1. Trang chủ
  2. » Đề thi

ĐỀ THI TOÁN VÀO LỚP 10 CHUYÊN TPHCM 2010-2011

1 1,3K 4

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 320,55 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ HỒ CHÍ MINH KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG CHUYÊN NĂM HỌC 2010-2011 ĐỀ CHÌNH THỨC KHÓA NGÀY 21/06/2010 Môn thi: TOÁN ( chuyên) Thời gian làm bài : 150 phút (không kể thời gian giao đề) Câu 1: (4 điểm) 1) Giải hệ phương trình        1 + y = 1 x +1 2 + 5y = 3 x +1 2) Giải phương trình :   2 2 2 2x - x + 2x - x-12 = 0 Câu 2: ( 3 điểm) Cho phương trình x 2 – 2 ( 2m + 1) x + 4 m 2 + 4 m – 3 = 0 ( x là ẩn số ) Tìm m để phương trình có hai nghiệm phân biệt   1 2 1 2 , x x x x  thỏa 2 1 2 x = x Câu 3: (2 điểm ) Thu gọn biểu thức: A= 7 + 5 + 7 - 5 - 3- 2 2 7 + 2 11 Câu 4: ( 4 điểm ) Cho tam giác ABC cân tại A nội tiếp đường tròn (O).Gọi P là điểm chính giữa của cung nhỏ AC.Hai đường thẳng AP và BC cắt nhau tại M.Chứng minh rằng : a)   ABP = AMB b)MA.MP =BA.BM Câu 5 : ( 3 điểm ) a) Cho phương trình 2 2x + mx+ 2n+ 8 = 0 ( x là ẩn số và m, n là các số nguyên).Giả sử phương trình có các nghiệm đều là số nguyên. Chứng minh rằng 2 2 m + n là hợp số b) Cho hai số dương a,b thỏa 100 100 101 101 102 102 a + b = a + b = a + b .Tính P= 2010 2010 a + b Câu 6 : ( 2 điểm ) Cho tam giác OAB vuông cân tại O với OA=OB =2a.Gọi (O) là đường tròn tâm O bán kính a.Tìm điểm M thuộc (O) sao cho MA+2MB đạt giá trị nhỏ nhất Câu 7: ( 2 điểm) Cho a , b là các số dương thỏa  2 2 2 a + 2b 3c .Chứng minh  1 2 3 + a b c HẾT . KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG CHUYÊN NĂM HỌC 2 010- 2011 ĐỀ CHÌNH THỨC KHÓA NGÀY 21/06/2 010 Môn thi: TOÁN ( chuyên) Thời gian làm bài : 150 phút (không kể thời gian giao đề) . trình có các nghiệm đều là số nguyên. Chứng minh rằng 2 2 m + n là hợp số b) Cho hai số dương a,b thỏa 100 100 101 101 102 102 a + b = a + b = a + b .Tính P= 2 010 2 010 a + b Câu 6 :

Ngày đăng: 27/07/2015, 21:49

TỪ KHÓA LIÊN QUAN

w