Nhiệt dung- Nhiệt dung C của vật: Q C dT δ = Trong đó δQ là nhiệt lượng mà vật nhận được và dT là độ tăng nhiệt độ của vật.. Quá trình đoạn nhiệt - Các phương trình mô tả quá trình đoạn
Trang 1MỞ ĐẦU
Nguyên lý I nhiệt động lực học là một phần của Nhiêt động lực học, tác giả viết chuyên đề này với hi vọng có thể giúp cho các em học sinh hệ thống
lý thuyết cũng như bài tập của phần nguyên lý I Nhiệt động lực học Đặc biệt
hệ thống bài tập được liệt kê với mong muốn cung cấp cho các em sử dụng
ôn tập trong các kì thi chọn học sinh giỏi
Trong quá trình biên soan có thể có nhiều thiếu xót, tác giả mong nhận được sự góp ý của quý thầy cô và các em học sinh
Trang 2A Lý thuyết:
1 Công và nhiệt lượng:
a Công:
- Công phân tử δA do hệ sinh ra trong quá trình cân bằng khi thông số ngoài thay đổi một lượng vô cùng bé là dai
.
A A da
δ = ( Trong đó Ai là ngoại lực suy rộng ứng với thông số ngoài ai)
- Các trường hợp riêng:
a V A p A pdV
a l A F A Fdl
δ δ
Trong đó: V là thể tích,
p là áp suất,
l là chiều dài,
F là lực kéo,
S là diện tích mặt ngoài,
σ là sức căng mặt ngoài
- Công được xác định bằng diện tích giới hạn bởi đường biểu diễn chu trình Quy ước: A>0 nếu chiều chu trình cùng chiều kim đồng hồ; A<0 nếu chiều chu trình ngược chiều kim đồng hồ
b Nhiệt lượng:
- Khi một vật nhận nhiệt lượng có thể xảy ra hai khả năng: thứ nhaatslaf vật tăng nhiệt độ và trạng thái của hệ không thay đổi, thứ hai là vật không thay đổi nhiệt độ nhưng trạng thái vật lý của vật thay đổi
c Phân biệt công và nhiệt lượng:
- Khi hệ tương tác với môi trường xung quanh xảy ra trao đổi năng lượng, nếu hệ nhận năng lượng với sụ thay đổi thông só ngoài thì vật nhận công, nếu hệ nhận năng lượng mà không làm thay đổi thông số ngoài thì vật nhận nhiệt lượng
- Quy ước dấu: hệ thực hiện công A<0
hệ nhận công A>0
hệ nhận nhiệt lượng Q>0
hệ truyền nhiệt lượng Q<0
2 nguyên lý I nhiệt động lực học:
- Biểu thức: VU Q A= −
- Biểu thức ở dạng vi phân dU = δQ− δA
Trang 33 Nhiệt dung
- Nhiệt dung C của vật:
Q
C
dT
δ
=
Trong đó δQ là nhiệt lượng mà vật nhận được và dT là độ tăng nhiệt độ của
vật
- Nhiệt dung riêng c của chất tạo nên vật là nhiệt dung C của vật nếu vật đồng chất và có khối lượng bằng đơn vị
- Nhiệt dung mol c của chất tạo nên vật là nhiệt dung C của vật nếu vật đồng chất và có khối lượng bằng 1 mol
- Hệ thức liên hệ giữa c và C:
mc = v.C
trong đó m là khối lượng và v là số mol
- Nhiệt dung mol đẳng tích của chất tạo nên vật:
v
v
Q
C
dT
δ
= ÷
- Nhiệt dung mol đẳng áp của chất tạo nên vật:
p
p
Q
C
dT
δ
= ÷
- Hệ thức liên hệ giữa Cv và Cp:
Đối với 1 mol khí lý tưởng: Cp – Cv = R
4 Áp dụng nguyên lý I của Nhiệt động lực học
- Quá trình đẳng tích: A = 0, ∆U = Q
- Quá trình đẳng áp: A = p∆V, ∆U = Q – A
- Quá trình đẳng nhiệt đối với khí lý tưởng: ∆U = 0, Q = A
- Quá trình đoạn nhiệt: Q = 0, ∆U = -A
- Biến đổi theo chu trình: ∆U = 0, Q = A
5 Quá trình đoạn nhiệt
- Các phương trình mô tả quá trình đoạn nhiệt thuận nghịch của một đại lượng khí lý tưởng bất kỳ
pVy = const
TVy-1 = const
Trang 4V 0
p 2
p 1
1
2
1
const
y
y
Tp
−
=
Trong đó p
v
C y C
= là chỉ số đoạn nhiệt, y i 2 1
i
+
= > (i là số bậc tự do của phân
tử, i = 3 đối với khí đơn nguyên tử và i = 5 đối với khí lưỡng nguyên tử)
- Nhiệt dung của hệ biến đổi đoạn nhiệt Cs = 0
6 Quá trình polytropic (đa hình)
- Quá trình polytropic là quá trình có nhiệt dung C không đổi Các quá trình đẳng nhiệt có nhiệt dung C T = ∞ và quá trình đoạn nhiệt có nhiệt dung CS = 0
là các trường hợp riêng của quá trình polytropic
- Các phương trình mô tả quá trình polytropic thuận nghịch của một lượng khí lý tưởng bất kì
pVn = const,
TVn-1 = const,
Tp
1 n
n
−
= const
Trong đó n = P
V
−
− là chỉ số polytropic
- Nhiết dung của hệ trao đổi polytropic
1 V
n
n
γ
−
=
−
Khi n= γ ,C C≡ S = 0 ứng với quá trình đoạn nhiệt Khi n=1, C C≡ T = ∞ ứng
với quá trình đẳng nhiệt khi 1 < <n γ ,C< 0 ứng với hệ có nhiệt dung âm.
B Bài tập
Ví dụ 1: Một mol khí lý tưởng đơn
nguyên tử thực hiện một quá trình biến
đổi từ trạng thái 1 có áp suất p1 = 2atm,
thể tích sang trạng thái 2 có áp suất p2
= 1atm, thể tích V2 = 3 lít Đường biểu
diễn sự thay đổi của áp suất theo thể
tích trong hệ tọa độ (p,V) là một đoạn
thẳng Tính công của khí trong quá
trình 1 – 2 và chứng tỏ rằng trong quá
trình này khí luôn nhận nhiệt
Biết 1atm ~ 1,013.105 Pa
Trang 53
2
0
V(l)
T(K)
Đáp án:
Công mà khí nhận được trong quá trình 1 – 2 :
1
2 p + p V −V ≈ (J)
Phương trình của đoạn 1 – 2 có dạng p = aV+b
Tọa độ 1 và 2 nghiệm đúng phương trình đó:
0,5 2,5
Gọi M là một trạng thái có thể tích Vx, áp suất px, trên 1 – 2:
0,5 0,5,T x x
p V
R
A = p +p V −V = − V + V −
2
0,5V x 2,5V x 2, 25(atm )
Độ biến thiên nội năng:
3
2
2
3 ( 0,5 2,5 2)
2
0,75V x 3,75V x 3(atm )
Theo nguyên lý I nhiệt động lực học:
2
1M 1M x 6, 25 x 5, 25
Q đạt cực đại khi V x =V m= 3,125 l >V2
Vậy trong quá trình từ 1 đến 2, Q luôn tăng hay khí luôn nhận nhiệt
Ví dụ 2: Một mol khí lý tưởng
thực hiện một chu trình 1 – 2 – 3 – 1
như hình vẽ Biết T1 = 300K; T3 =
675K; V3 = 5l; các điểm 1 và 3 cùng ở
trên một parabol qua gốc tọa độ Tính
công sinh ra trong cả chu trình
Trang 6Ở trạng thái 3:
3
3
8,31.675
11.22.10 / 5.10
RT
T = αV và 2
T = αV
Nên: 1 1
300 2
675 3
Suy ra 3
10 3
V = l
Vẽ đồ thị chu trình trong hệ tọa độ (p,V)
1 1
7, 48.10 /
RT
V
Từ pV =RT =R Vα 2
Suy ra p R V= α nên giai đoạn 3 – 1 trong hệ (p,v) là đoạn thẳng.
Công sinh ra: 3 1 3 1
1
2
A= p −p V −V
1 5 3 10 3
(11, 22 7, 48).10 5.10 10 312
* Bài tập tương tự:
Bài 1 Tính công sinh ra bởi 1 mol nước khi nó chuyển thành hơi ở 1000C Biết rằng độ tăng thể tích ∆V = Vh – Vn = 30,186cm3/mol, áp suất không đổi trong quá trình hóa hơi là p = 1atm = 1,013.105 Pa
Bài 2 Có các nhiệt lượng kế giống hệt nhau và mỗi nhiệt lượng kế chứa
200g nước ở nhiệt độ 200C Cho vào mỗi nhiệt lượng kế một miếng kim loại có khối lượng 300g ở nhiệt độ 1000C Nhiệt độ cân bằng t của nhiệt lượng kế có các giá trị sau đây tùy theo từng kim loại: t = 39,50C đối với nhôm (µ Al = 27g) t
= 31,90C đối với sắt (µFe = 55,8g), t = 29,80C đối với kẽm (µZn = 65,4g) và t =
26,20C đối với bạc (µ Ag = 107,9g) Xác định nhiệt dung riêng c và nhiệt dung
mol C của từng kim loại
Bài 3 Tính công sinh ra bởi một lượng khí khi nó dãn đẳng nhiệt từ thể
tích V1 đến thể tích V2 trong các trường hợp sau
a) Khí tuân theo định luật Boyle – Mariotte
b) Khí tuân theo phương trình Van der Waals
Bài 4 Một thanh đàn hồi có chiều dài l bị kéo bởi lực F Chiều dài l phụ
thuộc vào lực kéo F và nhiệt độ T Chứng minh rằng các hệ số dãn đẳng nhiệt
DT = n và hệ số dãn đoạn nhiệt DS = nn của thanh tuân theo hệ thức sau
Trang 7CFDS = ClDT trong đó CF và Cl tương ứng là nhiệt dung mol của thanh khi lực F không đổi và nhiệt dung mol của thanh khi chiều dài l không đổi
Bài 5 Biểu diễn các quá trình đẳng tích, đẳng áp, đẳng nhiệt, đoạn nhiệt
và ba quá trình polytropic sau
pV0,8 = const,
pV 1,3 = const,
pV 1,5 = const trên cùng một giản đồ p – V Xác định các đặc điểm của từng quá trình polytropic nói trên biết rằng hệ là khí lý tưởng đơn nguyên tử
Bài 6 Trong quá trình polytropic, một lượng không khí nhận nhiệt lượng
10kJ và tăng thể tích lên 10 lần Áp suất giảm 8 lần Tính chỉ số polytropic n, nhiệt dung C (theo CV) và độ tăng nội năng ∆U của khí
Bài 7 Trong quá trình polytropic nén khí phải dùng một công là 250kJ và
khí tỏa ra một nhiệt lượng bằng 200kJ Xác định chỉ số polytropic n biết γ =
1,4
Bài 8 Một lượng không khí có thể tích 5m3 ở áp suất p1 = 4atm Khi dãn khí đến thể tích gấp 3 lần, áp suất khí p2 = 1atm Tính chỉ số polytropic, công sinh ra, nhiệt nhận được và độ tăng nội năng cảu khí
Bài 9 Một viên bi kim loại có nhiệt dung riêng c được nén lên cao với
vận tốc v0 trong trọng trường đều với gia tốc rơi tự do g Viên bi lên độ cao h rồi rơi xuống
a) Xác định độ cao tối đa h0 mà viên bi có thể đạt được nếu bỏ qua lực ma sát giữa không khí và viên bi Biểu diễn h0 theo va và g
b) Do ma sát, độ cao h nhỏ hơn h0 Tính biến thiên nhiệt độ ∆T của viên
bi giữa thời điểm nó được ném lên và thời điểm nó đạt độ cao nhất với giả thiết là:
- bỏ qua tất cả thay đổi thể tích của viên bi;
- không khí xung quanh đứng yên về mặt vĩ mô;
- công của lực ma sát phân tán một nửa ra không khí xung quanh và một nửa vào viên bi
Biểu diễn ∆T theo h0, h, g và c
c) Tính h0 và ∆T biết g = 9,81 m/s2, c = 0,4kJ/kg, v0 = 10m/s và h = 5m
Bài 10 Khí lý tưởng biến đổi từ trạng thái (p1, V1, T1) sang trạng thái (p2,
V2, T2) (V2 > V1) theo một quá trình polytropic ứng với phương trình pVn = const (n = const > 0) Giả thiết chỉ số đoạn nhiệt γ của khí này không phụ thuộc nhiệt
độ trong vùng nhiệt độ khảo sát Với những giá trị nào của n thì sự giãn khí có kèm theo
Trang 8a) Sự hấp thụ nhiệt và khí bị nóng lên?
b) Sự hấp thụ nhiệt và khí bị lạnh đi?
c) Sự tỏa nhiệt?
Bài 11 Một bình có thể tích V0 ban đầu chứa không khí (coi là khí lý tưởng) ở áp suất p0 Có thể tăng áp suất đó bằng cách dùng bơm để đưa thêm không khí vào bình Bơm gồm một xylanh trong đó có một pittông chạy qua lại không ma sát do một động cơ điều khiển Thể tích cực đại của xylanh bằng V (ở đầu hành trình, pittông ở trên trái) và thể tích cực tiểu của xylanh bằng v (ở cuối hành trình, pittông ở bên phải) Khi pittông dịch chuyển về bên trái, các xupap
S1 và S2 ban đầu đóng lại Sau đó, S1 mở ra khi áp suất khí còn lại trong xylanh bằng áp suất khí quyển p0 Khi đó, không khí bên ngoài bị hút vào bơm Khi pittông dịch chuyển sang bên phải, S1 đóng lại và khí chứa trong xylanh bị nén Sau đó S2 mở ra cho đến khi áp suất không khí trong xylanh bằng áp suất không khí chứa trong bình và khí trong xylanh bị đẩy lùi vào trong bình Giả thiết rằng trong quá trình với nhiều biến đổi khác nhau, không khí chịu một chuỗi liên tục các trạng thái cân bằng nhiệt động nội tại ở nhiệt độ không đổi
1/a/ Tính áp suất pk của không khí trong bình sau k lần pittông chạy qua chạy lại
b/ Giá trị giới hạn p của pk bằng bao nhiêu khi k rất lớn?
Tìm giá trị đó không qua các phép tính áp suất trung gian?
2/ Giả thiết v = 0
a/ Biểu diễn pk theo p0, V, V0 và k
b/ Tính công Ak mà động cơ cung cấp để thực hiện k lần đi và về của pittông
Bài 12 Giả thiết rằng sau nhiều biến đổi khác nhau, khí đi qua một chuỗi
liên tục các trạng thái cân bằng nhiệt động nội tại
1/ Một máy nén đưa 1 mol khí lý tưởng đi từ trạng thái đầu (p1, T1) sang trạng thái (p2, T2) nhờ nén đoạn nhiệt Sau đó, khí được làm lạnh đẳng áp từ nhiệt độ T2 đến nhiệt độ T1
a/ Tính T2 Đặt T2 = aT1 và xác định a
b/ Tìm biểu thức của công toàn phần AT mà 1 mol khí nhận được theo
. CP
R
CV
γ = , T1 và a.
2/ Việc nén như trước được duy trì thực hiện theo 2 tầng Ở tầng thứ nhất, chất khí được nén đoạn nhiệt từ áp suất p1 đến áp suất p1 = bp1, trong đó b là hằng số có giá trị giữa 1 và p p21 Sau khi ra khỏi tầng thứ nhất, khí được làm lạnh đẳng áp đến nhiệt độ T1 Sau đó khí được đưa vào nén đoạn nhiệt từ áp suất p1
đến áp suất p2 Cuối cùng, khí được đưa về nhiệt độ ban đầu T1 bằng cách làm lạnh đẳng áp
Trang 9a/ Tìm biểu thức của công toàn phần AT mà 1 mol khí nhận được khí nén hai tầng Biểu diễn AT theo R, γ
, T1, a và x = b^
1
γ γ
−
b/ So sánh công AT với công AT mà 1 mol khí nhận được khi nén một tầng
c/ Tìm giá trị của x để AT cực tiểu và tìm giá trị cực tiểu đó
d/ Giá trị cực tiểu của AT là Am Tính tỉ số Am
AT khi γ = 1,4, p1=103 Pa và
p2 = 2.103 Pa
Bài 13 Một xylanh kín, nằm ngang bị chia thành hai phần A và B có
cùng thể tích V0 bởi một pittông chạy không ma sát Trong mỗi phần đều chứa 1 mol khí lý tưởng ở áp suất p0 và nhiệt độ T0 Biết chỉ số đoạn nhiệt CP
CV
γ = của
khí lý tưởng Pittông, mặt nằm ngang của xylanh và mặt đáy SA của phần A là không thấu nhiệt Mặt đáy SB của phần B là thấu nhiệt Phần A được đưa lên nhiệt độ T1 rất chậm nhờ một điện trở đốt nóng Phần B được giữ ở nhiệt độ T0
nhờ tiếp xúc nhiệt với một máy điều nhiệt ở nhiệt độ này
1/a/ Viết biểu thức của VA, VB và áp suất cuối cùng Pf theo T1, T0 và V0
tương ứng với vị trí cân bằng của pittông
b/ Tìm biến thiên nội năng của chất khí trong A, B và hệ A+B nếu giả thiết điện trở đốt và pittông không ảnh hưởng đến hệ
c/ Bản chất của quá trình biến đổi chất khí trong B là gì? Công AB do B trao đổi với A bằng bao nhiêu? Tìm nhiệt lượng Q1 mà máy điều nhiệt nhận được từ B Biểu diễn AB và Q1 theo T0, T1 và R
d/ Tìm nhiệt lượng Q2 mà điện trở nhận được từ A Biểu diễn Q2 theo T0,
T1, R và γ
2/ Hệ đang ở trạng thái cuối Giả thiết rằng mặt đáy SB cảu phần B là không thấu nhiệt và một điện trở đốt nóng đặt ở B đưa đến một nhiệt lượng truyền Q3 sao cho pittông lấy lại một cách chậm chạp vị trí cân bằng ban đầu của nó
a/ Bản chất của quá trình biến đổi chất khí trong A là gì? Áp suất cân bằng cuối cùng p’f bằng bao nhiêu? Biểu diễn p’f theo T0,T1,V0,R và γ
b/ Xác định các nhiệt độ TA và TB ở mỗi phần theo T0, T1 và γ
c/ Xác định biến thiên nội năng của chất khí trong A, B và hệ A + B theo
R, γ , TA, T0 và T1.
d/ Xác định nhiệt lượng truyền Q3 do điện trở đốt nóng thứ hai cung cấp theo R, γ , T0 và T1.
Trang 10Bài 14 Một pittông có khối lượng M0 có thể chạy không ma sát trong một xylanh có tiết diện S đặt trong không khí ở áp suất p0 Thành bình và pittông là không thấu nhiệt Xylanh chứa không khí được coi là khí lý tưởng ở nhiệt độ T0 Khi cân bằng pittông cách đáy một khoảng là h
a/ Tính áp suất p1 của không khí bên trong bình lúc cân bằng
b/ Đặt lên pittông một vật có khối lượng m<<M0 Xác định chuyển động của pittông Pittông có đứng lại không? Biết chỉ số đoạn nhiệt của không khí bằng γ .
Bài 15 Không khí ở nhiệt độ T chứa trong một xylanh có thành không
thấu nhiệt Xylanh được đóng kín bằng một pittông cũng không thấu nhiệt Pittông có tiết diện S và khối lượng M Xylanh đặt trong không khí ở áp suất p0 Khi cân bằng, pittông ở cách đáy một khoảng bằng h1
a/ Đặt lên pittông một vật có khối lượng M0 Pittông đột ngột tụt xuống, dao động và do những hiện tượng tiêu hao bên trong chất khí, pittông dừng lại cách đáy một khoảng bằng h2 Có thể làm tăng sự tiêu hao này bằng cách đặt trong xylanh những lưới để tạo ra dòng xoáy cho không khí ở gần Nó có tác dụng làm tăng độ nhớt của không khí Mặc dù không khí được giả thiết có tính nhớt, ta vẫn xem nó là khí lý tưởng Tính công trao đổi A giữa không khí trong bình và môi trường ngoài và các giá trị hằng số của T2, h2, A Biết p0=105 Pa, g=10 m/s2, S=0,1 m2, M = 100kg, h1 = 1m, T0=300K, γ = 1,4.
b/ Ở trạng thái ban đầu, người ta lần lượt đặt lên pittông những vật có khối lượng m rất nhỏ (m<<M0) Mỗi lần đặt đợi cho pittông ổn định mới đặt vật tiếp theo Khi những vật đặt vào có khối lượng tổng cộng bằng M0 thì dừng không đặt nữa Trạng thái cuối của khí trong xylanh ứng với các thông số p2, T’2
và h’2 Tính các giá trị bằng số của T’2, h’2 và công trao đổi A’
Bài 16 Một bình có thể tích V1 được đóng kín bởi một van Giả thiết rằng thành bình và van là không thấu nhiệt Lúc đầu trong bình là chân không Bình được đặt trong không khí (coi là khí lý tưởng) ở nhiệt độ T0 và áp suất p0 Khi van mở, không khí đi vào bình cho đến khi áp suất trong bình bằng áp suất ngoài bình Khi đó, van được đóng lại và nhiệt độ khí trong bình là T1 Xác định nhiệt
độ T1, biến thiên nội năng ∆U của không khí trong bình Biết p0 = 105 Pa, V1 = 5.103 m3, T0 = 293K và γ = 1,4.
Bài 17 Một bong bóng xà phòng hình cầu có bán kính r và chứa không
khí ở áp suất p Không khí xung quanh ở áp suất p0 Giả thiết công nguyên tố δ
A mà bong bóng xà phòng thực hiện để tăng diệ tích mặt cầu của nó lên một lượng dS được xác định bởi δA= σdS trong đó σ là sức căng mặt ngoài của
bong bóng xà phòng Xác định công trao đổi δ A giữa bong bóng (nghĩa là hệ gồm có không khí bên trong và màng xà phòng) và môi trường ngoài (nghĩa là không khí xung quanh) khi bán kính bong bóng thay đổi một lượng là dr Từ đó xác định mối liên hệ giữa p và p0 theo các tham số r và σ Biết p0 = 105 Pa, σ =
4.10-2 N/m và r = 1cm