>> http://tuyensinh247.com/ - Học là thích ngay! 1 SỞ GD & ĐÀO TẠO BẮC NINH ĐỀ THI THỬ THPT QUỐC GIA TRƯỜNG THPT GIA BÌNH SỐ 1 MÔN: TOÁN Thời gian làm bài 180 phút Câu 1 ( ID: 82450 ) (2 điểm) Cho hàm số 23 23 xxy 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2. Tìm tất cả các giá trị của tham số m để đường thẳng 2)2( xmy cắt đồ thị (C) tại 3 điểm phân biệt A(2;-2), B, D sao cho tích các hệ số góc của tiếp tuyến tại B và D với đồ thị (C) đạt giá trị nhỏ nhất. Câu 2 ( ID: 82451 ) (1 điểm). Giải phương trình: 2 cos . cos 1 2 1 sin sin cos xx x xx Câu 3 ( ID: 82452 ) ( 1 điểm). Giải phương trình 2 2 2 4 4 2 8log 9 3 2log ( 3) 10 log ( 3)x x x Câu 4 ( ID: 82453 )( 1 điểm). Tính tổng 0 1 2 2014 2014 2014 2014 2014 2 3 2015S C C C C Câu 5 ( ID: 82454 ) (1 điểm). Tính giới hạn sau lim log (1 sin3 ) cos2x 0 xx x Câu 6 ( ID: 82455 ) (1 điểm). Cho hình lăng trụ đứng ABC.A’B’C’ có 0 , 2 , 120AC a BC a ACB và đường thẳng 'AC tạo với mặt phẳng ''ABB A góc 0 30 . Tính thể tích khối lăng trụ đã cho và khoảng cách giữa hai đường thẳng ' , 'A B CC theo a. Câu 7 ( ID: 82456 )(1 điểm). Trong mặt phẳng Oxy, cho hình thoi ABCD có tâm 3;3I và 2AC BD . Điểm 4 2; 3 M thuộc đường thẳng AB , điểm 13 3; 3 N thuộc đường thẳng CD . Viết phương trình đường chéo BD biết đỉnh B cóhoành độ nhỏ hơn 3. Câu 8 ( ID: 82457 ) (1 điểm). Trong mặt phẳng Oxy, cho hình thang vuông ABCD vuông tại A và D có AB = AD < CD, điểm B(1;2), đường thẳng BD có phương trình y = 2; Biết rằng đường thẳng d: 7x – y – 25 = 0 lần lượt cắt các đoạn AD và CD theo thứ tự tại M và N sao cho BM vuông góc với BC và BN là tia phân giác của góc . Tìm tọa độ đỉnh D, biết hoành độ của D dương. Câu 9 ( ID: 82458 ) (1 điểm). Cho ba số thực dương a, b, c thoả mãn abc = 1. Chứng minh rằng: 2 2 2 1 ( 2)(2 1) ( 2)(2 1) ( 2)(2 1) 3 a b c ab ab bc bc ac ac . http://tuyensinh247.com/ - Học là thích ngay! 1 SỞ GD & ĐÀO TẠO BẮC NINH ĐỀ THI THỬ THPT QUỐC GIA TRƯỜNG THPT GIA BÌNH SỐ 1 MÔN: TOÁN Thời gian làm bài 18 0 phút Câu 1 ( ID: 82450 ) (2 điểm) Cho hàm số 23 23 . src=" 714 75UVlZmPgDA9BGJx+Mv/Snygz9zhX8qfhYAAMym48NIJOJqLgAA4MpTJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAgDIBAABQJgAAwMyXZATTUyQSMQQAAGbP8aEymabi8bghAADwSpbM7OPDSCTiai4AAODKUyYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAIAyAQAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAADKBAAAUCYAAABXQpIRTE+RSMQQAACYPceHymSaisfjhgDMcpPx8LFjI69+ZV1e0vaSn3HP9UTnxHc7J17vf/WOsuSH2ycGJv7jbXJmUuQ3K6MZid5XAn5eWTKzjw8jr17CGb+01jwAABwfTtsFdJ8JAABw5SkTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABAmQAAACgTAABgNkkygqvaJz/5yb1795oDAHBVWLdu3Yc//GFzQJnMQE899dRTTz21Zs2aSCQySxa5oaEhHo/PqkUGgBkgHo83NDSMj48rE5TJjLV+/fovfOELs+cw/d3vfnc8Hp9ViwwAM6NM3v3ud5sDymQmS0xMTEtLmz2H6YmJifF4fFYtMgDMjDJJTEw0B34Cd8ADAADKBAAAwNVcAG/QSNuLvYe+ds/TrYfODoQQFu34jTVr194wN7jekMshHkJz0759T/zDQy+G0BFCCGHx1Do2z3AAZQLAK/paWl888PhXHt/dFj87MJoV+ke+90R8LFp0y/Ly7EhOigHxRkzE46OdJ483HnzhRHNzYwidQxdHO082J8zrHIsWpa8ozwrZ1jF+2sQdG+wd6jzXl11emJ6dYcVBmQDMOE2PHni84T99bu4H/+GXPnRbbFk4/MXf/Mcjnzn8qYLPvHd5qI8ZEG/EcAjt++974cJ40dr77ntPCGknn2z7zv/3x/d/+utnmkYKP/PeZWGldYyfVveF06cf/fzBFe/dXLWyusQ8mJbcZwLwsxkJof3Qvu+3dPYsf/8vr1m6ZEnevLy8dTdvWbmwJuWRBx47fr6tN4S4OfEz6+0NLzw/sWhxxnU31OflzcnLK1m4dMHOX71pUfHcyfMPNxxu7e41JH5q8clLE6NDoxOXJm2XmLacM2GWGu083dHRfvzCUAjpmQXFpQsrC0LX6MWO08cvDIUwHkIIIW/+0uLi4jlZpsWPMjEYxk4fPtjc0pu/5v3XLyyPFIYQQsbidcuO9Rw69y//fmZLcduSkuxoCG444Wdcx+JhMF6wfFFhQflLN5Xklibn3Lqq5hun+nsfaWruHyoIIcecuMwFE4+PdTW2t7efaH3tLrKr/fSJVrtIlAlcfj3P3futBx74yD2nQqheuun2Oz9+9y3hufOPPfAXH7nnZAgXQwgh3PCfPn37W9/6nmWmxY8y0hPaDxxrTG2+VLoqFtJSX349Nz8rKdQe293ZvKWxJywsNil+VrmloX57fSQafvAJEKkhxPIKUvMKnS3h57mLPHDvtx944CP3vrSLfNfH774lHDj32AOf+Mi9p+wiUSZc8UOweLzvhW9++cCBI3vbQwgho3xx8bp37sw5NNhy5F8eORZCbXV9/ZZffUv5VfH23Wh76Hvh8bO57QVv++hHM0MYGBqJNn72nkfCI01nW/Zn3XDLziWLarKzQ1/vhRf7nkr4buy2Jdmh2N2C/PCvxWBoPXNuIKMrq7DsNWWSl56dOG/i6FB3X0dPCMqEn1liUiQx6bXbnrEQ+vr7xlIi2dcuX1yQk21IXO4tW1voO/L42dz2wpd3kaPR05+95+HwcNOZc/uzbthsF4ky4UqbDGG0v/V003NP7n2+6VRbSF2ybe2c29ZNNF48uvcrn99dUHFpLH/+hhAmroaFuTTQNXZ69+mJpUmL637rnQsjkRPHdj/7wF8/vq/5e8dDUbjmg5vetf62DQX58a49f//PRzsP7z59S2xBtDjFx9byWuPjobe7dzxlKJqVmxuir1yylZGRkpFYEFrHh0YGh4yJy2piIIw1tvZmxpMKtq6eH8szEX6s0f6OwQsvNveE3pEQQjyEi83HWk5dOJW4f1/X4IX8qW9KzQl5cxfFMoqyUl5exbrGGnefmliatKTut9+5MIQTR3c/+42//u6+5u8dDyURu0iUCdNAagil9XfePXfZupsf/q9//L9CV27lhvpYYWxp0kTiptqarX+wY80tiypDSL4aFmakZ7j9wLl5C25Or64MIYRQWTnn4gfe/vgHPxnaQummt++onZOSGxJCiNVvXR4/NdxwoHW4sDgUZFgPgCu+/QrtB46PrBjIrX7vylCWbCL8WD2ndx/+wm/8zZPh+81TZTI5MTYxOjyRvPvexOSkl0pi3jXh+g//47uX3La85DW7yIWbMl/eRVbN6frArvDrfxPa7SJRJkwPCZFIQmpWQXHt+ozo77+j/bPPnPjut/77/300I29ObP76379t+fqKeXkZqVfJwsQno5dGCwoKMjKKp/bqydHk5GhWiBevzc9evfOajDkFUxd1R1JLi7L6BwuOXop6kAk/vb7e4b7eCyHkGgWXW2/bxZZH92Qt3FFctboiNaSbCD9eZqyuausf3LUo3Ng3VSb9Hc0dL+4+V75hUdHcopduXM8pC/Oqaksy/89dZFbRD3aRyVkhXnxNfvYau0iUCdNING9ucu4vbt7cMD7w5d1f+euGsGPNrvl/8v/Wx0KYXu+WDLZ1dnYdP9fzg1dy5hQUFNaUpEcikRASQ0hLTk6Mvvx249jYyODFtrHEBTkF1UsqXr5VJhJCRmZKRigIwQW0/KhgTwypaakJ/cmXRoeHw6WU8NJtykNDY0NjXSEzNzkp6i1tLpN4PD7e09zecu5AY0rptqr5yyqlLz9ZRklNZUlN5ctrUAitxxtOfGvgwKq7dixcvfDHfxBOYghp0eTE5Fd2kaMjAxfbxxIX2kWiTJiOKm953w3xzJ4X/uRLIT+tND8WQtp0+yc2PrrnwQc/9HdP/eCVa39rx623/v+/tCSEEMJwCC3dPcNj3S/dndx9se3Ivke7XxiPJ9W1hlDkMZz8NNLSQqy8NK1haKTrQlsYLgrhB287ZoZQm5+ble/gkcune/99p8+NNKz92B2VOSutWvy8DIfQcrFnePzlB3h0d7e9sO/RnsMT8WS7SJQJ08tICP2nvnegpWUy7z3/z7VPn+g9853/8bd5d22tW7OwaBo9I6Zo6cKN0Q8nrvrBK/PW1dQWTf0xmhUtqMtvOdOZPHIubCoL5/aeeu7pv/3uYCRjNCG5+x++fPQ/ry+LlWfH4+H8noPn2sZD3dKQFfWz54el5oTYsgVzvzfSd+HchTCc9VKZ9LU0tXb3N81fu31O/nyHj1wWfc3h3J7vtee2pZbvqC+pLAhp7jfm5yMlK1pQl3+uqSM6ci7cXBbO7zn53NN/993BhMzRuF0kyoRpIx7C+EhfR0/LkSPPnuhIyo7d9Qux8Y/tf/rQZ/4pWpL7joyc9HXF0+aSrpIVtSUraq/70V+MZmdHFy9J+XbXxSPP7ss+Fzn+wNP7Dj7cvWzX5gVppZOPf+fh/ZdqkqsK4/F4676WgbT8km15KZ7MyY9ak0J08eK6jJ7GwWeOtHbF8sYKE5LD0LkjR5vP942v2VVWXlieaUy8wU1vPAx1XDx37OT+hmORbflzlm2pCiGESyOD4z0dgxlFiakZuS4a5HJu2LLzFi1+aReZdS4cf+DpfYce6Vm2a8uClJJLTzxiF4kyYbroOX/42Sf+52eGdv5a+fqNN5ZmhV95V1H2N87+zmcf/FrBxcScde9acnUsR2ppiG2/Y8mXHvr 21+ +8c18Y60+eu7rmvX+1a/u86tG9G+79z1/+y5T/2Z4YQlj77o9t3rbjF2Ih3duT/Kg1KYRY/bq1TWNNj331W9tqb1xSlVkUjjz7+IvNZ3M3vW97zZwMp0y4DJoe3f1cy+80rP3YL1TuePkqruHzpzqeuO+FpXdmVCy7qciMuHzSykJs+x1Lv/Tgt792x50NYawved7aml/567dtn1c9vHvDvb//FbtIlAlX2mg83nfsO/c98Y3vfGnP/jBvxw3zRm+vze/vON9z4fTR0YtNDd8YmRz8w54dt2+pXVZdmDXNlyYhOSTk5FetWbMp89fT60MIacVVectWrqrOKBybyNz1u8krQ0tvCCFUbFhTV5Wf4/1IfsyaFEJC+oKblvbt++CZpw5+7dDhBycyQttASn3Rlg23rsupLojYwvKGtrwdp/qPPfyNhx79+oGOxgulX+5+4nDspVPTY6ORwb6kayojq9PMiZ9SVuGcio270mJzCjJ/4i4ykvzKLnLV1C4yf2oXOTqWuet3o/V2kSgTrrCJEIY7Thw 919 zcVVQUhsb6u/tCKB3t6BubSIisXFkZRkL3qYf3nlmxem5Ndci6KpYptrIutvIPb/ihV+syt/1htR84r2dFWrh07Hd6nv6vDzz31LGeEMI17/+1JZu3bKsOkYjp8Ma2vENdQ2f2NpzqPtM6sDJy4szzJ848//LXcmvD/NtvTM92xSA/nUgImfmlmfml836K742EWP2iWP2iH95FLsosXWQXiTLhiksLIVZ/x90Ldwy9ezyE9PzMzMwQQl79HdsW7lj97vEQQkhMCcnZRYUZWabFLJMaWxrb/rG7rx0fHL0UQkjPL 810 sMhl2fKWLo3t+LO73zI+NHrph79mkwsoE2arhEgkmllYnlkYXv0E9KTMwrzMwryY+TC7fz2i6dHovDl5JsHPZdUqt2oBs2e7ZwQAAIAyAQAAUCYAAMA04D6Tq15fX9+LL74YmTWPAerr64vH47NqkQFgBojH4 319 fTk5OUaBMpmx9u7de+edd86e5T179mwIYVYtMgDMmJ34li1bzAFlMmOVlpbedttts2d577///hDCrFpkAJhJO3FQJjPW0qVL//zP/3z2XNp04sSJeDw+qxYZAGaAeDx+/Phxc+AncAc8AACgTAAAAFzNxWUQj4exgcGh0faekFuclZ6RkmImAAC8Ts6ZcDk0fWf3PZ+6885P3bPndJNpAADw+jlnwuUw1HGx8/z3mzNvH5pwWzqzzVj32cHGp7/7Qndj+3AIYd41O2tqa5cXBc9o4DKKx+ODjU8fP378uy90hxBy5tTMX3fb8qJQkmk2gDKBV0tITMjJjC4sz89MyzWNaW0yHr80MjgeD5FoZlqC06aXoUsG+s4cPPqNf/jcY 217 Tvclh7H6u/K2TBTOXZ+fGY1EEw2Iy+HSWBgbaN774CPfeuS//3tbNIzPWXrzqvH66Pr8jPnpmVEbNBs0UCbwitz8rLLhmrmlc9NTlcn0NhzCxQOPHhuOpNe+dWN+COlG8gY1PXbg8b1/+Lm 51/ 72+9+2Lm9hOPHkP3678TOnP5XyZ7fXhEWFBsTl0H0qHH/gM1/vOx523n3f5oXhRP++g09+4o7HfvPPerbe/NYaGzQbNFAm8IpoSkZOTsXcWG56atQ0prXJEEa627oGI2MjIUyaxxsyFsJQ0/PPnG5qHVu2c8U1GzdfmzMnLEh4+ui/v3D+6488tyinYl5hXnoIruriDYiHMNTddqLpka93puwoWnLz9ms3zAkVvfHJxO8++q1TJ0afr7qhpiI9hFm57bVBg5nGmU9+0kY/Hp8Y7e/u7Wid0t7Z3TU4MToxOTkxOjHY1d3Z3tre2do1ODiRmJ6VU1dVmpWRZmrMmt+P4TBx7rmGw+d6R6/70B0rF8wrDzmRsHjj1nV1y/MbHnz4VEtr16UQ4ibFGwuTS12tLacefrAhf3nduq0bF4dITiift2DlHR+6brT33OGG585NhGFH5cCM4JwJP8FICBf33/fJxx/f++3mEELIWbBu7vYP/+r6/Lr40Yt7Pv3Jb7fs7SgKc7d/+JcXrllU+oG5WaX5Tpkwe34/esLF/ccbU5tHyxbEQlrqy6/nFmQlhZrjuzub39LYE+bmmxRvTE9jV3Pn7uM1C5OyCl65XjY1LcTmlF08eWYwc39ryMwPOa5kAq5+zpnwk1ePaFbxvLyc1KzOJ493DpwZzagsiGZEExKi0eSC/PhIYuql5PLKguy80tzc4prytKx0N/wye8pkILSePHsxvWOyuOw1ZZKXkZFQ2Xeov7O3tceYeONl0trb2X+orzIhIyPvNWVSVjzZkX7x7MnWMDBiTMBM4JwJP0FqJJK69PbfLiwvrU566uODtxSt2Ppb1xdHE0JivDzl2l+89sSL9Ym563/tpuIQPLhyeorH45dG+0dHx4bHp14YiMe7+wb6hyLx7s7O5BBeOp5JToumpGSn2iC8HqMjoaO1fTS9Ny+vpDikvnI3SU5OWk5SWWgc7Rvs6TMm3rC+nsG+0cZQlpSTlpPzyuY5NaSU5KX2pve0t3aEkTk2aDZooEyYHfLKKlbe9t7Ff9vWsW/vt1rXX5MfyofOh5PfOJ6wdDK/8m2z9M7Lq0bjo3/55BNPfnH/1N8uhTDWda7/UiQx68FPRUN46STX6rtuuP76/7JzoXEBNmiAMmH6SsktL1z29lWxf9p94dn7HjqUu2le6uTQ0LNn08o2pFeXuLZ5uv/4smP5pdXV1VN/Gw9hKHmsayKSXFg9Ny2E5KmXS/NLslPM6vIYGhobGro4608kDnWc7nzx0efOhdb+H79yFszNrdm4Zm7anFzvb7xOY2NhqGdgfGxglq1pNmigTJj1UktCSvGatf9y5t9f+PinH1w/99b03Evth1IWrssrXZZjPNNZJBKZd/0H 510 fdr30Qn883vrQP+0fjGSt+vUdMZfhvUEJCQnhUiQ+eelSiCe+/Hjgvt7hvr7zIXFeJDKbPwa+79zBY/f/wd8/HvY0/djvyV+6qfqumj/eUqxM/oNf40hIDJfik/HJyZfvDx0dDR3t3aPjF0NCdsIsmoQNGigTCCGEyjU3LmsZqXnoc8eeHB+oXTlWftv29LJKc2HWSksPsfLStCPDI10X2sJw3qs/5i0zhJqC3Fc9SWn2yatcv/ID9/7p20P30I/9nmh2YXpZbGGRt7d/otyCrNy0mvDiRM9Qd08Ir3naW1l6Wml5LKR7YDugTJg9IiFkz19XVXv2xuKvNu/f3T5etHD9rsysnGyjYdZKzQqxusqSZ4eG2s5fCMNpL5XJUGdb98BYW3F9QUnunFlcJik5saKcbUXWk8tQJnNyS3Lqi0/FhwdeKZPxocGh5sbO5OJ4YWVdLGSlGhMwE3hqMD9lmkRC7oo5NSvfujlloLG5+eiFeStL0nPtDJnNZZIbSlbWVo3PzW872zI+ODw5GSbjYeLiqeMt7RfPLNpQNLegItcnwPMGt70h5FYUzC3asOjM5Hh/R9fEZIjHw6Whi50t+/aeTS8cr6pdWRJsjAFlwtV2XbEAACAASURBVKyTW1W38gN3v+X2925Zu25HLJTaFzK70ySEWP26tXPmFD721YeOn7vQE3pCeO7ZJ46cPRnftGtHzZzSXEPicmx6S+fU7Ni1qfPcuX17D7SGMBKazp859M3PHy8sWbB2XX0sBBtjYGZwNRevQ2JCWmpyrHJ1TTS7sjLDPK7SX/msOQvnj0bSsvz+X4ZhJhUvvq6m/7lVxx8//PiZ7qOR3HD2aG9RdOGKX7yhcmFxxPEib1gkhNTM4oUZN/zi0p6zx0899G+ffzE3nOlvajsd27l81crVi4szZvXvoA0aKBNmo3gI8aELF88//FzGmjU5CytM5OqUFomkrbw5ZhCXTcVNKybCf+v4+u99/n/91fNdIYSb/+Df3v6Od75vRYi4jovLJbcyrKj45Qt/cv9Xvvx7HzgRQqi69h03/8EXb14RVpXaoNmggTJhNmq6MNz3zXNrr9mYV+siFXhZamxpbPvH7l4y8P7esRBCUc3asjJT4fLLq79jW8l1c3YOhBAyCuYU1YQKj20HlAmzRzweHzl/8Gxz87On+0IY6Z/IHq5bVVSUF3ORCryyGc0sysws2lBtEvwcRSKR1Nji6tji6lWGASgTZque5778yJe//LufPx7CLW955zv/8L6VeYYCAIAy4U2Wu+qObcXX3nfrQAjFheXldSG4fAAAAGXCmyoSiaSVLl1YunThWsMAAODnyOeZAAAAV55zJle9PXv2vOtd75pVyxuPx2fVIgPAjNmJb9iwwRxQJjPW5OTk6Ojo7FneS5cuhRBm1SIDwIw5aDEElMlMtn79+i9+8YuRWfOhbnfddVc8Hp9ViwwAM0A8Hr/rrrvMAWUykyUkJESj0dlzmJ6QkBCPx2fVIgPAzCiThAR3OKNMAC6/kRD6zjScOH/hYmcIIYT0/NLCBavn50RyfRQpACgTgDdLdwgHH/2r//bV+5/59xBCCBUbd930 +19 4/4qwutRwAECZALwZeluPNB38akN049tv3/RL7wih9+D9R8+eevR/vC/zPR/qu/6aG+cF1xsCV8JwPN578PEzo5HU+TeuyAnBSVyUCcCM1tfa33bxxeasmm23LFxdUx1C977xh7/2pSf+/nO7l7wlu7zuxnlZIUgT4M03EUJ/y/GmwUhW/o0rMsyDq4r7kABev8bGkBjCh36torq6MoQQQu7KbSuv2/YrNWGgrenQyUYTAoDXyzkTgNdvzuLi4rApPa0sLZIYQgghklyYkVM4f16Ipk5e8sB+YHqLx+O9h772bMOz9+5uC6Fk7tLVG9/1tmXh0MVDDV+7d3dbCIMhhBAWbf/gmjVrrp9nYCgTppGJeHys89Sx9rbO80MhhJCcVZhRVltdGM2O9 411 nTx2fqhzJDVklNVWF5bkp6cYGDNe4bycEHJe81JiJJKYFA0FuZn52VkmBEzjvfpgGO08fvTYgedfbGrqC+HiYFJq4jO18fCds99/5l+/dDizujA1P5oSxi41HEhLya0oXFAYDemOGVEmTA/DIbQfuO8TX//6Y/eeCiGEvKWbFrzrLz6yubg+frj9Ox//xD0nHzs/Jyx41yc+svmt11eXGBizUc/IcM+F5lCzoqJ6QYVxANN4r34htD/68Ll5YzXX3vtfFoXw4qE9R+77639qD4+eGk89UfPeP//I5tuvKy6Ktz/xl/e1PNH+0KI/2lwcqjMNDmXCtJASQkHtLe+5JTE7PPjPD4etxStu/uDGgqqClJQwp2DjrlVHDmYvLJy3c+OqqgLvFTNL9Z652HNp36V3rp5fsbrCphV4k8Tj8ZanPv3s/v0PH 516 YTyEoTNHOiZCtPDAN9JDSJ56uW7rqlWrP3Dd3BDCSO9g78GmgrlbUsvrCgoKQqhbXDl4x3XPfvrhoZZQtv72nUtr5s0vSE+L56y5cUH0XPzp59sHr8kOmZ7yhTJhWohGItH563ZmZiaUTjx+5sSi9JKqtQty8qMheikzec6CecsKilOKt+5anh9CmmkxK/U3n+ruGeuru6Oqam5NkXkAb56R7paOs0ePvlQmE/H42MXWgUshsS9hKBrC1L1wIWNVSdXIS+0yNNl3drR0fX7WwqmtVVFxXmHR6vB334tNROu2bl5eWRLSQwghef6q6otZg6N7+yaXppszyoTpJbds/sqd 713 8Ry829e59qG3LLcWhauB8OPTN4wk3h/zKEs96YxZrajje3zOx4UPbqypTco0DeBNV3PJ777ruQ7ePTf1tIB5vf+xfDw1FMpf98qbiEF56cHA0IzX1lftA00Ioz8tJy3zt3XKh7May4tW3rQxlrxwe5ual5SSXe9sRZcI0lJhRljB/59olBwdPPvuFzz5e8ouLkxMu9TUMzV2Zk12Xb2VidhptP9535JtHEiuGq2u2VqWXZbz0tC6AN0EkEklOz0lOz3n5NpD0eHwyNzsnOZJVWFJSHMKPuj1kNISOgcHRMBhCdggh9PZ0thx8pu/06onoksGUMPHS/zqExMSExMQk7zzyZrGm8XpE80LuyhVri+cVdD53/1cPHzp86MLIgdY582OFKyp8mhOz0kDrxXNH9z1/sCd/UV7dhhW5kbyooQDTWmLyZGreSHtbX2vzQIjHw8CFC2eOP/TMC8Od5yf6u585ebFzYCyEqa90DlzsDnmpIdkRI8qEaali9Y3LaubXHP/ssSe/+p1jbfvKb8tOK60wF2anpkdPNjX9XfhQRUX1LX4NgKtBal5arL787Mm24882TW3Hjn7/0b94LERLQnJm9yf+6bljp7tf3sLtbXr2+bAqFvLc/s6bwQU4vD6REKLFq+fVnr 511 Rf3HjrUHq++Ztem9Jx0bxMz6/Q1h3O7P3dg+Oyl+b983cJFZRkZ0RBC6Duyu3M03lK+oS4rUmxXDkw/CeklkfKbN88/+NyLX/m/fu+fQ8ehc4OJ2Vs+csvWJcUpvVW7/+bRTxU9npQRQsgrXjh/yYrrypMK3WiCMmFapkkkZFbFFi7fcnvtwQejQ32TSxbl5mSbC7PLWHfzxeNPNz1z7+ePLI7nR2+pPXr+WOR8CCGErv3P9KfljxZsmOtJNsCV6I4QUnOLC1Ii6Sk/7tqYaF4kOffaujPD5zv/9Wv7Qgg5NRs23/obt2wsqBh4pq71c5/bd2Hf+RBCWPvenctrr13lsR4oE6az3Kq6+g/c/ZbEpBCt2B4LaW74ZZbpOXDvt7/x1Y/+26HOse+FxOid9/7grOGl0q3Xbr/1j2Ih1/YVuALSQojV35IfDwk/eGTwj1R5y4Y7N963YySEkBBNS87Iy01LTJrcUP/r91W9J4xOhBBCanZhuttIUSZMcxN9o4NH2wsXrkstWpCdbB7MOukV65dtyfut0os/4mv5Sytra+cmh4yIOQFvvoRIJCE96z/aN0ciIZqVEc3KyPuhL2QkpWS4dAtlwtUiHsJwf2f30ac7c67LLawtMRFmocyq61ZXXbd6u0kAwOULayPg9Ws8P9T3jZa1sWhevWtPAQC4HJwz4acSj8f7j33n8OHD39zfEUJWtLCy7NZr8svzMqxBAAAoE95Mo+3Hm55/4qGHzoSwrn5zzS2/V51nKAAAKBPeZHmr7ti+cMeqXxoLISM9Kys/BB/VAACAMuFNFYlEkjKL8jKL8koNAwCAy88d8AAAgDIBAABQJgAAgDIBAABQJgAAwPTg2VwAAG+SeDze1tbW2Nh45MiR5Jfl5OSkpqaGEHJyctLT05OTkxMSEtLT0wsKCkwMZQIw04yPjw8NDfX19Y2NjYUQIpFIYmJiUtJrtoEJCQnJycmZmZkpKSlT3/Pm/wsHBwfj8XhqampaWlo0Gk1MTHyT/xnAz1tXV9eePXs+85nPRKPR1NTU9PT0srKy7OzsEEJ5eXl+fn5aWlpqamp5eXl2dnZiYmJCgitcUCYAM0hbW9vevXu/+tWvHj16NISQmpqal5dXWlr66uP+zMzMsrKyrVu31tbW/lC0vGn/wscff3xkZGT58uXr1q1bsGBBXl6enx3MMJWVlXPnzh0cHDx//vzY2FhiYuLU2xAhhJSUlKSkpISEhPz8/BtuuGHu3Ll5eXlpaWmGhjIBmDlSUlJKSkq6uroOHz48OjqanJyckZGRn5//6u+ZP39+dnb25OTkFTlNkZaWVlZWVl1d3dLScubMmc7OzpycnKKiooqKivLy8tLS0uTk5KljF+DqFYlE0tPTS0pK6urq9u/f39XV9UPfMHXydunSpbW1tampqX7rUSYAM 01+ fv6aNWsqKyv379/f3t4+Pj7e09PT09PzyjekpqbOnTu3qqoqJyfnzT9hEkIoKCjYsGFDZWXlkSNHnnrqqYaGhs7OzszMzGuuuWbFihV1dXV5eXlTV5olJydfkX8h8MbF4/HJycns7Oz6+vrGxsbW1tYf6paMjIzS0tK3v/3tW7du/aF3T0CZAMwECQkJ0Wi0rq6utra2vb39//yG+vr6bdu2bd68OTc398oWVH19fVVV1a5duy5cuHDixImzZ8/ef//9Z8+eXbly5fLly5ctW1ZTU1NYWOhnClep3t7erq6u3t7eqdveXi0ajdbX13/wgx9ct25dTk6OWaFMAGagvr6+lpaW7u7uiYmJH/pSRkZGSUnJli1bbr755pKSkit7x3k0Go1Go1O3l8ydO7e0tLSpqen06dPFxcXRaLSpqens2bP79u0rLS0tLS2dP39+YWFhWlqau+RhOpucnJycnDx//nxLS0tTU1NHR0dnZ+f4+HhOTk5ubu4rJ28TExPXrl27ffv2G264IT8/Pzk52ehQJgAz52hgfHx8dHR0dHT0zJkz3//+90+fPj08PJyamjo2NjY5OTl1KBCLxa677rodO3Zcc8 010 +rfn5ubm5ubu2zZsrGxseHh4X379u3evft73/tef39/Xl7esmXL1q1bV1tbW1RUlJqaOpU0kUhEpcD02QRNTEyMjo5OPXbv+eefb2ho2LNnT39/f35+/ooVKyorK8fGxqbKJCUlJS8vb8eOHTt37pwzZ47poUwAZpTBwcHGxsaGhoZ9+/a1trYmJyfX1dXFYrGsrKwjR45M3XhaWFi4cePGD3/4wxUVFdN3S52UlJGRsWrVqurq6p07d7a1tZ05c+bYsWP33HPPxMREUVHR2rVrp+5FSUtL8z4rTBP9/f3Nzc0NDQ379+8/ePBgLBYrLS3dsWNHXV1dWVlZZmZmQ0PDt771rcOHD4cQqqur77jjjk2bNk3nbREoE4DXp7u7u729vbm5+dSpU62trb29vYmJiTU1NWVlZUuWLBkbG0tLS+vs7Ozt7U1LS7v++uu3bt26ZMmS6XxPeUJCwtRTRKduh+3p6SkvLy8sLGxsbGxraxsaGmpsbGxvb3/yySenHuQVi8WKiooyMjKsDPBmisfjo6Oj3d3d586da25uvnDhQldX18DAQAihrq6uqqqqqqqqsrKysrIyPz8/Ho+HEM6cORONRmtra2+66aZbb721srIyMzPTJFEmAFe3sbGxqWu3Tp48efDgwT179jz33HNJSUlr167dsWNHfX19LBaLRCIdHR05OTlPP /10 W1tbeXn52972ts2bNycnJ19FF0FNXeW1dOnSEMKFCxcOHDjQ0NCwd+/eAwcOrFixYuXKlStWrFiyZMnUg4aj0WhSUpKrvODnGiTj4+Pj4+NjY2MXL148efLk97///T179ly4cCEtLW3jxo033XTTtddem52dPfVB76+YP39+bW1taWnptm3bduzYsXr1asNEmQDMBMeOHTtw4MDevXvb29uj0WhVVdXU55SVlJQUFhZOfb5yCCEnJ2fx4sW1tbVZWVm7du1au3btVf0AnPz8/LVr19bW1m7btq2jo6O5ubmxsfGee+5JSkqKxWJLly5dvXp1VVXVlX3gGMyG7c/hw4cPHz586tSpsbGxWCx20003zZ8/f968eVNvJfzIx5EnJSUtW7bs7rvvnvo9NUZQJsDVamJiYmxs7Ny5cy0tLWfPnm1tbZ163M38+fPLy8vr6uoWLVoUi8Wm7gt/5b+aulN806ZNQ0ND 113 3v9m70+C4z/vA8/8GGmcDIO6jcRK8CYI3RFKURNGy7h0rjuIjNR7PxpnUjL01qdS8mNpNbaV2tqZ2tiZTO1NTM3HNVMrZ0sajxI6VOK7EkQ/RsiSLh0iIIsALBEkABHETN0AAje590TZNUzTFGwTw+bxQsUARZP8bbPYX/+d5fk8WFRWlp6cv3ouQkZFRUlJSUlJSW1s7Ozvb3t5eUlKSl5c3PDw8Ozvb1tY2MDBQVFRUUlKSPOmrtLQ0HA6b3Qb3aHZ2dnJysqOjo6enp6+vr6+vb3h4+OrVq2VlZfn5+atWrVq/fn1tbW1ZWdmv+wzJO5nl5eXPPvtsaWmpRVygTIDFJ3n+5tzc3MTExNDQ0KFDh95999233347Go1u3rz5+eef37VrV1VV1a0/ycsvvxwEweJaxPUJr+bhcPL7r42NjUEQXL58uaWl5e233z5w4MDg4GB+fv4TTzzR1NTU2Ni4YsWKrKys5P+fkpLiKwpuR3JbyPz8fCwWS45qvXz58k9+8pPDhw+3tLRUVFQ0NDTs3bv3scceq6mpuf3vd+Tk5GgSUCbAYjU1NdXb23v48OHm5ubW1tbS0tKampo/+qM/ikajZWVlRUVFt7M6a8nPUE9ObKytrf3MZz7T29t7/vz53t7eN95447/ +1/ +6efPmTZs2bdy4cdWqVUVFRb6i4DZdvXq1p6entbX12LFj7e3tQ0NDlZWVO3bs+MIXvpBcNVpQUHDTVVuAMgGWlImJib6+vq6urq6uru7u7uTCiZqamtWrVzc0NGzdujU/Pz8rK+s2P9uSv1eQmZmZmZlZUlISBMHw8HBNTU17e3tbW1s4HJ6bmztz5kxnZ2dFRUV5eXlZWVllZWVhYWFmZqZd8nCDRCIxNDQ0MDBw+fLl7u7ugYGB0dHRkZGRnJyckpKSdevWrV+/fuPGjbm5uRkZGS4XKBNgKb8nSI4qi8ViXV1dhw8ffuutt06dOjU8PPzss89++tOf3r9/fyQSWdQbRR6CgoKCgoKCbdu2zc7OTk1NHTp06J133vnBD34wMTFRXFy8Y8eOp556auPGjSUlJcklXsldKCqF5fzKk0gkYr9w5syZY8eOHTx48Pjx4ykpKTt37ty7d29TU9PmzZtdK1AmwHIxMzPT1dXV3Nx85MiRS5cuxePxurq6vXv3rlq1qrS0tLi4OCcnx2buO3jFD4cjkUhyldeLL77Y19fX3d2dPMsrkUiUlJRs3769oaFh7dq1mZmZJjaynF95RkZGmpubP/roo1OnTk1NTeXm5m7cuPHZZ5+tqKgoKysrLCx03h0oE2BZmJycHBwc7OrqunTpUvLcm9HR0fz8/OQe940bN65evdp39O9CcmJjaWlpaWlpEATDw8OdnZ1FRUXnzp3r7++fnJw8ffp0X1/fkSNHqquro9FoeXn5Ha2Rg0UqeXt2YmKiv7+/t7e3p6enp6dnYGBgbGwsLS2tqqqqtrZ28+bNq1evLi0ttWoLlAmw9M3Pz8fj8fn5+d7e3mPHjn3/+98/duxYcu3E888/v2PHjtraWkFyHyVXeW3ZsiUIgsuXLx89evTgwYM/+MEPPvjgg8cee2z37t2PP/74hg0bSktLU1NTk1UTWOXF0gqSa0tGZ2dnOzs7Dx48+LOf/aylpaW7u3vXrl379+9//vnnKyoqrg1EApQJsCycOXPmxIkTx48f7+7uDoKgqqrqX/yLf1FVVVVZWZkcEeASPdBK2blz56pVq5577rm+vr7e3t7Lly+/9tpraWlpFRUVmzZtamxsrKmpWdRTKeHjenp62trampubz549Ozo6mpmZGY1Gd+3aVVdXV1BQUFxcXFpaesPgdkCZAEvQ/Pz8/Pz85cuXk8snLl682NPTMzw8nJ2dHY1Gt2zZsmHDhmg0mp2d7fv0D1pWVlZWVlZFRUUsFpuZmWlrazt16lRqaurw8PDo6GhLS0tvb29paWlZWVlZWVlpaWlJScm1uyiwiCRvjwwODl5btdXX1zc0NDQ7O1tYWFhTU7Nhw4Z169atXbvWtQJlAix9yYFl8Xh8ZmZmYmLi/ffff+uttw4cOJCfn79p06YXXnjh8ccfr6mpcaEW5l+FcDgcDm/dunXr1q1BEHR3dx8/fvytt976zne+MzIyUl5e/uSTT+7du3fXrl2ZmZnhcDj0Cy4dj/jLTnLh1tTU1MjIyMGDB99555233norFovV1dU988wz+/btW7dunXuzoEyA5WV6evrKlSvXRiUWFBSUlpb+/u//fm1tbXLhlvF/j47CwsLt27dXVVW9/PLLfX19ly5dGhoaeuONN/7sz/4sOcmhoaGhurra+zkecYODg6dPnz537tyZM2dOnTpVUlJSXl7+ta99raysrLy8vKSkpKSkJDs724UCZQIsC1NTU1euXLn8C11dXf39/ampqdXV1cmp5BUVFbm5uS7UIyW5yqu8vDwIgitXrrS3t589e7atrS15flpra2tvb29yfVfSihUrMjIy3EJhwSUSienp6ZGRkd7e3sHBwcuXL3d0dExOTo6Pj+fk5NTW1jY0NDQ2NpaXl3vZAWUCLJc3B9d+MDQ09MEHH3z/+98/evRoT0/PM8888+yzzz777LPOpV0sCgsLCwsLm5qakhMb33vvvXfeeedb3/rWyMhIaWnpU0899fTTTycnNl6//0Sl8PBfcIIgiMfjQ0NDx48f/9GPfvSzn/3sypUrpaWlzzzzzPPPP7937960tDSjkECZAMvLzMxMb29va2trc3NzV1fXzMxMSUnJP/kn/6S+vj65lzo/P99Ev0UnNTU1Ozt727Zt1dXVzz77bF9fX19f3+Dg4Ouvv56SklJeXt7Q0JDcRpzciOKK8XDMz89fvXr17Nmzp06dam1t7evrSyQSRUVFn//858vLy5NDEktKStLS0nxZgjIBloVEInH16tXh4eHe3t5Lly4lj97q7u6en5+vqKjYvHlzY2NjQ0ODdwaLukxSU1Oj0Wg0Gg2CYGhoqLOz8+TJk4lEYmBgoLe3Nx6P9/f3nz59OnmKV3FxcV5enqNXeUCmp6dHR0eHhob6+vq6u7v7+/uTAxNTU1OTnbxx48aamhob2ECZAMvRlStXjh49+g//8A9vv /12 LBbbs2fPM88809TUtHr16pSUFE2yxCRXeW3ZsiWRSPT29h4/fvynP/3pG2+8cfz48aampj179jz11FMNDQ3KhAdkZGTkww8/fP/9999///2f/exnO3fu3LVr1yuvvLJz587Kykpnx4EyAZadRCLR3t6enJbY2dk5OztbVFT0u7/7u9FotLa2tqKiorCwMDU11VuEpSf5nCb/W1hYuHXr1mg0un///uQSr8HBwb/4i79IS0srKyvbsGHDhg0bqqqq8vLyfCVwL682Y2Njly5dOnXq1KlTpy5dujQ+Pl5VVfXcc8997nOfq6qqqqioKCkpSb7muFygTIBlIR6Px2KxwcHB5BqeCxcudHV19fb2xmKxsrKy5EyM6urqSCTibegykTzLKxqNzs3NzczMnD59+uTJky0tLckVX7Ozs 319 fcktRiUlJUVFRYWFhW6jcZs1Eo/Hr1y5MjQ0lDzlr7u7OzknMRaLFRQUrF+/ftOmTWvWrIlEIunp6a4YKBNgeYnFYpOTk0eOHPnxj3/85ptvZmZmrl+//rnnntu9e3dtbW1mZqY3ncv3X5dwOBwOb9u2bevWrfF4vLu7u7W19b333nv99deHh4ej0ehTTz21d+/ePXv2pKen+8Y2nygej8/Ozp44ceL9998/ePBgW1tbVlbW7t27X3zxxa1bt9bV1SVfba4/Fw5QJsDSNzMzMzY2duzYsQ8//LClpSU7O3vFihW/+7u/W1lZWVVVVVlZWVpampWV5e3mcpYs0mtfA2VlZenp6ckgSa7yunLlyt/8zd+8/vrrq1evXrNmzfr165OrvFw6rjc5OTkwMNDa2nrq1KkzZ86kpKRkZ2fv2rXr5ZdfLisrq6ioqKioKCoqcpMElAmwvFy9enVsbKy/v7+vr6+np6etra2zs3NoaKisrGzz5s07d+6MRqPeWXJT2dnZ2dnZlZWVQRAMDw+fP3/+xIkTyR0CoVBoYmKir68vGo2WlpYWFhYWFRXl5uamp6e74bYMJRKJubm5qamp0dHR5BFb10756+vrq6urW7VqVWNj49q1a4uLi505DsoEWKZGRkY++uijN9988+jRox0dHY8//vi+ffs+/elPFxQURCKR1NRU6yi4HStWrNiyZUtjY+P09PTk5OThw4cPHjz4+uuvj4+Pl5WVPfHEE08++eSGDRtKSkpcq+VpcnLy4sWLH3zwwZtvvnn27NnZ2dmnnnrqiSeeaGpqKi0tzc3NTb7aCFdQJsAykkgkZmdn+/v7z50 719 zc3NHRMTk5WVBQ8NJLL5WXl1dVVVVVVZWXl6enp4fDXky4XSkpKcmITU1NzczM3LFjR2Vl5d69e/v7+4eGhkZHR7/97W+Hw+GKiop169atXbt29erV4XBY9y75V5sLFy6cP3++ra3t7NmzExMT+fn5mzZteuqpp8rLy6PRaEVFRWlpaWZmpvskoEyAZRckY2Njydne3d3dXV1d586dm56eLiwsbGho2LJlS0NDQ3LcnsvFXUt+CVVXV1dXVwdBMDg4ePHixY8++uijjz4aHBwcHR2dmJjo7++/ePFicXFxUVFRUVFRdna2HQVLRiwWS05lTZ64dfHixeThfv39/Tk5OeXl5clVW3V1da4VKBNg+RobGzt+/Pjf/d3fHTx4cHZ2dsOGDfv379++ffvq1avT0tJSU1PdJOG+KywsXLFiRUNDw+c///ne3t6WlpaDBw++8cYbJ0+e3LFjx549e55++unVq1cXFha6VkvD1NRUT0/Pe++99+6777777rsFcyHL/gAAIABJREFUBQWrV6/es2fPl7/85ZUrV+bl5YXDYd/+AGUCLEeJRKKrq6utra2lpaWjo2Nqaio7O/ull16KRqN1dXXV1dXJFd4uFA9IcpVXcq1ONBrNyMioqKjYvXt3T0/P6Ojo2NjY66+/np6enpzYuGrVqvLy8tzcXJsNFteLzOzs7NDQ0IULF06dOnXx4sXe3t7s7OyKiorf+73fKy8vr6ioiEajZWVleXl5Vm2BMgGW3RuFeDyeXE0xODjY3t7e3t5+4cKF8fHxkpKSjRs3bt++feXKlQUFBa4VD1PyLK/q6urkxMaWlpYTJ0589NFHfX19/f39k5OTPT09FRUV5eXlK1asyM/PX7FihS3Rj/LrzOTk5NjY2PDwcF9fX29v7+XLl8+dOzc0NBQEQVVV1ZYtW3bs2FFUVBSJRFwuUCbAMpUcXvbhhx/+5Cc/+fGPfxyLxerq6j796U9v3769trY2EomkpaVZuMVC/isVDqempm7fvr2xsfFzn/vc5cuXz5w5c+TIkW9+85vj4+N1dXVNTU27du1qamoysfFRdunSpebm5vfee+/QoUNzc3ObN29uaGj47Gc/29TUFA6H09LS0tLSHHIAeMMBy9HMzMz4+Hhra+vJkyeTw8vS0tJeeOGF8vLy6urq+vr65DoZ7/NYcKFQKBQKpaenJze+h8Ph5N7oHTt2DAwMjI6Ojo6Ofu973/ve975XU1OzatWq9evXl5aW5uTkuHSPwotM8qyt06dPj46OBkGQn5//G7/xGyUlJXV1daWlpWVlZXYNAcoElu97hcnJyeHh4f7+/u7u7jNnzrS3t3d0dGzcuHHDhg07d+6sq6uzcItHWU5OTk5OTk1NTRAEQ0ND586d+/DDD0+ePHn+/PmhoaGhoaErV66Ul5eXlJQUFBTk5eVlZ2enpaVZ5fXQJOexjoyMDA4OXr58ubOz88KFC+3t7Tk5OStXrtyyZcumTZuqqqrsWAOUCSx3IyMjLS0t77zzzgcffHD69Oldu3bt2bPna1/7WnKxfkZGhpskLCL5+flbt27duHHj5OTkxMTEsWPHmpubX3vttcnJyYqKiqeeeqqpqWnNmjVFRUWu1UMzODh45MiR999///jx4+3t7Vu2bNm2bdvLL79cX19fUlKSnp5ugSigTGCZSiQS8/Pzg4OD586dO3nyZEdHx8DAQG5u7mOPPfbCCy/U1dXV1dXV1NRkZWU5BodFJzkOJSMjIzs7u6CgIDU1tbKyctu2bX19fWNjY0NDQ3/ 913 +dlZVVXl6+8hdMbHwQLzKjo6NdXV0nT568cOHC0NBQLBZLT0/fu3fvP/pH/yg5j7WysjI/Pz8rK8vlApQJLMf3CnNzc8mFW0NDQ11dXadPnz 516 tTY2FgkEmlsbGxqatq2bZtZASylREm2RxAEAwMD7e3tzc3NJ06c6Ozs7Ozs7O/v7+/vHxgYuHaQlxq/F/F4PB6Pj42NjY6OXrlyZWBg4MKFCydPnuzs7AyFQvX19evXr29sbGxsbPQiAygTIBgbG2ttbX3rrbfef//98fHx2trapqamrVu3NjQ0ZGZmZmZmGqTNUlVYWJibm7thw4aZmZm+vr7Tp0+fOHHie9/73rlz5zZu3NjU1PTkk0/W19fbUnXXYrHY1NRUc3Pzu++++9Zbb83MzBQXF2/btu2ZZ55ZvXp1WVlZRkbGtUMLAJQJLEeJRKKvr6+jo+PMmTPnzp0bGRlJSUl57LHHSktLa2tra2tro9FoaWmpC8XSlryFkpmZGQRBJBLJycmJRqObNm3q7u6enp4eHh7+9re/nZmZWVZWtnbt2uQhUTk5OTfdJT8wMHDq1Km0tLSSkpLVq1f7fkd3d3d7e/v58+fPnz+fmpqakpKye/fu8vLyaDRaXV1dXV1dVFSUnZ3tixBQJrBMaySRSIyPj4+NjV25cuXChQvnzp07c+ZMb29vXl7ezp07H3/88TVr1jiak+UpEokkV3nNzc1dvXq1tbX1ww8/PHLkyPDwcHZ29tDQUG9vb1VVVVlZWW5ubk5OTnKo/LVK6e3tffPNN0Oh0Lp16woLC3NycpbVfYBEIpG8PTI2NjY2NtbT03P+/Pn29vaLFy92dXVt2rRp8+bNO3bsWLt2rWMGAGUCBPF4fG5urqWl5d133/3BD34wNzdXUVGxe/fuL33pS7W1tXl5eVlZWdZUQDgczs7O3rJly7p16z7zmc8MDAycO3fu6NGjf/mXfzk9PR2NRrdv375z584dO3akpaVd2xoxMDDw9ttvd3d3b9y4saysbPPmzeXl5cvquo2Ojp45c+bdd989ePBgb29vZmbmzp07X3nllU2bNuXn5+fk5FgaCigTWO5mZ2cnJiba2trOnj17+vTpWCwWj8e3b98ejUZramrq6+tramry8/PtPYWkUCiUmpqalZWVlZVVUFCwYsWKFStWFBcXNzQ0DA4OJm85vvnmmz/84Q+rqqpWrly5Zs2alJSUzs7Os2fPjo6OxmKxP/3TP/3CF76wZ8+eaDS6tL/ZMT8/39HR0d7e3tbWNjAwMDExEYvF1q9fv3v37tLS0uSBfpWVldcnHIAygWUnuSJlbGxscHCwu7s7OcT99OnTa9eu3bJly+7du9euXVtcXOxCwa1FIpFIJFJXVxcEweDg4NmzZ48fP97S0nL69OnKysru7u4rV67E4/EPP/xwYGAgCILu7u7vfve7K1asyMzMzM/PT09PX2JDOWKx2NWrV8fHx0dHR0dGRtra2k6dOtXS0jI7O1tUVNTQ0PDEE0+sX7/eRjVAmQA/NzY21tbW9t57733wwQetra3r16/ftm3b7/zO75SXlxcUFGRnZ2dkZLhKcEfy8/OTq7xefPHF0dHR06dPt7S0vPbaa5cuXerp6Un+P8mTuL/73e9evXp15cqVVVVVeXl5S+kijI+PX7x48b333jt06NDRo0eTd41eeumlzZs3V1VVZWZmRiIRLy+AMoFlLTkqcWRkpKOj49SpUxcvXuzt7c3Kylq1alVDQ0Py3cPatWuzs7Mt9Ya7/IcwHA6Hw5FIJD8/v7y8PDc3N3mc3WuvvXb27Nnr/zIODQ0dPnz4T/7kT37rt35r27ZtK1asWNSvLVevXk2OIjl37lxPT8/IyEgQBNFotLa2tq6urrq6OjkncVE/TECZAPcnSJILt5LzlVtbW48ePdrb25uWlvb000/v2bNn69atpsXBfZQ8bri+vj55yvCBAweam5uv/x/i8fj58+dfe+ 215 MiU5CTBxTVUPpFITE1NTU5OTk5ODgwMXLx48eTJky0tLcPDwzk5OTt37ty5c2dTU1Nubq47JIAyAX5ucnLy7NmzP/3pTw8dOjQ8PFxQULB9+/bf/u3fXrduXW5ubiQSycrKWlxviWCxGBkZOXHixOXLl6empm74qVgsNjk5+Vd/9VfT09PXVlEurkd35syZY8eONTc3nz17Nh6Pr169ev/+/evWrVu5cmV2dnYkEsnOzvbaAigTWO6Sy0UuXbrU1tZ24cKFoaGhmZmZ+vr6wsLCaDS6Zs2a2tra5XZoKTx8g4OD7733Xl9fXzweT34kJSUlPT09Pz8/OcCxuLg4Ho+fPXu2oaHhAZTJeCLRc/Tb77S2dp4PgiAICmoaVj 31+ R3lQTT37l9b2tvbz54929raOjIyMjMzk5ubu3fv3qKiourq6vr6+srKSjNJAGUCaiSRSCSmp6cnJyfHx8cvXLhw6tSp5ubmjo6OSCSyY8eOT33qUxs3bvSmAR6a6enpS5cu5eTkrFy5MhwOp6ampqWlZWdnR6PR5Mb32traaDQ6MjIyNzd3f18PgiA2Mzkw3tfc/KPvH3j35IdBEJsYWLF6z8rYptQnqrLq8wqy7vJTd3d3Hzx48Ic//GFFRcX69eubmpq2bdsWjUZtUQOUCfBzyVGJJ06cOHTo0DvvvDM6OlpYWNjU1PSbv/mbNTU1RUVFyWmJLhQ8NJWVla+88srTTz+dlpZWWlqam5ubmZmZkpJybYJHRkZGWlpaWlpaJBK537/5SE/L+Xf/y5Gcz/zTL/3Luv81kRh857/85N1D/+XffSH9X/6HyZee/9yGu/y8VVVVL7zwwr59+0pLSwsKCpKrtpbY2ceAMgHuRnIyyblz59rb2y9cuDA6Ojo1NRWNRjdv3lxbW7thw4aamprCwkLfzoSHLz8/f+vWrfPz82lpaXl5eZmZmQ/pqIlEEPR1zU5fHdr05NbG7WvWV1YkEhMZL01fnTz47v84f+7s0fNbPrfhLtdzlpSUrFixIjU1NRKJeGEBlAk8QmKTg+Pj4wNjc0GQlhHJzSspigRTscnxwYGxuSCYD4IgCLILK3JycvMz7+fvOz8/Pzs7OzU1NTw83N/ff/jw4ebm5pMnT9bW1m7atGnv3r2NjY12ksDCys7OXrB97VfG0iI5+V98urY4iAZBEApy1z2+tqf7ldX/409He8539wTB3bw+hEKhJTaABVAmsHSMNP/lD3/4w3//tx1BULt277Of+ddfeyJo7nvvh3/y7/+2IwhGgiAIgl1f+ffPPvvsq+vv5+87Pj7e0dFx6NChI0eOHDt2bO3atRs3bvyt3/qtysrKkpKS3NzcRXfOD3A/1W2riAcvpgV5v/z3uSArK7+iOshynwNQJrDUzF4JJtsPXYh1xNY8//z6IJgPZUyd+s4/xENvdp45c2CgaOuTqzbVRiLBZKinpfdw+pGyfasiQeG9vScYGRnp7Oy8ePFiZ2fnpUuXEolEQUHBpz71qXW/kFwx4smBZS0UCrJXZAbBr74WzMRiM1MTQdXastryMhcJUCawdMSnBua7fnJ0dFVo/af/3Zc2hkInT7xz9C/+7795e+RH54KC4S3/y8tfe/qzT5YUJwYO/PF/P3v67Z9sfTyvJrUw/c5O908kEsmt7dPT09PT0x0dHR988MGxY8e6urpmZ2effvrpJ554Yvfu3ZmZmRZ8A7/+pSQI5genJscv9hWu3l+3cVXUJQGUCSwdV0emho5dqlm1J6u2LgiCIKirrxz6vd9873/7s6AvqHjmN19cW5mfH6QFQfn25xpDF2f/5ljvVF5RkH/Hi6wmJycvXLhw8ODBw4cPDwwM5OTkrF+//sUXX1y3bl1+fn5eXp5xZsAnG7kwNBIcDP7nV+rqdtS5HIAygSUkPheeGY2UbMqLVCWP+4xEsiKRaDBf2JAd2f7y3vKa4iAtCIIgM78+WhSbjHTMhOfit/nJE4nE8PBwb2/vxYsX29vb+/r6Jicnc3NzKysrq6ur165du3LlypqaGs8CcFsvKUHQf+rc6OhU6Yu/sWpVtDLikgDKBBaX2YmpqanBsau//EhmXnZ2dlEkLRQKBUF6EBRGIuk5v/g3fn4+Njs1MZ+3qbhy2971QXHyo6EgyFuRmZdaduOa75sHyczMzNWrV69evdre3t7S0nLkyJHW1tZwOPzYY48999xzW7ZsceIW8Evzs4nZiaGxq1MzsV/8g5wRZOYV56Rnp6cmPxCfuxqbHjl/qndiLnPvl55cWRI4XQtQJrDYXPjRwQNv/e+vffDLj+z88v5P7f+3r6wNgiAIpoPg0vDI9OxwEBQFQRAMX+lrO/Kj4dbH50NreoOgMLibf/5bW1uPHj2aXLiVlZW1bt26Z555pra2trS0tLCw8AGMYwMWs+H24Ox3/+NrRw581PPzj0Q3B03/9N++suZT63/+7ZHpnpYr7//3lpwXU6I7XioL8m1JA5QJLD6R0sKq9Y89dt0WjrVVq0t/3gZp2akr6rIuX7qSMd8f7C0J+lsunvzg//1pfzwYDyWG/+LHF39vU0lZWSSRCAZOtA1cngnq1gfZtxqyNjo6eunSpYMHD547dy4cDm/cuLGqqip54lZpaWlGRoYnBLhRWiTIX7l649xkZvXPP1JUH9StKIykBUEQJBLBwInLXe0/6K3M3bx29eqaiiyXDFAmsBhVPb 616 vH/9D/d/Ccz8iMlm+vH/25goP9UT30saPn+h4ff/7PWkhefKUgrmf72t97bk2iIzpcGQdD2zsmeRGb2yyWp+cGty+TEiRNnz55NTU194YUXdu7cWVVV5UkAbmVFTWhFze9svNlPzc8mZqdG2t8/3TX3ZvaX/3Vt6eNVQSKRiM9MxRJBLC2SkRKEnZ0BKBNYCjIrgvKXvtjwDwd++s0vfvF0MNEzu2LV2i//p8++UF+XOL3re//u+/8x5xvj6UEQrH/md3Y9tf+l8k8YZlJaWvr0009v27YtFAolD91yjYG7N3I+OPu9//hB/mh2w//5UnndL16ARpp/1DUdalv7md2FQbWJrIAygaUgNSvIqqxbvW7L+NTmgfQg2Byp3FC6+9N7NuaVz6SXjD8dPh20DwVBEKzbtmXd6rrKT1pEkZmZWV5eboM7cI8SicRUx6Fzx95654d//73OmlBe+5rp1nd/8bNj3UNZ1atXNgYpqS4VoExgKal+Ynv1E9s/c8NHt6+o2d7g4gALZKLtrcMH/vbf/FV7EJwJguDf/Oi6n1v12898Zu8rJcEKlwlQJgDAA5W/7YsvVH5q1WenbvJz2RVFpSXlQeCMLkCZAAAPUCgUyiiury6ur97oYgDLkdM9AAAAZQIAAKBMAACAR4F9Jove3Nzc+Ph4KBRaPo83kUgsq4cMAEtAIpGYm5tLT3eIA8pk6Tp06NAXv/jF5fN4m5ubgyBYVg8ZAJbMP+JPPvmk64AyWZr27duXlZW1rB7yc88953kHgEX6j/hjjz3mOvDrhBKJxM9/FPrlj1ngZ8VzAQDAcnp/GAqF7IAHAAAWnjIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAgDIBAACUCQAAwP0QdgkeTaFQyEUAAGD5vD9UJo+oRCLhIgAAcC1Llvb7w1AoZDUXAACw8JQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACgTAAAAJQJAACwmIQSicTPfxQKuRwAAMAClwnLUDwR/Pml2fOT8Zv+7Fdq02uyHsZdtc7p+Dc6Zm/44KvRtMa8VM8RAMAyYTWXLIn/uv/hJ4Ox2fjD+JNUZd7k6/DdoXnPEQCAMmG5Z0kQBOcn4//5/Ezb5AOvk5RQsL84fMMH+2biI3Nu6AEAKBOWd5YkTcQS3+ya/fqF2c7pePxBZsL63Jss3Do+6rYJAMByYZ+JLLldOeFQU37q+tzUsowHcljC1y/M9s3Eb/gd/9WqjBRHMwAAKBNkyU0TpSE3tSEvpSoz5T5mw+Hh+b/vm7vhgw9tFz4AAMqExZQlN2jMS928IrU2KyX9nvNhNh78X2evfvzzvxpN89wBACgTZMltqY+krM9JbchLiaTe/W2U71yeOzF2496SP1ybme6uCQCAMkGW3JFr21FK0kN3utbLYBMAAGWCLLn/dhWEV+ek3P5ar3gi+H/aZyZiv/I1WZaR8tWV6Z5HAABlgiy5V7e/1uvtwdiBwdgNH/yDVRn5aY7oAgBQJsiS++QTjx6enE/8cdvMDR/cXxze97FRjAAAKBMWZZbkhENPFYWzUoPqrJSu6XgQBNPzQdd0vH8mccMgkYdjV0G4IS+lPOPGtV4GmwAAKBOWjsn5xNcvzCb3bJRlpLxcHr71YJCRuUTXdPzsRPzjp2M9aPWRlD2F4WhmKLnWq20y/s2uG/fBG2wCAKBMWMRx8lrn3BNFqXd0tlU8EVy6Gm8dix8ajj3kP3BZRsqO/NS1OSn/qf3GBV0GmwAAKBOWqXgiGJhNnB6fPzIyf8N5WQvCYBMAAGXCctc3k+iYih8dmV+QHSlJBpsAACgT+LnJ+UTrWPz0xPzDP/LLYBMAAGUCN5qNBx3T8Y9G5x/mjnmDTQAAlAnc3LUd863jD3w7isEmAADKBD5Z30zi9Pj8yfH4A9qOYrAJAIAygTswOZ84PxlvHr3/21EMNgEAUCY8WpJT3p8uDj/K79ST21HOTdy36SgGmwAAKBMeuSxJ3pFYFLcRkttRLkzG7306isEmAADKhEcuS5IW1xqne5yOYrAJAIAy4VHMksUYJ0l3tx3FYBMAAGXCI5olizdOku50OspXV2aUZTiiCwBAmfDoZclij5NrjzE5HeXWO+YNNgEAUCY8ulmyNOLkmuR0lF+3Y/6P1mUabAIAoEx4RLNkicXJtUT5+oWZpf0YAQCWOW/slmCWBEHwjY7Zzun4krkCZRmhXQU3rt36yWDM1wYAgDLh0c2SJRknDXk3fq2en4zPxn2BAAAoEx7hLFl6cVKTlZITvnFbyYej875IAACUCY90liy9OGnKv3G64k+HLOgCAFAmPPJZssTiZGfBjWUyEUv0zTjCAQBAmfAQs6QxL7Us4y6fr6URJ5HU0MevwLERC7oAAJYCpwY/6llSlpHyRFHqupzU9JQgCILZeNA7E/9W99xNR3zc2hI4ZrdtMv7NrtkbPviHazPTJTYAwCLnDd0jnSX7i8P/vC69MS /12 jvv9JSgJivlX63K+Pgpup9oCdw5qb1ZWXVMO6ILAECZcF/9dc/ctSz5Sm36vuLwTcecp4SCF8vC+4uXXZykpwQfT7If9dsHDwCgTLivXigL54RDOeHQH6zK+MSVV/uKl2OcfHywSd9MfHLeokQAgMXNPpNHTvJNdiQ1dJv//9uDsQN3Pg19Ue85+Q/nZm7YZvNSWdpjHzu5CwCARcQ9k0dOJDV0+1kSLMs7Jx8fbHLUCV0AAMqEBbfc4mR97o1lYkEXAIAyQZw8bGUZoZzwjbeV7stUSgAAlAni5A40fOy2ydkJZQIAoEwQJw/X6pwbv3QvTCkTAABlgjh5uErSb1zNNRFLzGoTAABlgjhZcMNzNsEDACgTxMlDlBe+ycHK/TNumgAAKBPEycP8wg15hgEAlMniNDmfODy8YPP44okg/tCXGi3hODG9BABAmSzWLPn6hdm/75t7ezC2IFny55dm//zSrDi5Xy5fvcmlnDYIHgBAmTz6WTIRSwRBcGAw9lrXQy2EZJacn4yfn4wvrjg5MTZ/Rxf5oZbJzcJpaNaNFAAAZbIYsiTpYRbCtSx5+L/1vcfJdy7f7i2mkbnEH7fNfP3CncXMXRuZSxy42R+sKsvuEwAAZbJIsuT6QnjQ3+a/IUsWY5wcGIzdTpz8eCAWBEHfTPzKg79rEU8Ef9s7568uAIAyWfRZcq0Qvn7hAcbJTbNkkcbJ9/tit/jT9s0krt0q2VMYfqAPoXM6/t8u3vyqBkGwIs09EwAAZbKosiRpIpb4+oXZkQcwnu8WWbIY4+TQcOzPL83edML65Hzi/+uaTf54V0E4/YF9QY3MJV7rmv1Gx2zfrx9actMhJwAALAqhRGIJbhq+nSy53ldq02uy7tt76k/MkmvqIylfqkp/+KM53h6MHbjzM8pywqHPV6Zdf6E6p+N/1xu7lgp/sCoj/wHctRiZS/x4IHY7O1j+aF2mOScAAMpksWbJ/Y2T28+SxRgnQRCUZaTsyE/NSg3eHZq//vZFY17qq9G0+/uHjCeCd4Zu989ZH0n5cnW6v9IAAMpkEWdJ0v7i8L7ie9omcadZskjj5IGm3V0/lS+VpT1WkOqvNADAIrWk9pncS5YEt30O1f3NkmCx7Tm5qbKMlPubJX0ziT9um7mjp7I2O8XfZwAAZbLos+RanHzn8txdRMJdZ8nSiJOXy+/nkVyz8eDarvrblBMOlWXYYgIAsIiFl8bDuJ0sKctIKc0Irc1JWZEWGp1LBEFwdiI+OZ+4ISdOjM1PzifuaHnVPWbJ9XHy8Jd1JRew3cuyrpxw6P7eMPmL7jsuzKeKwv4yAwAsakthn8knZsn+4vCewl97oO1sPHj/SuzIyPz1n6E+kvJqNC2S+smVcF+y5Prfd9HtOXk1mtaYd982ePTNJL5+YeZOf9Ufrs1Mt5gLAGAxW/Tv5m6dJfuLw3+4NnNf8a3mbKSnBPuKw/9qVcb1R0sl5zDOflJu/LosKctIqY/czbVdwGVdd/cLc8Khhtz7ue/89Pj8nf6S/cVhWQIAsNgt7jUwt8iSsoyU365Ku/3xGimhoDEvtT6S8p3Lc8nSKM0I3Xpw3w1Z8vHbLLc/iOPjcbIgd07uQlN+6v39c54cv7O7Tznh0JOWcgEALH6L+FvNt8iSx. (1 điểm). Cho ba số thực dương a, b, c thoả mãn abc = 1. Chứng minh rằng: 2 2 2 1 ( 2)(2 1) ( 2)(2 1) ( 2)(2 1) 3 a b c ab ab bc bc ac ac