịch axit có khối lượng riêng là 1,02 gam/ml. Tính nồng độ mol/l của axit trong dung dịch. 132 [...]... hình bền của khí hiếm, các nguyên tố nhóm VIa, trừ Se và Te (một phần nào), thể hiện rõ tính chất của nguyên tố phi kim Chúng dễ dàng kết hợp thêm electron của kim loại kiềm và một số kim loại khác tạo nên hợp chất ion Để đạt được cấu hình bền, các nguyên tố nhóm VIa có thể tạo thành 2 liên kết cộng hóa trị, tạo thành hợp chất với số ôxi hoá +2 hoặc -2 Với oxi và những nguyên tố âm điện hơn, chúng có... trạng thái lai hoá của nguyên tử trung tâm và dạng hình học phân tử của A c) Hợp chất B và C cũng được tạo thành từ 3 nguyên tố X, Y, Z trên có thể điều chế được đồng thời A và C bằng cách cho B tác dụng với chất oxihoa là hiđropeoxit Xác định B, C và viết các phương trình hoá học Bài 7: Hoàn thành các phương trình phản ứng sau, ghi rõ điều kiện phản ứng (nếu có) Xác định công thức phân tử của các chất... và in ảnh, nó có tác dụng rửa sạch AgBr còn lại trên phim ảnh và giấy sau khi đã rửa bằng thuốc hiện hình d) Tại sao trong thiên nhiên có nhiều nguồn tạo ra H 2S nhưng không có hiện tượng tụ khí đó trong không khí ? e) Để một vật bằng bạc ra ngoài không khí bị ô nhiễm H2S một thời gian Bài 6: Hợp chất A được tạo thành từ 3 nguyên tố X, Y, Z có phân tử khối là 142 đvC Trong đó nguyên tử của nguyên tố. .. dễ hoá lỏng (nhiệt độ sôi -100C) và dễ hoá rắn (nhiệt nóng chảy -750C) SO2 lỏng là dung môi tốt với nhiều chất hữu cơ và vô cơ Dung môi SO 2 lỏng có hằng số điện môi bé (ε = 13) nên nhiều chất điện li tan trong đó phân li kém hơn so với ở trong nước SO2 là hợp chất có cực mạnh và cấu trúc góc giống nước nên SO 2 tan nhiều trong nước (ở 200C, 1 lít nước hoà tan khoảng 40 lít SO2) III.1.3.Tính chất hóa. .. Tại sao nhiệt độ nóng chảy và nhiệt độ sôi của lưu huỳnh lại rất cao so với nhiệt độ nóng chảy, nhiệt độ sôi của oxi ? h) Tại sao ở nhiệt độ thường, lưu huỳnh có tính trơ về phương diện hoá học, nhưng khi đun nóng lại tỏ ra khá hoạt động ? 25 i) Tại sao khí H2S ít tan trong nước nhưng tan nhiều trong dung môi hữu cơ ? k) Tại sao axit peoximonosunfuric lại là axit một nấc mặc dù có 2 nguyên tử hiđro... không đổi và X (nằm ở chu kì 3, nhóm VI A) Lấy 13 gam A chia làm hai phần không bằng nhau: - Phần 1: Tác dụng với O2 tạo khí B - Phần 2: Tác dụng với dung dịch HO tạo khí C Trộn B và C thu 7,68 gam kết tủa vàng và còn lại là chất khí nào mà khi gặp nước clo tạo dung dịch D Cho tác dụng với AgNO3 dư tạo được 22,96 gam kết tủa 1 Viết cấu hình e đầy đủ của X Gọi tên và nêu tính chất hoá học cơ bản của X... nồng độ 22,54% Xác định công thức của T 3 Biết nhiệt độ sôi của CS 2 là 46,20oC, hằng số nghiệm sôi của nó là 2,37 Hoà tan 1,024 gam lưu huỳnh vào 20 gam CS 2 thì nhiệt độ sôi của dung dịch thu được là 46,67oC Hãy cho biết công thức phân tử của đơn chất lưu huỳnh (Ms = 32) Bài 22: Nung m gam hỗn hợp A gồm FeS và FeS 2 trong một bình kín chứa không khí (gồm 20% thể tích O2 và 80% thể tích N2) đến khi... Do hai nguyên nhân sau: 34 - Nguyên nhân thứ nhất: Làm tăng nhiệt độ nóng chảy và nhiệt độ sôi từ oxi đến lưu huỳnh là sự tăng bán kính nguyên tử tạo điều kiện làm cho tương tác khuếch tán tăng - Nguyên nhân thứ hai: Phân tử oxi chỉ gồm hai nguyên tử, phân tử lưu huỳnh ở trạng thái lỏng hay rắn đều có số nguyên tử lớn hơn (thường là 8 nguyên tử) Do đó đối với lưu huỳnh thường phải cung cấp năng lượng... chất rắn A và dung dịch B: - Nung chất rắn A đến khối lượng không đổi thu được 0,2 gam Fe2O3 - Cho dư dung dịch BaCl2 vào dung dịch B thu được 1,1087 gam kết tủa BaSO4 a) Xác định công thức tổng quát của pyrit b) Cân bằng các phản ứng trên bằng phương pháp ion – electron c) Tính lượng Br2 dùng để oxihoa mẫu khoáng trên Bài 19: Từ các nguyên tố O, Na, S tạo ra được các muối A, B đều có hai nguyên tử... có thể tạo nên 4 hoặc 6 liên kết cộng hóa trị, tạo thành hợp chất với số oxi hoá +4 hoặc +6 14 Ngoài ra, các nguyên tử nguyên tố nhóm VIa (trừ O) có thể dùng obital d để xen phủ với các obital p của nguyên tố khác tạo nên liên kết π p → d I.2 Trạng thái thiên nhiên Lưu huỳnh là nguyên tố khá phổ biến trong thiên nhiên, tồn tại ở trạng thái đơn chất (mỏ lưu huỳnh) và trạng thái hợp chất như H 2S, SO2, ... trọng môn hoá học Đặc biệt đề thi HSG cấp hóa đại cương vô chiếm tới 60% nội dung kiến thức nội dung hóa nguyên tố chiếm dung lượng lớn Việc hệ thống hóa kiến thức hóa nguyên tố xây dụng hệ thống. .. dụng hệ thống tập trọng tâm nâng dần mức độ từ dễ đến khó ý tưởng trình bày kỷ yếu Xong với điều kiện thời gian có hạn nên tập chung vào chương nguyên tố phi kim, cố gắng xếp cách hệ thống khoa... dụng hầu hết nguyên tố (trừ O, N, C Ir) Brom tác dụng với số nguyên tố giống clo, phản ứng xảy mãnh liệt Iot tác dụng trực tiếp với số nguyên tố Với nguyên tố, phản ứng halogen xảy theo mức độ

Ngày đăng: 17/10/2015, 20:42

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan