1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Bồi dưỡng học sinh giỏi toán đại số giải tích 12 tập 2

184 1,6K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 184
Dung lượng 20,75 MB

Nội dung

B6I DUBNG HQC SINH QOI TOAN DAI SO-GIAI TICH Boi duOng hoc sinh gioi Toan Dai so 10-1.. - Boi duQng hoc sinh gioi Toan Hinh hoc 11.. Trung tdm sdch gido due ANPHA xin trdn trong giai t

Trang 1

i n s LE H O A N H P H O Nha gido Uu tu

• Danh cho HS lap 12 on tap & nang cao Id" nang lam bdi

Chudn bi cho cdc ki thi qudc gia do Bo GD&OT to choc

a

NHA X U A 1 H N DAI HOC QUOC GIA HAJIOI

Trang 2

B6I DUBNG

HQC SINH QOI TOAN

DAI SO-GIAI TICH

Boi duOng hoc sinh gioi Toan Dai so 10-1

Boi duQng hoc sinh gioi Toan Dai so 10-2

Boi dti8ng hoc sinh gioi Toan Hinh hoc 10

Boi duQng hoc sinh gioi Toan Dai so 11

- Boi duQng hoc sinh gioi Toan Hinh hoc 11

Bo de thi tii luan Toan hoc

Phan dang va phi/dng phap giai Toan So phtic Phan dang va phirong phap giai Toan To hop va Xac suat

1234 Bai tap ttj luan dien hinh Dai so giai tich

1234 Bai tap tu luan

dien hinh Hinh hpc luting giac

Trang 3

- Ddnh cho HS ldp 12 on tdp & ndng cao ki ndng Idm bdi

Chudn bi cho cdc ki thi qudc gia do Bo GD&DT to chut:

NHA XUAT BAN DAI HQC QUOC GIA HA NQI

Trang 4

NHA XUAT BAN D A I HOC QUOC GIA HA NOI

16 Hang Chudi - Hai Ba Triing Ha Npi Dien thoai: Bien tap-Che ban: (04) 39714896;

Hanh chinh: (04) 39714899; Tong bien tap: (04) 39714897

Fax: (04) 39714899

Chiu trach nhiem xudt bdn:

Giam doc PHUNG QUOC BAO Tong bien tap P H A M T H I T R A M

Bien tap noi dung

Quyet dinh xua't ban so: 181LK-TN/XB

In xong va nop lu'u chieu quy I I nam 2010

Trang 5

L d i N 6 I D X U

Be giup cho hoc sinh ldp 12 cb them tai liiu tu boi duong, ndng cao va ren luyen ki nang gidi todn theo chuong trinh phdn ban mai Trung tdm sdch gido due ANPHA xin trdn trong giai thieu quy ban dong nghiep va cdc em hoc sinh cuon: "Boi dudng hoc sinh gidi todn Dai so' Gidi tich 12" nay

Cuon sdch nay nam trong bo sdch 6 cuon gom:

- Boi duong hoc sinh gioi todn Hinh hoc 10

- Boi duong hoc sinh gidi todn Dai so' 10

- Boi duong hoc sinh gioi todn Hinh hoc 11

- Boi dudng hoc sinh gidi todn Dqi so'- Gidi tich 11

- Boi dudng hoc sinh gidi todn Hinh hoc 12

- Boi dudng hoc sinh gidi todn Gidi tich 12

do nha gido uu tu, Thac si Le Hoanh Phd to'chiec bien soqn Noi dung sdch duoc bien soqn theo chuong trinh phdn ban: co bdn vd ndng cao mdi cua bo GD & DT, trong dd mot so"van deduac md rong vdi cdc dang bdi tap hay vd khd dephuc vu cho cdc em yeu thich mud'n ndng cao todn hoc, cd dieu kien phdt trien tot nhat khd ndng ciia minh Cud'n sdch la sir ke thira nhirng hieu biet chuyen mdn vd kinh nghiem gidng day ciia chinh tdc gid trong qua trinh true tiep dirng ldp bdi dudng cho hoc sinh gidi cdc ldp chuyen todn

Vdi ndi dung sue tich, tdc gid da cd'gdng sap xep, chon loc cdc bdi todn tieu bieu cho tirng the loai khdc nhau ung vdi noi dung ciia SGK Mdt sd'bai tdp cd the khd nhung cdch gidi duoc dua tren nen tdng kien thuc va ki nang co ban Hoc sinh can tu minh hoan thien cdc ki ndng cung nhu phat trien tu duy qua viec gidi bai tap cd trong sdch trudc khi ddi chieu vdi ldi gidi cd trong sdch nay, cd the mdt soldi gidi cd trong sdch con cd dong, hoc sinh

cd the'tu minh lam ro hon, chi tiet hon, ciing nhu tu minh dua ra nhirng cdch lap ludn mdi han

Cluing tdi hy vong bd sdch nay se la mdt tai lieu thie't thuc, bd' ich cho ngudi day va hoc, dqc biet cdc em hoc sinh yeu thich mdn todn vd hoc sinh chuan bi cho cdc ky thi quoc gia (tot nghiep THPT, tuye'n sinh DH - CD) do bd GD & DT to chirc sap tdi

Trong qua trinh bien soqn, cudn sdch nay khdng the tranh khdi nhung thieu sdt, chiing tdi rat mong nhdn duoc gdp y ciia ban doc gan xa debb sdch hoan thien hon trong ldn tdi ban

Moi y kien dong gop xin lien he:

Trung tam sach giao due Anpha

225C Nguyen Tri Phuong, P.9, Q.5, Tp HCM

- Cong ti sach - thiet bj giao due Anpha

50 Nguyen Van Sang, Q Tan Phii, Tp HCM

DT: 08 62676463, 38547464

Email: alphabookcenter@yahoo.com

Xin chan thanh cam on!

3

Trang 6

M U C L U C

Chuong I I : Ham so luy thira ham so mu va ham so logarit

§2 Phucmg trinh, he phuomg trinh, bat phuong trinh mu va logarit 5

Dang 1: Phuong trinh mu va logarit 5

Dang 2: Bat phuong trinh mu, logarit 21

Dang 3: He phuong trinh mu, logarit 31

Chuong H I : Nguyen ham, tich phan va ung dung

§ 1 Nguyen ham 46 Dang 1: Dinh nghia va tinh chat 47

Dang 2: Phuong phap bien doi bien so 55

Dang 3: Nguyen ham tirng phan 62

§2 Tich phan 70 Dang 1: Dinh nghia va tinh chat 71

Dang 2: Tich phan da thuc, phan thuc 81

Dang 3: Tich phan luong giac 89

Dang 4: Tich phan can thiic 100

Dang 5: Tich phan mu - logarit 108

§3 Ung dung cua tich phan 124

Dang 1: Tinh dien tich hinh phang 124

Dang 2: Tinh the tich vat thS 130

Chirong I V So phuc

§1 S6 phuc 139 Dang 1: Phep toan ve so phuc 140

Dang 2: Bieu dien va tap hop diem 143

§2 Can bac hai va phucmg trinh 151

Dang 1: Can bac hai ciia so phuc 151

Dang 2: Phuong trinh nghiem phuc 156

§3 Dang luong giac 165

Dang 1: Viet dang luong giac 165

Dang 2: Toan ung dung 171

Trang 7

Phuong phap chung:

- Dua ve cung mot co so

- Dat an phu

- Logarit hoa, mu hoa

- Su dung tinh chat cua ham so

B P H A N D A N G T O A N

DANG 1: PHUONG TRlNH M U VA LOGARIT

, a ^ = ag ( x ) ( a > 0 )

logaf(x) = logag(x), (a > 0, a * 1) o

- Phuong trinh mu co ban: ax = b (a > 0, a * 1)

Neu b < 0, phuong trinh vo nghiem

Neu b > 0, phuong trinh co nghiem duy nhat x = logab

a = l

a * 1 , f(x) = g(x)

- Phuong trinh logarit co ban: logax = b ( a > 0 , a ^ l )

Phuong trinh logarit co ban luon co nghiem duy nhat x = ab

f ( x ) > 0 h a y g ( x ) > 0 f(x) = g(x)

Chii y: Ngoai 4 phuong phap chinh de giai phuong trinh mu, lograrit, ta co the dung dinh nghTa, bien doi thanh phuong trinh tich so, dung do thi, bit dang thuc,

V i du 1: Giai cac phuong trinh sau:

a) PT o 2*2-3 x + 2 = 22o x2- 3 x + 2 = 2 » x2 - 3 x = 0 o x = 0 hoac x = 3 b) P T < ^ ( 2 + V 3 )2 x = ( 2 + S ) ' 1 <=>2x = - l o x = - i

2 c) PT o 2 10x = 200 o 10x = 100 o x * 2

5x 5x d) PT <=> 2"3 24 x"6 = 2T o 24 x"9 = 2Y

5x

<=> 4x - 9 = — <=> 8x - 18 = 5x o x = 6

2

-BDHSG DSGT12/2- c

Trang 8

V i du 2: Giai cac phuong trinh sau:

a) (1,5) 5x-7 / o \

x + 1

b) 7X-' = 2X

1 3 x+— x+—

c) 9X - 2 2= 2 ->2x-l ^ ylogx _ ^logx+1 _ ^ jlogx-1 _ J3 j^ogx-\

x+-3 x+-3

= — O X - 1 = lOgg — O X = 1 - lOgg 2

Z 2 1 2 d) PT » 7l o g x

Trang 9

DSGT12I2-d) Chia 2 ve cho 8X > 0 thi PT: 27V (12\*

- 7t + 2 = 0 o t = 1 hoac t = | (thoa man)

Suy nghiem x = 0 hoac x = 1

b) Dieu kien x * 0, dat y = — va chia hai ve cho 4y, ta co:

Trang 10

V i du 5: Giai cac phuong trinh:

a) x3 + ( x - 2 )6 = 0 b) V2XV4X(0,125)X = 4^2

c) Ul6-x + $fx~+~l=3 d) 3/ x T l -3/ x ^ T = v/x2 - 1

Giai a) B K : x > 0 , x - 2 > 0 < = > x > 2

Voi x > 2 thi V T > 0 nen PT vo nghiem

b) DK: x # 0, PT o 22

_ 1 7

» 22.23"^ = 23 » + — =

-2 3 -2x 3 , 1

» 5x - 14x - 3 = 0 <=> x = — hoac x = 3

5 c) D K : - 1 < x < 16 D a t u = # L 6 - x , v = 7 x + l thi u, v > 0

Trang 11

DSGT12/2-Giai a) Hai ve deu duong, logarit hoa theo co so 10 ta co :

4x

log3 = 3x

log4 <=> log 4

log 3 « x = log4(log34) 3 3x x-2 _ o2 n,2 ^ TX-2

b) PT o 3X 2X + 1 = 32 2 l o 3X~2 2*+ 1 = 1

,x-2 3.2s 1 <=> x - 2 = 0 hoac 3.2X + 1 = 1

» x = 2 hoac 2X + 1 = - <=> x = 2 hoac x = - 1 - log32

3 c) Hai vd deu duong, logarit hoa hai ve theo co so 2 ta co:

log2(3x-1.2x 2) = log2(8.4 x-2)

<=> (x - l)log23 + x2 = log28 + (x - 2)log24

<=>x2-(2-log23)x + 1 -log23 = 0 o x = 1 hoacx= 1 -log23

d) Hai ve deu duong, logarit hoa hai ve theo co so 5 ta co:

<=> 2 0l o g 3 X = 202 <=> log3x = 2 <s> x = 9 (thoa man)

b) DK: x > 0, PT « 4.22 l n x - 6l n x - 18.32 1 n x = 0

Chia ca hai ve cho 32 1 n x, dat t

-9 _2 Chon nghiem t = — <=> x = e

lnx thi duoc PT <=> 4t - t - 18 = 0

c) DK: x > 0, ta co: xl o g 4 = 4I o g^ ' °e 4 = 4l o g 4 l o^x = 4l o g x

nen PT « 2.4l o g x = 32 o 4l o g x = 16 o logx = 2 o x = 100

-BDHSG

Trang 12

DSGT1Z/2-d) DK: x > 0, dat t = log3x thi x = 4

Vi du 8: Giai cac phuong trinh:

a) (4 - Vl5)tanx + (4 + Vl5)tanx =8 b) 81sin2 x + 81c 30

c) (cos72°)x + (cos36°)x = 3.2~x sin(x—)

d) e 4

= tan x Giai

a) Vi (4 - y/l5 )(4 + 7l5) = 1 nen dat (4 - JTE )tanx = t, t > 0 thi phuong

trinh ot+ ^=8«>t2-8t+ 1 = 0«t = 4±Vl5

Do do tanx = - 1 hoac tanx = 1 nen nghiem x = ±— + leir, k e Z

4 b) Datt= 81smZx, 1 <t<81 thiPT

c) Phuong trinh: (2cos72°)x + (2cos36°)x = 3

Vi:2cos72° 2cos36° 2sin36°.cos36°.cos72

0

Dat t = (2cos72°)x, t > 0 thi PT o t + ± = 3

^ t 2 _ 3 t + 1 = 0 « t = N/5 + 1

Ta co: 2cos72° = 2sinl8° = — — - suy ra nghiem x = ±2

d) Dieu kien cosx * 0, v i sinx = 0 khong thoa man phuong trinh nen PT ,_ %/2sinx 72 cosx

72(stnx-cosx) smx e * e A

<=> = cosx sinx cosx

Trang 13

DSGT12/2-Dat u = sinx, v = cosx, u, v e ( - 1 ; 1), u.v > 0 nen ta co phuong trinh 72u Vgv

Vi u, v cung dau nen u, v cung thuoc mot khoang (-1; 0) hoac (0; 1) do do PT

<=> f(u) = ftVr'o u = v «tanx = 1 <=>x= — + kn (chon)

nghich bien tren R nen co nghiem duy nhat x = 2

c) Vi 0 < - < 1 nen khi x > -1 thi VT < 3, VP > 3 (loai), khi x < -1 thi VT > 3

Trang 14

Giai a) Ta co x = 3 la nghiem ciia phuong trinh, v i ham so

f(x) = ( \ o + Vl5 )x + (^7 - V l 5 )x la tong cua hai ham so mu voi co so

Ion hon 1 nen f(x) dong bien tren R Vay x = 3 la nghiem duy nhat ciia

phuong trinh

b) Ta co x = 1 la nghiem ciia phuong trinh Bien doi PT

2 - V 3 V (z + S = 1 thi ve trai la ham f(x) nghich bien, vay x = 1

la nghiem duy nhat ciia phuong trinh

Trang 15

V i du 11: Chiing minh rang phuong trinh:

a) 4x(4x2 + 1) = 1 co diing ba nghiem phan biet

b) xx + 1 = (x + l )x co mot nghiem duong duy nhat

Giai a) PT « • 4x(4x2 + 1) - 1 = 0 Xet ham s6 f(x) = 4x(4x2 + 1) - 1, D = R

Ta co f'(x) = 4xln4.(4x2 + 1) + 8x 4X = 4x[ln4.(4x2 + 1) + 8x]

f (x) = 0 o ln4.(4x2 + 1) + 8x = 0 O (41n4)x2 + 8x + ln4 = 0 (*)

PT (*) nay co biet thiic A > 0 nen co diing 2 nghiem phan biet Tir bang bien thien ciia f(x) suy ra phuong trinh f(x)= 0 co khong qua ba nghiem phan biet

=> dpcm

Cach khac: Xet ham f(t) = — , t > 0

Vi du 12: Giai cac phuong trinh:

a ) 2x + l- 4x = x - 1 b) 4b g 3 X + 2I o g 3 A =2x

c) 3 ^ - 2 ^ = 4c~^ d) cot2x = tan2x + 2tan2x + l

Giai a) P T« 2X + I + ( x + l ) = 22 x + 2x

Xet ham sd f(t) = 2l + 1.1 e R thi f '(t) = 2'.ln2 + 1

V i f ' (t) > 0, Vt nen f dong bien tren R

PT f(x + 1) = f(2x) o x + 1 = 2 x o x = 1

Trang 16

V i f(t) = | J J + | ± J ta co f '(t) > 0 va f(0) = f ( l ) = 0 nen chi co 2

nghiem t = 0 hoac t = 1 <=> x = 1 hoac x = 3

c) Dat t = Vcosx , 0 < t < 1 thi PT o 3l

- 2' = t <=> [ -1 + \ = 1

,9y 2t l n - + l - t l n 3 Xet f(t) = (| J + - L _ i < t < 1 thi f'(t) = S

Xet g(t) = 2'.ln- + 1 - tln3 voi 0 < t < 1 thi g'(t) = 2t.ln2.1n- - ln3 < 0

3 3 nen f '(t) nghich bien tren [0; 1] Lap BBT thi f(t) = 1 co toi da 2 nghiem

ma f(0) = f(l) = 1 nen PT tuong duong t = 0 hoac t = 1

<=> cosx = 0 hoac cosx = 1 o x = k27i hoac x = — + kn

2 d) DK: 2X * k- Dat t = tan2x thi PT o - = t + o t4 - 6t2 + 1 = 0

ot2 = 3 +2^2 =(V2 ± l)2ot = ±(^ + 1)

Vay tan2x = ±{42 ± 1), tu do suy ra nghiem x

Vi du 13: Giai cac phuong trinh sau:

a) log2[x(x - 1)] = 1 b) log2(9 - 2X) = 10log(3-x)

Trang 17

DSGT12/2-V j du 14: Giai cac phuong trinh:

a) log2x + log 2(x - 1) = 1

c) l o g3( 3x- l ) l o g3( 3x + ,- 3 ) = 12

b) log2x + log3x + log4X = 1 d) logx-,4 = 1 + l o g2( x - 1) Giai

a) DK: x > 1, PT o log2x(x - 1) = 1 o x(x - 1) = 2 <=> x - x - 2 = 0 Chon nghiem x = 2

b) DK: x > 0, PT o (1 + log32 + log42).log2x = 1

<=> (3 + log32)log2x = 1 o log2x =

3 +log, 2 Vay nghiem x = 23 + 2 1 o g*2

Trang 18

c) DK: x > 2, phuong trinh tro thanh:

^log2(x - 2) + ilog2(3x -5)=U log2(x - 2)(3x - 5) = 2

2 cs> (x - 2)(3x-5) = 4 o x = 3 hoac x = - Chon nghiem x = 3

3 d) DK: x > 0, x * i x * —, dat t = log3x thi PT o—= 2(2 + t)

ot2 + 3t-4 = 0ot=l hoac t = -4

1 Suy ra nghiem x = 3 hoac x =

Vf du 16: Giai cac phuong trinh:

a) l0g2(4x) + log2^- = 8

2 8

81 b) log2^ x+31og2 x + log1 x = 2 c) log4xlog2x + log 2log4x = 2 d) logx 216 + l o g2 x 64 = 3

V 2 2 J = ( - 2 - l o g2 x )

2= ( 2 + log2 x )2 Dat t = log2x thi PT <=> (2 + t )2 + 2t - 3 = 8

log22 log2 x + log2 log22 x = 2- o ilog2 log2 x + log2 f^log2 x j = 2

11 3

o - l o g2l o g 2x + l o g2- + log2log2x = 2 <=> - l o g 2l o g 2x = 3

o log2log2x = 2 <=> log2x = 4 <=> x = 16 (chon)

Trang 19

DSGT12/2-d) D K : x > 0, x* l , x * i thi

2

PT 02102,2 + = 3o + —- = 3

l + l o g2x l o g2x l + l o g 2x Dat t = log2x thi PT: - + —- = 3 o 3t2

- 5t - 2 = 0

t 1 + t

o t = 2 hoac t = -— Suy ra nghiem x = 4, x = JJ=

3 %/2

V i du 17: Giai cac phuong trinh

a) log5x log3x = log5x + log3x

b) 21og2x log5x + log2x - 101og5x = 5

c) log2x log3x log5x = log2x log3x + log2x log5x + log3x log5x

Giai a) DK: x > 0, ta co x = 1 la mot nghiem

Neu x * 1 thi PT o - = —-— + — - —

logx51ogx3 logx5 logx3

o logx5 + logx3 = 1 o logx15 = 1 o x = 15 (chon)

b) DK: x > 0, PT o log2x (21og5x + 1) - 5(21og5x + 1) = 0

o (log2x - 5)(21og5x + 1) = 0 o log2x = 5 hoac 21og5x = - 1

o x = 32 hoac x = —T= (chon)

V5 c) DK: x > 0, phuong trinh o (lgx)3 = (lgx)2(lg2 + lg3 + lg5)

o (lgx)2(lgx - lg30) = 0 o lgx = 0 hoac lgx = lg30

O x = 1 hoac x = 30 (chon)

V i du 18: Giai cac phuong trinh

a) log2x = 3 - x b) log3x + log 4(2x - 2) = 2

c) log2(l + V x ) = log3x d) l o g 3( l + Vx + Vx) = - l o g2 Vx

Giai

a) DK: x > 0, v i ham so ve trai dong bien, ham so ve phai nghich bien va

x = 2 la nghiem nen do la nghiem duy nhat

b) D K : x > 1 Ta co f(x) = log3x + log4(2x - 2) la ham dong bien nen

f(x) > f(3) = 2 voi x > 3 va f(x) < f(3) = 2 voi 1 < x < 3

Vay x = 3 la nghiem duy nhat

c) D K : x > 0, dat log3x = y thi x = 3y

P T o l o g2( l + V 3 y) = y « l + V3y = 2y o | ± | +

-BDHSG DSGT12/2- 17

Trang 20

Ta co y = 2 thoa man phuong trinh, v i ve trai la ham nghich bien nen PT

co nghiem duy nhat y = 2 nen x = 2

bien tren R nen y = 1 la nghiem duy nhat, do do PT cho co nghiem x = 2

V i du 19: Giai cac phuong trinh:

<=> x = y o x = log2(3x - 1) cs> 3x - 1 = 2X

o2x-3x+l=0 Xet g(x) = 2X 3x 1, x >

-3

Ta co g'(x) = 2x.ln2 - 3, g"(x) = 2x.ln22 > 0 nen g* dong bien tren D Do

do g(x) — 0 co toi da 2 nghiem, ma g( l ) = g(3) = 0 nen suy ra tan nghiem

S = { 1 ; 3 }

18 -BDHSG

Trang 21

DSGTW2-c) DK: x > 0 Xet x = 2 thi PT thoa man

VM ^^i+u-x x + 2 , x + 1 x + 3 ,

Xet x > 2 thi — > > 1 , > > 1

2 4 3 5 nen VT > VP (loai) Xet x < 2 thi VT < VP (loai)

Vay PT co nghiem duy nhat x = 2

<=> log3(x2 + x + 3) + (x2 +x + 3) = log3(2x2 +4x + 5) + (2x2 +4x + 5) Xet ham so f(t) = log31 +1, (t>0) thi f'(t)= —+ l>0,Vt>0

t In 3

Do do f(t) dong bien, nen phuong trinh f(x2 + x + 3) = f (2x2 + 4x + 5)

<=> x2 + x + 3 = 2x2 + 4x + 5 <=> x2 + 3x + 2 = 0

Vay phuong trinh co 2 nghiem x = -1 va x= -2

Vi du 20: Giai cac phuong trinh sau:

a) log2(cotx + tan3x) - 1 = log2(tan3x)

<=> cotx = tan3x <=> tan3x = tan(— - x)

o3x= x + k7i<=>x= — + — ,keZ

Dat log2(cosx) =2t=> cosx = 4l => cos2x = 16l

Do do 21og3(cotx) = 2t => cotx = 3l => cot2x = 9l

Trang 22

V i du 2 1 : Tim dieu kien de phuong trinh:

}>/3 b) Dat t = ^/logg x + 1 , x 1; 3% o l < t < 2

Trang 23

DSGT12/2-Cach khac: Xet ham so va lap bang bien thien

Bieu k i f n co nghiem duy nhat: a < 0 hay a = 12

DANG 2: BAT PHUONG TPJNH MO, LOGARIT

- Bat phuong trinh mu:

Neu a > 1 : af ( x ) < ag ( x ) » f(x) < g(x)

N i u 0 < a < 1: a m

< ag ( x ) <=> f(x) > g(x)

- Bat phuong trinh logarit:

'f(x) > 0 Neu a > 1: logaf(x) < logag(x) <=> \ g(x) >0 <=> 0 < f(x) < g(x)

f ( x ) < g ( x ) f(x)>0 Neu 0 < a < 1: logaf(x) < logag(x) <=> lg(x)>0 • » f(x) > g(x) > 0

f(x)>g(x) Phuong phap chung: Bua ve cung co so, dat an phu, mu hoa, lograrit hoa

va tinh chat don dieu ciia ham so

Chii y: ax < m o x < logam (vod m > 0 va a > 1)

Trang 24

1 a) D K : x ^ - l , d a t t = 3x, t > 0 thi B P T o— ! — < — ! —

t + 5 3t -1 f3t -1 < t + 5 l

Trang 25

DSGT12/2-Giai a) Chia 2 ve cho 22 x > 0, BPT

- 2 x - 2 < 0 o l - V3 < x < 1 + V 3

c) DK: x * 0, xet x < 0 thi V T < 0 < 4 diing

Xet x > 0 thi 4X > 3X nen BPT: 4X < 4(4X - 3X)

c) 4x2 + 3.3^ + x.37* < 2 x2 37 x + 2x + 6

d) 2 -xz-3x-2+4Vxz+3x < x2 - 2 x + 5

Giai a) DK: x > 0, BPT: 22 x - 3.2V x2x - 4.22 V x < 0

4

Chia hai ve cho 2 ^ 2X > 0 BPT: 2 X ~^ - 4.27 x"x -3 < 0

Dat t = 2x _ 7 x , t > 0 thi BPT o t 3 < 0 o t2- 3 t - 4 < 0 o - l < t < 4

t Chon 0 < t < 4 o x - V x < 2 o x - V x - 2 < 0

» 0 < > / x < 2 o 0 < x < 4 b) Dat t = 2 \ t > 0 thi BPT: V8 + 2 t - t2> 5 - 2t

Trang 26

Vay tap nghiem S = (-00; 3] u (0; 1) u (1; +00)

V j du 5: Giai cac bat phuong trinh:

a) l o gM (3 - 2x) > 1 b) log0,2(x2

- 4) > -1 '72

C) log2 l0gQ 5 2X - — |:

16 d) l o g3( 1 6x- 2 1 2x) < 2 x + 1

Giai a) Dieu kien: 3 - 2x > 0 o x = | V i V2 > 1 nen bat phuong trinh tuong

duong voi 3 - 2x > V2 ox< 3~^2" (thoa man)

b) DK: x < - 2 hoac x > 2, vi 0,2 < 1 nen BPT o x2 - 4 < (0,2)"'

<=> x2 - 4 < 5 <=> x2 < 9 » | x | < 3

Ket hop dieu kien thi nghiem -3 < x < - 2 hoac 2 < x < 3

c) V i co s6 2 > 1 nen BPT tuong duong voi

Trang 27

Giai a) DK x > 0, dat t = log0,2x ta co BPT:

c) (2x - 7)ln(x + 1) > 0 d) 2.x— logo x -2 > 22

log2 X

-BDHSG

Trang 28

<=> 1 - (log2x)2 < -4(1 + log2x) o (log2x)2 - 41og2x - 5 > 0

o log2x < -1 hoac log2x >5o0<x< - hoac x > 32

7

x > —

2 -l<x<0

Vay tap nghiem S = ( - 1 ; 0) u ( - ; oo)

2 d) DK: x > 0, logarit hoa theo co s6 2 > 1 ta co:

f 3

w * ' log2 2 2 g 2 X > l o g2 — logo X

Trang 29

DSGT12/2-Giai a) DK: x2- 6 x + 5 > 0 v a 2 - x> 0 o x< l hoac x > 5

-<=>log2(x- 2) + log2(3x- 5 ) > 2 o l o g2( ( x- 2)(3x- 5)) > log24

6t - r > o 6t - V < 5 5 < t < 6

log j ( 6 t - t2) > - 2

S

Tu do giai ra tap nghiem S = (-co; 0] u (log65; 1)

V i du 9: Giai cac bat phuong trinh:

Trang 30

DSGT12/2-Do do logx < - 1 hoac 2 < logx < 3 hoac logx > 5

Vay nghiem x < — hoac 100 < x < 1000 hoac x > 100 000

b) DK: x2 + 2x - 3 > 0, x + 3 > 0, x - 1 > 0 <=> x > 1

BPT <=> log2(x - l)(x + 3) - log2(x + 3) > log2 (x-l)

<=> log2 (x-l) - log2(x -1)<0«0< log2(x - 1) < 1

ol<x-l<2o2<x<3 (chon)

4x + Ft fi c) D K : x > 0 , x # l , — > 0 o 0 < x < - x ^ l

6 - 5 x 5 Neu 1< x < - thi BPT <=> < -

5 6 - 5 x x 4x + 5 1 4x2+5x-6 + 5x

<=> <0c=> < 0

6 - 5 x x ( 6 - 5 x ) x

O 4x2+1°X~6 <0o4x2+10x-6<0o-3<x< - (loai)

(6-5x)x 2 Neu0<x< 1 thi BPT o 4X2+10x-6> Q ^ 1 <x< L

(6-5x)x Vay tap nghiem S = (—; 1)

d) DK: x > 0, x * 1, 4X - 6 > 1 o x > log47

Vi x > log47 > 1 nen BPT o log2(4x - 6) < x

o4x-6<2so4x-2x-6<0o-2<2x<3ox< log23

Ket hop thi tap nghiem S = (log47; log23]

Vi du 10: Giai cac bat phuong trinh:

Trang 31

Neu x > - 1 thi BPT <=> log3(x + 3 ) < 0 o x < - 2 (loai)

Vay tap nghiem S = (-2; -1)

c) DK: x > 0 Xet x > 4 thi log2x > 2 con 6 - x < 2 (loai)

Xet 0 < x < 4 thi log2x < 2 < 6 - x nen BPT nghiem diing

Vay tap nghiem S = (0; 4]

d) Dieu kien x>0, x^ l , bat phuong trinh tuong duong

Do do (x - 1) f(x) > O.Tuong tu khi 0 < x < 1 thi f '(x) < 0 nen f(x) nghich bien: x > 1 suy ra f(x) < f ( l ) = 0 Do do (x - 1) f(x) > 0

Vay bat phuong trinh co nghiem voi moi x > 0, x ^ 1

V i d u l l : Tim tap xac dinh cua cac ham so sau:

a)y = log[l - l o g ( x2- 5 x + 16)]

b) y = ^/log0 5( - x2 + x + 6) +

x2 +2x

Giai a) Dieu kien xac dinh ciia ham so la log(x2 - 5x + 16) < 1

o 0 < x2- 5 x + 1 6 < 1 0 o x2- 5 x + 6 < 0 o 2< x < 3

V£y D = (2; 3)

Trang 32

Xet x < -1 thi VT < 3 < VP (loai)

Xet x > - 1 thi V T > 3 > VP (thoa man) Vay D = [ - 1; +00)

d) DK: 3X - x > 0 » 3X > x

Xet f(x) = 3X - x, x e R thi f *(x) = 3x.ln3 - 1

f ' ( x ) = 0 o 3xln3 = 1 0 x = - l o g3 (m3)

Lap BBT thi f(x) > 0, Vx nen D = R

V i du 12 Tim tham so m de bat phuong trinh co nghiem

a) 49x - 5.7X + m < 0 b) x2 - (m + 3)x + 3m < (m - 2)log2x

Giai a) Dat t = 7 \ (t > 0) thi BPT <=> t2 - 5t + m < 0, t > 0

Tu do suy ra dieu kien co nghiem la m * 2

YI du 13: Tim tham so de bat phuong trinh co nghiem voi moi x:

a) 3x

- ( 2 m + 5)(V3 )x

+ m2 b) 1 + log5(x 2 + 1) > log5(mx2 + 4x + m)

5m > 0

- 4x + Giai a) Datt = ( V 3 )x

t > 0 Bai toan tro thanh tim m de: t2 - (2m + 5) + m2 + 5m > 0, Vt > 0

2

<=> m < -5

-BDHSG

Trang 33

Ta tim m de he thoa man voi moi x

Xet m = 5 thi (1): -4x > 0, Vx (loai)

Xet m = 0 thi (2): 4x > 0, Vx (loai)

Xet m * 5, m ^ 0 thi dieu kien

[A,<0, 5-m>0 f4-(5 + m)2 <0,m<5

A2< 0 , m > 0 4 - m2< 0 , m > 0

DANG 3: H E P H U O N G T R I N H M U , LOGARIT

Viec giai he phuong trinh va logarit ve co ban cung giong nhu giai cac

he phuong trinh dai so voi cac bien doi ve bieu thiic mu va logarit

Phuong phap chung: Rut the, cong dai so, dat an phu

Vi du 1: Giai cac he phuong trinh:

Trang 34

Vf du 3: Giai cac he phucmg trinh:

a) x + y = 20

Llog4 x + log4 y = 1 + log4 9 b)

l o g1( y - x ) - l o g4- = l (1)

x2+ y2= 2 5 (2) Giai

x + y = 20 a) D K x > 0, y > 0, he tuong duong

[log4 xy = log 4 36 Tir do giai duoc 2 nghiem (2; 18) va (18; 2)

3 x - y = l j x = l 3x + y = 5 ° ]y = 2

(3x + y)(3x-y) = 5 <

3x + y = 5(3x-y)

b) DK:x + y>0

[log2(x + y) + log2(x-y) = l

[log2 (x + y) - log3 2 log2 (x - y) = 1

Trang 35

DSGT12/2-V j du 5: Giai cac he phucmg trinh:

l o g2( x - y ) = 5-log2(x + y)

a) {logx-log4 , b)

logy-log 3

[21og2x-3 y=15 [3y.log2x = 21og2x + 3y Giai

xy = 16

x = 4

y = 4 b) DK: x, y > 0, x, y * 1 He tuong duong

|6x + 4y = x2 [6x + 4y = x2

|6y + 4x = y2 ° l ( x - y X x + y- 2 ) = 0

fy = x f y = 2- x

x2 -10x = 0 hoac x 2 - 2 x - 8 = 0

Tir do giai ra nghiem (5; 5)

V i du 7: Giai cac he phuong trinh:

Trang 36

Giai a) D K : x + y > O T a c o ( 2 ) o x + y = 5 o y = 5- x

The (1) ta co 3"x 25 _ x = 1152 <=> 6"x = 36 o x = - 2

Do do y = 7 Thu lai diing Vay nghiem la (-2; 7)

- Q b) DK: x, y > 0 Ta co (1) o 2x - 3 y = 22 o x - 3 y = -

va (2) <=> -log3x + 1 = log3(9y) o log3(xy) = -1

<=> xy = - Tir do co S = {(2; — ) }

b) log2(x

2 + y2) = l + log2(xy) 3x 2-xy+y2

= g l

a) DK: x, y > 0 Ta co (2) « x = y 2

1 2

(1) o y3 X + = y1 2 Xet y = 1 thi x = 1 (diing)

Xety * 1 thi -(x +y)2 = l2<=>x + y = 6

3

Do do y6 = x3 <=> x = y2 nen y2 + y - 6 = 0

Chon y = 2 => x = 4 Vay S = {(1; 1), (4; 2)}

f x2 + y2 = 2xy b) DK: xy > 0, he tuong duong

Giai a) Trir 2 phuong trinh ve theo ve thi duoc: 2X + 3x = 2y + 3y

Xet f(t) = 21 + 36, t e R thi f(t) = 2l ln2 + 3 > 0, Vx nen f ddng bien tren

R

Ta co PT: f(x) = f(y) <=> x = y

Do do 2X + 2x = 3 + x <=> 2X + x - 3 = 0

Xet ham g(x) = 2X + x - 3, x e R tir do suy ra he co nghiem (1; 1)

b) Trir 2 phuong trinh ve theo ve thi duoc: (2X - 2y) + (3X - 3y) + 3(x - y) = 0 Xet x > y thi V T > 0 (loai), x < y thi V T < 0 (loai)

Xet x = y = t thi duoc: 2l + 3l - 3t - 2 = 0

34 -BDHSG

Trang 37

log2 V l + 3sinx = log3(3cosy)

log2 y l + 3 cos y = log3(3 sin x)

Do do log2(l + 3u) - 21og3(3u) = log2(l + 3v) - 21og3(3v)

Xet f(t) = log2(l + 3t) - 21og3(3t), 0 < t < 1

f'(t)= + —— > 0 nen f dong bien tren (0; 1], do do PT

Giai a) PT (1) bien doi thanh:

Do do (2) <=> 3x + 1 = 22- 3x » 8x(3x + 1) = 4

-BDHSG DSGT12 /2- 35

Trang 38

PT nay co nghiem duy nhat x = - nen S = { ( - ; - - ) }

3 3 3

,t+i b) Datt = 2 x - y t h i ( l) o( l + 4t) 5M= 1 + 2

Bang each xet f(y) = 1 - e~y - y thi phuong trinh f(y) = 0 co nghiem duy nhat y = 0, do do x = y = z = 0

Neu x * 0 thi y * 0, z * 0

y.ey Dat f(t) t.e

1

t * 0 thi he

e =

-ey -1 z.eL

ez - 1 x.e"

f(t) > 1, Vt > 0 nen he tuong duong x = y = z = t, do do e' - t - 1 = 0 (vo nghiem)

Vay he co nghiem duy nhat x = y = z = 0

V i du 13: Giai cac he bat phuong trinh

Trang 39

Gia su (x, y) la mot nghiem thi (-x, y) cung la nghiem, ma he co nghiem duy nhat nen x = 0

Trang 40

Xet y = 3 - x - m t a c 6 phuong trinh: x + (m - 3)x + m(m - 3) = 0

V i A = - 3 ( m - 3)(m + 1) > 0 o - 1 < m < 3 thoa (1) nen suy ra dieu kien

co nghiem la m > -3 va m * - 2

C B A I L U Y E N TAP

Bai 1: Giai phuong trinh:

.25 J b)(42 - 1)X + (V2 + 1 )X- 2 V 2 = 0

H D : a) Chia so hang roi dat an phu

j i b) Bien doi tich so

38 -BDHSG

Ngày đăng: 21/07/2015, 17:27

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w