Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 87 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
87
Dung lượng
1,63 MB
Nội dung
ĐẠI HỌC KHOA HỌC TỰ NHIÊN KHOA CÔNG NGHỆ THÔNG TIN - NGUYỄN THỊ KIM LOAN MƠ HÌNH CHUỖI THỜI GIAN MỜ TRONG DỰ BÁO CHUỖI THỜI GIAN LUẬN VĂN THẠC SĨ CÔNG NGHỆ THƠNG TIN Chun ngành: KHOA HỌC MÁY TÍNH Mã số: 60.48.01 Giáo viên hướng dẫn: TS NGUYỄN CÔNG ĐIỀU THÁI NGUYÊN – 2015 MỤC LỤC MỞ ĐẦU CHƢƠNG CÁC KIẾN THỨC CƠ BẢN VỀ CHUỖI THỜI GIAN Chuỗi thời gian trình ngẫu nhiên 1.1 Khái niệm chuỗi thời gian trình ngẫu nhiên 1.2 Quá trình ngẫu nhiên dừng 1.3 Hàm tự tƣơng quan 1.4 Toán tử tiến, toán tử lùi Quá trình ARMA 2.1 Quá trình tự hồi quy 2.2 Quá trình trung bình trƣợt 11 2.3 Quá trình tự hồi quy trung bình trƣợt 13 Ƣớc lƣợng tham số mơ hình ARMA 15 Những hạn chế mơ hình ARMA chuỗi thời gian tài 16 CHƢƠNG LÝ THUYẾT TẬP MỜ VÀ CHUỖI THỜI GIAN MỜ 23 Lý thuyết tập mờ 23 1.1 Tập mờ 23 1.2 Các phép toán tập mờ 25 Các quan hệ suy luận xấp xỉ, suy diễn mờ 30 2.1 Quan hệ mờ 30 2.2 Suy luận xấp xỉ suy diễn mờ 31 Hệ mờ 33 3.1 Bộ mờ hoá 33 3.2 Hệ luật mờ 34 3.3 Động suy diễn 35 3.4 Bộ giải mờ 36 3.5 Ví dụ minh hoạ 37 CHƢƠNG MỘT SỐ THUẬT TOÁN CƠ BẢN TRONG CHUỖI THỜI GIAN MỜ VÀ MỘT SỐ THUẬT TOÁN CẢI TIẾN 39 Một số khái niệm 39 1.1 Định nghĩa tập mờ chuỗi thời gian mờ 39 1.2 Một số định nghĩa liên quan đến chuỗi thời gian mờ 40 Mơ hình số thuật tốn dự báo mơ hình chuỗi thời gian mờ 41 2.1 Mơ hình thuật tốn Song Chissom 41 2.2 Mơ hình thuật tốn Chen 42 2.3 Thuật toán Singh 43 2.4 Mơ hình Heuristic cho chuỗi thời gian mờ 45 Ứng dụng dự báo chứng khoán 48 3.1 Bài toán số chứng khoán Đài Loan 48 3.2 Xây dựng chƣơng trình 60 KẾT LUẬN 64 TÀI LIỆU THAM KHẢO 65 MỞ ĐẦU Chuỗi thời gian sử dụng công cụ hữu hiệu để phân tích kinh tế, xã hội nghiên cứu khoa học Chính tầm quan trọng phân tích chuỗi thời gian, nhiều tác giả đề xuất công cụ để phân tích chuỗi thời gian Trong năm trước, cơng cụ chủ yếu để phân tích chuỗi thời gian sử dụng công cụ thống kê hồi qui, phân tích Furie vài cơng cụ khác Nhưng hiệu có lẽ mơ hình ARIMA Box-Jenkins Mơ hình cho kết tốt phân tích liệu Tuy nhiên phức tạp thuật tốn gây khó khăn ứng dụng phân tích chuỗi số liệu, chuỗi số liệu có thay đổi phản ánh phi tuyến mơ hình Để vượt qua khó khăn trên, gần nhiều tác giả sử dụng mơ hình chuỗi thời gian mờ Khái niệm tập mờ Zadeh đưa từ năm 1965 ngày tìm ứng dụng nhiều lĩnh vực khác điều khiển trí tuệ nhân tạo Trong lĩnh vực phân tích chuỗi thời gian, Song Chissom đưa khái niệm chuỗi thời gian mờ phụ thuộc vào thời gian không phụ thuộc vào thời gian để dự báo Chen cải tiến đưa phương pháp đơn giản hữu hiệu so với phương pháp Song Chissom Trong phương pháp mình, thay sử dụng phép tính tổ hợp Max- Min phức tạp, Chen tính tốn phép tính số học đơn giản để thiết lập mối quan hệ mờ Phương pháp Chen cho hiệu cao mặt sai số dự báo độ phức tạp thuật tốn Từ cơng trình ban đầu chuỗi thời gian mờ xuất năm 1993, mơ hình sử dụng để dự báo nhiều lĩnh vực kinh tế hay xã hội lĩnh vực giáo dục để dự báo số sinh viên nhập trường, hay lĩnh vực dự báo thất nghiệp, lĩnh vực dân số, chứng khoán nhiều lĩnh vực khác tiêu thụ điện, hay dự báo nhiệt độ thời tiết… Tuy nhiên xét độ xác dự báo, số thuật tốn cịn cho kết chưa cao Để nâng cao độ xác dự báo, số thuật tốn cho moo hình chuỗi thời gian mờ liên tiếp đưa Chen sử dụng mơ hình bậc cao chuỗi thời gian mờ để tính tốn Sah Degtiarev thay dự báo chuỗi thời gian sử dụng chuỗi thời gian hiệu số bậc để nâng cao độ xác Đây phương pháp hay sử dụng mơ hình Box-Jenkins để loại bỏ tính khơng dừng chuỗi thời gian Huarng sử dụng thơng tin có trước tính chất chuỗi thời gian mức độ tăng giảm để đưa mô hình heuristic chuỗi thời gian mờ Trong thời gian gần đây, đề tài số tác giả nghiên cứu Các hướng tập trung nâng cao độ xác dự báo mơ hình chuỗi thời gian mờ Bài báo I-Hong Kuo tác giả (2008) đưa phương pháp tăng độ xác dự báo tối ưu phần tử đám đông (Particle swarm optimaization) Ching Hsue Cheng đồng tác giả (2008) mở rông nghiên cứu phương pháp kỳ vọng (Exspectation method) Phương pháp lựa chọn mức (Grade Selection Method) thông qua ma trận chuyển dịch có trọng Ngồi có xu hướng sử dụng kết hợp phương pháp khác với chuỗi thời gian mờ phương pháp mạng Nơ ron Cagdas H Aladag (2008) hay Medey Khascay (2008) Ngay nhà nghiên cứu sâu lĩnh vực Huarng mở rộng theo hướng từ năm 2006 Thuật toán di truyền tìm ứng dụng hướng nghiên cứu Năm 2007 có báo Li-Wei Lee sử dụng mối quan hệ mờ thuật toán di truyền để dự báo nhiệt độ số tài Đài Loan Ngồi số tác giả khác tìm thuật toán khác đơn giản để dự báo báo Singh (2007) hay thuật toán dựa vào trend chuỗi thời gian (Baldwin 2000) Nghiên cứu dự báo chuỗi thời gian ln tốn gây ý nhà toán học, kinh tế, xã hội học, Các quan sát thực tế thường thu thập dạng chuỗi số liệu Từ chuỗi số liệu người ta rút quy luật trình mô tả thông qua chuỗi số liệu Nhưng ứng dụng quan trọng dự báo khả xảy cho chuỗi số liệu Những thí dụ dẫn báo đưa khả dự báo kinh tế dự báo số chứng khoán, mức tăng dân số, dự báo nhu cầu sử dụng điện, dự báo số lượng sinh viên nhập học trường đại học Các thí dụ dẫn ngành kinh tế kỹ thuật Như trình bày phần trên, có nhiều phương pháp dự báo chuỗi thời gian Thông thường để dự báo, người ta sử dụng công cụ mạnh thống kê mô hình ARIMA Mơ hình thích ứng hầu hết cho chuỗi thời gian dừng tuyến tính Trong chương trình xử lý số liệu có phần để dự báo chuỗi thời gian Nhưng chuỗi số liệu phi tuyến, số liệu kinh tế, sử dụng mơ hình ARIMA hiệu Chính phải có phương pháp khác để xử lý chuỗi số liệu phi tuyến Đã có nhiều người sử dụng công cụ mạng nơ ron để xử lý tính chất phi tuyên chuỗi số liệu Đây hướng nhiều người tiếp cận có sách chuyên khảo vấn đề thí dụ Mandic Chambers “ Recurrent neural network and prediction” in vào năm 2001 Một hướng khác sử dụng khái niệm mờ để đưa thuật ngữ “ Chuỗi thời gian mờ” Phương pháp sử dụng chuỗi thời gian mờ đưa từ năm 1994 đến tiếp tục nghiên cứu để làm tăng độ xác dự báo Trong đề tài em trình bày phương pháp dự báo số chứng khoán công cụ chuỗi thời gian mờ số tác giả phát triển Tư tưởng phương pháp sử dụng số khái niệm Huarng Chen, Hsu để phát triển thuật toán Dựa thuật tốn đề ra, em tính tốn toán thực tế dựa liệu lấy từ thị trường chứng khoán Đài Loan để kiểm chứng Kết thu khả quan Độ xác dự báo nâng lên nhiều so với thuật tốn trước đề Nội dung luận văn nghiên cứu khái niệm, tính chất thuật tốn khác mơ hình chuỗi thời gian mờ để dự báo cho số chuỗi số kinh tế xã hội, trình bày chương: Chương 1: trình bày kiến thức chuỗi thời gian Chương 2: trình bày Lý thuyết tập mờ chuỗi thời gian mờ Chương 3: trình bày số thuật toán chuỗi thời gian mờ số thuật toán cải tiến Luận văn hoàn thành hướng dẫn tận tình TS Nguyễn Cơng Điều, tác giả xin bày tỏ lịng biết ơn chân thành thầy Tác giả xin chân thành cảm ơn thầy giáo Viện công nghệ thông tin, khoa Công nghệ thông tin Đại học Thái Nguyên tham gia giảng dạy giúp đỡ em suốt qúa trình học tập nâng cao trình độ kiến thức Tuy nhiên điều kiện thời gian khả có hạn nên luận văn khơng thể tránh khỏi thiếu sót Tác giả mong thầy giáo bạn đóng góp ý kiến để đề tài hoàn thiện CHƢƠNG CÁC KIẾN THỨC CƠ BẢN VỀ CHUỖI THỜI GIAN Trong phần này, tìm hiểu lớp mơ hình chuỗi thời gian thơng dụng thực tế Đó mơ hình quy trình trượt ARMA(Autoregressive Moving Average) Ta nghiên cứu đặc trưng trình ARMA, xem xét tổng quan phương pháp ước lượng tham số lớp mơ hình thấy rõ hạn chế áp dụng vào chuỗi thời gian tài Ngồi ra, mơ hình ARMA cịn đóng vai trị quan sở để xây dựng mơ hình ARCH sau Chuỗi thời gian trình ngẫu nhiên Trước vào chi tiết tìm hiểu mơ hình ARMA, ta nhắc lại số khái niệm liên quan đến chuỗi thời gian trình ngẫu nhiên Dù ta vào chi tiết mơ hình khái niệm theo suốt trình nghiên cứu chuỗi thời gian 1.1 Khái niệm chuỗi thời gian trình ngẫu nhiên Một chuỗi thời gian dãy giá trị quan sát X:={x1, x2,……… xn} xếp thứ tự diễn biến thời gian với x1 giá trị quan sát thời điểm đầu tiên, x2 quan sát thời điểm thứ xn quan sát thời điểm thứ n Ví dụ: Các báo cáo tài mà ta thấy ngày báo chí, tivi hay Internet số chứng khoán, tỷ giá tiền tệ, số tăng cường hay số tiêu dùng thể thực tế chuỗi thời gian Bước việc phân tích chuỗi thời gian chọn mơ hình tốn học phù hợp với tập liệu cho trước X:={x1, x2,……… xn}nào Để nói chất quan sát chưa diễn ra, ta giả thiết quan sát xt giá trị thể biến ngẫu nhiên Xt với t T Ở T gọi tập số Khi ta coi tập liệu X:={x1, x2,……… xn} thể trình ngẫu nhiên Xt, t T Và vậy, ta định nghĩa q trình ngẫu nhiên sau Định nghĩa 1.1(Quá trình ngẫu nhiên) Một trình ngẫu nhiên họ biến ngẫu nhiên Xt, t T định nghĩa không gian xác suất( , , ) Chú ý: Trong việc phân tích chuỗi thời gian, tập số T tập thời điểm, ví dụ tập {1,2 } hay tập (- ,+ ) Tất nhiên có q trình ngẫu nhiên có T khơng phải tập R giới hạn luận văn ta xét cho trường hợp T R Và thường ta xem T tập số nguyên, ta sử dụng ký hiệu tập số Z thay T Một điểm ý luận văn dùng thuật ngữ chuỗi thời gian để đồng thời liệu q trình có liệu thể 1.2 Quá trình ngẫu nhiên dừng Định nghĩa 1.2 (Hàm tự hiệp phƣơng sai) Giả sử Xt, t Z q trình ngẫu nhiên có var(Xt)< với t Z Khi hàm tự hiệp phương sai Xt định nghĩa theo công thức sau: x(r,s): cov(Xr, Xs) E[(Xr EXr)(Xs EXs)],với r, s Z Định nghĩa 1.3 (Quá trình dừng) Chuỗi thời gian Xt, t Z gọi dừng thoả mãn điều kiện sau: - E Xt , t Z - EX t m, t Z - x (r,s) x (r t,s t), t,r,s Z Định lý 1.1 Nếu Xt, t Z trình dừng, at điều kiện hệ thức Yt : R, i Z thoả mãn aiXt-i ,t Z định nghĩa dừng i i Chú ý: Cũng có tài liệu gọi “dừng” theo nghĩa dừng yếu, đừng theo nghĩa rộng hay dừng bậc hai Tuy nhiên ta xem xét tính dừng theo nghĩa định nghĩa Khi chuỗi thời gian Xt, t Z yx dừng (r,s) x(r s,0), r,s Z, Và vậy, với q trình dừng định nghĩa lại hàm tự hiệp phương sai cách thơng qua hàm biến Khi đó, với q trình dừng Xt, t Z ta có: yx(h) x(h,0) Cov(Xt h,Xt), t,h Z Hàm số yx (.) gọi hàm tự hiệp phương sai Xt, x(h)là giá trị “trễ” h Đối với q trình dừng ta thường ký hiệu hàm tự hiệp phương sai (.) thay x(.) Với trình dừng hàm hiệp phương sai có tính chất (0) 0, (h) (0), h Z A4 → A3 A5 → A6 A9 → A8 A14 → A11 → A16 A10 A5,A8,A9,A11,A14 A6 → A17 → A21 → A19,A20,A21 A13,A16,A17 A11 → A10,A11,A12 A20 → A20,A21 A4,A6,A8,A10 → A16,A17,A18 Bảng Nhóm mối quan hệ mờ Bước 5: Lập mối quan hệ mờ thời điểm t Sau đó, tính nhóm quan hệ mờ heuristic có sử dụng tính chất hiệu số bậc hàm h xác định theo định nghĩa 5, vai trị biến x hiệu số bậc thời điểm t Như nhóm quan hệ mờ phụ thuộc vào thời điểm t chuỗi thời gian mờ Thí dụ nhóm quan hệ A10 → A5,A8,A9,A11,A14 thời điểm t1 hiệu số bậc âm thì: h10(∆t1, A5,A8,A9,A11,A14 ) = A5,A8,A9 Còn thời điểm t2 hiệu số bậc dương hàm heuristic cho giá trị h10(∆t1, A5,A8,A9,A11,A14 ) = A11,A14 Sử dụng hàm heuristic xác định nhóm mối quan hệ mờ heuristic cho thành phần chuỗi thời gian mờ Bước 6: Dự báo Sử dụng hàm heuristic để dự báo giá trị cho chuỗi thời gian Nguyên tắc dự báo sau: Giả sử thời điểm t, giá trị mờ thời điểm suy từ giá trị mờ thời điểm t-1 theo công thức F(t) = F(t-1) * R(t-1, t), hay viết Ai → Aj 70 Như theo phương pháp truyền thống, phải tính mối quan hệ R(t-1, t) Trong phương pháp heuristic, mối quan hệ sử dụng nhóm quan hệ mờ Trong phương pháp em đề xuất để dự báo giá trị mờ Aj, em sử dụng hàm heuristic cho nhóm quan hệ mờ Ai Như thời điểm t ta phải tính hàm h (theo định nghĩa 5) heuristic thời điểm t-1 tức mối quan hệ mờ Ai Nhóm quan hệ mờ nhóm mối quan hệ mờ heuristic thời điểm t tính tốn cụ thể theo bảng sau: Giá trị số bậc mờ Actual index Hiệu Hiệu Nhóm quan hệ mờ số bậc Nhóm quan hệ heuristic Điểm tính 7552 A21 7560 A21 7487 A20 -73 -81 A19,A20,A21 A19,A20 0.5,0.75 7462 A20 -25 48 A20,A21 A20 0.25 7515 A21 53 78 A20,A21 A20,A21 0.5,0.75 7365 A19 150 97 7360 A19 -5 -155 A18,A19 A18,A19 0.5,0.75 7330 A18 -30 -25 A18,A19 A18 0.75 7291 A17 -29 A16,A17.A18 A16,A17 0.5,0.75 7320 A18 29 58 A16,A17,A18 A18 0.75 7300 A18 -20 -49 A16,A17,A18 A16,A17,A18 0.25,0.5,0.75 7219 A16 -81 -61 A16,A17,A18 A16 0.75 7220 A16 82 A13,A16,A17 A16,A17 0.5,0.75 7283 A17 63 62 A13,A16,A17 A17 0.75 7274 A17 -9 -72 A16,A17,A18 A16,A17 0.5,0.75 7225 A16 -49 -40 A16,A17,A18 A16 0.75 6955 A13 -270 -221 A13,A16,A17 A13 0.75 A19,A20,A21 A19,A20,A21 0.25,0.5,0.75 71 6949 A12 -6 264 A12 A12 0.25 6790 A8 -159 -153 A8,A10 A8 0.75 6835 A10 45 204 A6,A7,A10 A10 0.75 6695 A5 -140 -185 A5,A8,A9,A11,A14 A5 0.75 6728 A6 33 173 A6 A6 0.75 6566 A4 -162 -195 A4,A6,A8,A10 A4 0.75 6409 A3 -157 A3 A3 0.25 6430 A3 21 178 A1,A3,A5 A3,A5 0.5,0.75 6200 A1 -230 -251 A1,A3,A5 A1 0.75 6403.2 A3 203.2 433.2 A3 A3 0.75 6697.5 A5 294.3 91.1 A1,A3,A5 A5 0.75 6722.3 A6 24.8 269.5 A6 A6 0.25 6859.4 A10 137.1 112.3 A4,A6,A8,A10 A10 0.75 6769.6 A8 A5,A8,A9,A11,A14 226.9 A5,A8 0.5,0.75 6709.75 A6 A6 0.25 6726.5 A6 16.75 76.6 A4,A6,A8,A10 6774.55 A8 48.05 31.3 A4,A6,A8,A10 A8,A10 0.5,0.75 6762 A7 -12.55 -60.6 A6,A7,A10 A6,A7 0.5,0.75 6952.75 A13 190.75 203.3 A13 A13 0.75 A12 A12 0.75 A8,A10 A8,A10 0.5,0.75 261 A5,A8,A9,A11,A14 A14 0.75 A11 0.75 -89.8 -59.85 29.95 A6,A7,A10 237.5 -64 17.25 6906 A12 -46.75 6842 A10 7039 A14 197 6861 A11 -178 -375 A11 72 A6,A8,A10 0.25,0.5,0.75 6926 A12 65 243 A10,A11,A12 A12 0.75 6852 A10 -74 -139 A8,A10 A8,A10 0.5,0.75 6890 A11 38 112 A5,A8,A9,A11,A14 A11,A14 0.5,0.75 6871 A11 -19 -57 A10,A11,A12 A10,A11 0.5,0.75 6840 A10 -31 -12 A10,A11,A12 A10 0.75 6806 A9 -34 -3 A5,A8,A9,A11,A14 6787 A8 -19 15 A8 A5,A8,A9 0.25,0.5,0.75 A8 0.25 Bảng Nhóm quan hệ mờ nhóm quan hệ mờ heuristic điểm tính để dự báo Các qui tắc dự báo Qui tắc 1: Nếu quan hệ mờ heuristic Ai rỗng Ai → giá trị dự báo F(t) mi giá trị điểm ui Qui tắc 2: Nếu quan hệ mờ heuristic Ai một, nghĩa Ai → Ak giá trị dự báo F(t) điểm giữa, điểm điểm đoạn uk tuỳ thuộc theo tính chất hiệu số bậc bậc chuỗi thời gian thời điểm t (xem bảng 6, lấy giá trị cuối bên phải) Qui tắc 3: Nếu quan hệ mờ heuristic Ai nhiều ta xác định theo giá trị khác khoảng ui dựa vào thông tin chuỗi thời gian sau: Đối với thời điểm t, ta cần giá trị chuỗi thời gian f(t-2), f(t-1), f(t) Tại thời điểm t, ta cần xác định hiệu số bậc ∆ = f(t) – f(t-1) hiệu số bậc hai ∆2 = (f(t) – f(t-1)) – (f(t-1)- f(t-2)) giá trị chuỗi thời gian dựa vào cách xác định hàm h(∆, Ap1, Ap2, …, Apm) để xác định mối quan hệ mờ heuristic thời điểm t theo giá trị dương hay âm ∆ Trong luận văn em sử dụng hiệu số bậc để xác định thêm tính chất chuỗi thời gian Tuỳ theo tính chất tăng, giảm chuỗi thời gian thời điểm t để xác định giá trị dự báo khoảng mối quan hệ mờ Một khoảng u i ta xác định giá trị khoảng (0.5), 34 khoảng (0.75) 14 khoảng (0.25) Các giá trị xác định 73 tương ứng với giá trị mờ hoá Ai tương ứng với khoảng ui ta quan tâm đến giá trị mờ hoá gần với Aj Các giá trị khác lấy điểm gần Do vậy, ta có qui luật lấy giá trị khoảng tương ứng sau: Tính chất chuỗi Hiệu bậc Hiệu bậc Các điểm lấy giá trị Giảm từ từ ∆ 0.75, …, 0.75, 0.5, 0.25 Giảm nhanh ∆0 ∆2 > 0.25, …, 0.25, 0.5, 0.75 Tăng từ từ ∆>0 ∆2 < 0.75, …, 0.75, 0.5, 0.25 Bảng Các điểm lấy giá trị dự báo khoảng Giá trị dự báo chuỗi thời gian thời điểm t giá trị trung bình giá trị dựa vào bảng Dựa vào bảng 6, ta dự báo chuỗi thời gian thời điểm t Em đưa trường hợp làm thí dụ Ngày 10/9 ngày 11/9 có giá trị tương ứng bảng 6709,7 6726,5 Còn bảng hai hàng bôi đen Giá trị mờ chuỗi thời gian tương ứng – 59.85 16.75 tức giá trị âm giá trị dương Mối quan hệ ngày 10/9 A8 → A6 Như để dự báo ta cần nhóm quan hệ A8 → A6,A7,A10 Để tính quan hệ mờ heuristic, ta sử dụng hàm heuristic h6(∆,A6,A7,A10) = A6 ∆ âm nên lấy số ≤ Như giá trị dự báo rơi vào giá trị mờ A6 tương ứng với khoảng u6 = [6700-6730] Giá trị hiệu số bậc hai dương, để xem lấy điểm khoảng dự báo ta lại xem bảng 6: ∆ < 0, ∆2 > nên theo bảng giá trị lấy điểm khoảng (0.25) Điểm tương ứng với giá trị xấp xỉ 6708 Như ta dự báo xong thời điểm ngày 10/9 74 Tính tiếp dự báo cho ngày 11/9 Dự báo theo quan hệ F(10/9) → F(11/9) hay A6 →A6 Nhóm quan hệ mờ A6 → A4,A6,A8,A10 Xác định nhóm quan hệ mờ heuristic sử dụng hàm heuristic với hiệu số bậc thời điểm có giá trị 16.75 tức giá trị dương, ta thu sau: h6(∆, A4,A6,A8,A10) = A6,A8,A10 ∆ dương nên lấy số ≥ Như giá trị dự báo lấy trung bình khoảng u6,u8,u10 Điểm lấy giá trị tơng ứng khoảng lại xét dấu hiệu số bậc hiệu số bậc thời điểm Tính tốn cho thấy hai dương nên tính chất chuỗi số liệu tăng nhanh nên điểm tính tương ứng 0.25, 0.5, 0.75 ba khoảng dự báo giá trị trung bình giá trị Điểm 0.25 khoảng u6 6708 Điểm 0.5 u8 có giá trị 6785, cịn điểm 0.75 khoảng u10 có giá trị 6852 Như giá trị dự báo f(11/9) là: f(11/9) = (6708 +6785+6852)/3 = 6781.7 ≈ 6782 Lập bảng ta dễ dàng tính giá trị dự báo * Kết tính tốn Em sử dụng thuật tốn để tính tốn số thị trường chứng khoán Đài Loan TAIFEX theo số liệu đưa Kết tính tốn so sánh với kết thuật toán Chen thuật toán heuristic hai tham số ba tham số Huarng Kết cho bảng sau: Ngày tháng 03/08/1998 Actual index 5552 04/08/1998 Chen Huarng1 Huarng2 Dự báo 7450 7450 7450 7550 7560 7450 7450 7450 7550 05/08/1998 7487 7450 7450 7450 7425 06/08/1998 7462 7500 7450 7500 7425 75 07/08/1998 7515 7500 7500 7500 7512.5 10/08/1998 7365 7450 7450 7450 7464 11/08/1998 7360 7300 7350 7300 7355 12/08/1998 7330 7300 7300 7300 7334 13/08/1998 7291 7300 7350 7300 7255 14/08/1998 7320 7183.33 7100 7188.33 7334 15/08/1998 7300 7300 7350 7300 7275 17/08/1998 7219 7300 7300 7300 7234 18/08/1998 7220 7183.33 7100 7100 7255 19/08/1998 7283 7183.33 7300 7300 7284 20/08/1998 7274 7183.33 7100 7188.33 7255 21/08/1998 7225 7183.33 7100 7100 7234 24/08/1998 6955 7183.33 7100 7100 6984 25/08/1998 6949 6850 6850 6850 6916 26/08/1998 6790 6850 6850 6850 6790 27/08/1998 6835 6775 6650 6775 6850 28/08/1998 6695 6850 6750 6750 6675 29/08/1998 6728 6750 6750 6750 6720 30/08/1998 6566 6775 6650 6650 6575 01/09/1998 6409 6450 6450 6450 6425 02/09/1998 6430 6450 6550 6550 6562.5 03/09/1998 6193 6450 6350 6350 6275 04/09/1998 6403.2 6450 6450 6450 6475 05/09/1998 6697.5 6450 6550 6550 6675 07/09/1998 6722.3 6750 6750 6750 6710 08/09/1998 6859.4 6775 6850 6850 6850 09/09/1998 6769.6 6850 6750 6750 6720 76 10/09/1998 6709.75 6775 6650 6650 6708 11/09/1998 6726.5 6775 6850 6775 6782 14/09/1998 6774.55 6775 6850 6775 6818 15/09/1998 6762 6775 6650 6775 6734 16/09/1998 6952.75 6775 6850 6850 6984 17/09/1998 6906 6850 6950 6850 6934 18/09/1998 6842 6850 6850 6850 6816 19/09/1998 7039 6850 6950 6950 7075 21/09/1998 6861 6850 6850 6850 6886 22/09/1998 6926 6850 6950 6850 6934 23/09/1998 6852 6850 6850 6850 6816 24/09/1998 6890 6850 6950 6850 6978 25/09/1998 6871 6850 6850 6850 6866 28/09/1998 6840 6850 6750 6750 6850 29/09/1998 6806 6850 6750 6850 6743 30/09/1998 6787 6850 6750 6750 6780 9737 7905 5437 1700 MSE Bảng Kết tính tốn Cột cuối để tính sai số trung bình bình phương MSE theo cơng thức: n ( fi MSE gi ) i n Trong fi giá trị thực cịn gi giá trị dự báo Ta thấy rõ độ xác phương pháo ⅓ phương pháp tốt Huarng * Sau số đồ thị so sánh kết với 77 Hình 3.1: Đồ thị kết dự báo so sánh với thuật toán tham số Huarng Hình3 2: So sánh vớikết thuật tốn tham số Huarng 78 Hình 3.3: So sánh kết với thuật tốn Chen 3.2 Xây dựng chƣơng trình Chương trình chuỗi thời gian mờ dự báo tỷ giá chứng khốn Đài Loan Chương trình có tính năng: cập nhật số liệu, mở file liệu cần tính tốn, mờ hóa, tạo nhóm, Heuristic, dự báo, đồ thị Hình Bảng giá trị thực 79 • Thực lệnh mờ hóa cho ta cột kết mờ Hình Kết mờ • Thực lệnh tạo nhóm tạo cho ta nhóm giá trị 80 Hình Tạo nhóm • Thực lệnh Heuristic cho ta Bảng hỗ trợ Hình Bảng hỗ trợ 81 • Thực lệnh dự báo cho ta cột dự báo Hình Dự báo • Thực lệnh đồ thị cho ta đồ thị so sánh giá trị thực giá trị dự báo Hình Đồ thị 82 KẾT LUẬN Luận văn chủ yếu giới thiệu khái niệm chuỗi thời gian mơ hình xử lý chuỗi thời gian Phương pháp chủ yếu để dự báo chỗi thời gian Box Jenkins xây dựng từ năm 70 kỷ trước Đó mơ hình ARMA Tuy nhiên mơ hình ARMA thích ứng hầu hết cho chuỗi thời gian dừng tuyến tính, chuỗi thời gian có biến thiên nhanh chuỗi số liệu lịch sử ngắn cho kết chưa xác Chuỗi thời gian kinh tế đặc điểm phát triển kinh tế phụ thuộc nhiều vào yếu tố khác nên có nhiều biến thiên mang tính phi tuyến Chính mơ hình ARMA xử lý tốt lĩnh vực kinh tế Do em sử dụng phương pháp xây dựng mơ hình chuỗi thời gian mờ Song Chilsom phát triển để giải vấn đề Trong luận văn em trình bày số mơ hình hay sử dụng chuỗi thời gian mờ Đó thuật tốn Chen, Huarng, Singh số tác giả khác Một số cải tiến thuật toán đưa Chương III Luận văn Cuối em xây dựng phần mềm tính tốn sở sử dụng thuật toán Chen dự báo số chứng khốn Đài Loan Kết tính tốn cho thấy mức độ phù hợp dự báo so với số liệu thực tế Chính vậy, mơ hình chuỗi thời gian mờ nhiều tác giả nghiên cứu có nhiều triển vọng ứng dụng xử lý số liệu kinh tế TÀI LIỆU THAM KHẢO [1] Bùi Công Cường, N.D Phước, Hệ mờ, Mạng Nơron ứng dụng (Tuyển tập giảng, NXB Khoa học Kỹ thuật, 2001 83 [2] Nguyễn Cơng Điều, “Một thuật tốn cho mơ hình chuỗi thời gian mờ heuristic dự báo số chứng khoán”, Báo cáo Đại hội Tốn học tồn quốc, Quy Nhơn, 2008 [3] T J Ross, “Fuzzy Logic with engineering”, MacGraw Hill (1996) [4] W Ender, “Applied Econometrics Time Series”, Wiley & Son, (1995) [5] R S Tsay, Analysis of finacial Time Series”, Wiley & Son, (2005) [6] Q Song, B.S Chissom, “Fuzzy Time Series and its Model”, Fuzzy set and system, vol 54, pp 269-277, 1993 [7] Q Song, B.S Chissom, “Forecasting Enrollments with Fuzzy Time Series – Part I,” Fuzzy set and system, vol 54, pp 1-9, 1993 – Part II,” Fuzzy set and system, vol 62, pp 1-8, 1994 [8] S.M Chen, “Forecasting Enrollments based on Fuzzy Time Series,” Fuzzy set and system, vol 81, pp 311-319, 1996 [9] S M Chen, C.C Hsu, “A New Methods to Forecast Enrollments Using Fuzzy Time Series”, Inter Journal of Applied Science and Engineering, V.2,N.3, pp 234-244, 2004 [10] K.Huarng, “Heuristic models of fuzzy time series forecasting”, Fuzzy sets and Systems, V.123, pp 369-386, 2001 [11] M Sah, K.Y Degtiarev, “Forecasting Enrollment Model Based on First Order Fuzzy Time Series”, Transactions on Engineering, Computing and technology Enfomatika, v.IV,pp 375-378, 2004 [12] S.R Singh, “A computational method of forecasting based on high-order fuzzy time series”, Expert Systems with Applications, 36 (2009) pp.10551–10559 84 ... 39 Một số khái niệm 39 1.1 Định nghĩa tập mờ chuỗi thời gian mờ 39 1.2 Một số định nghĩa liên quan đến chuỗi thời gian mờ 40 Mô hình số thuật tốn dự báo mơ hình chuỗi thời gian. .. : Hình 2.6 Minh hoạ phương pháp giải mờ 43 44 45 CHƢƠNG MỘT SỐ THUẬT TOÁN CƠ BẢN TRONG CHUỖI THỜI GIAN MỜ VÀ MỘT SỐ THUẬT TOÁN CẢI TIẾN Một số khái niệm 1.1 Định nghĩa tập mờ chuỗi thời gian mờ. .. khác mơ hình chuỗi thời gian mờ để dự báo cho số chuỗi số kinh tế xã hội, trình bày chương: Chương 1: trình bày kiến thức chuỗi thời gian Chương 2: trình bày Lý thuyết tập mờ chuỗi thời gian mờ Chương