V i du 13: Chung minh rang hop thanh ciia mot so chan cac phep doi ximg tam la mot phep tinh tien, hop thanh ciia mot so le ciia phep doi ximg tam la phep doi xiing tam... That vay neu M
Trang 1- Ddnh cho HS lop 12 on tap & nang cao klnang lam bdi
Chudn bi cho cdc ki thi qudc gia do Bd GD&DT to chac
Trang 2Boi duBng hoc sinh gioi Toan Dai so 10-1
- Boi duQng hoc sinh gioi Toan Dai so 10-2
- Boi dii9ng hoc sinh gioi Toan Hinh hoc 10
Boi duQng hoc sinh gioi Toan Dai so 11
Boi duQng hoc sinh gioi Toan Hinh hoc 11
Bp de thi ta luan Toan hoc
Phan dang va phirong phap giai Toan So' phtfc Phan dang va phuong phap giai Toan To hdp va Xac suat
1234 Bai tap tu luan dien hinh Dai so giai tfch
1234 Bai tap tii luan
Trang 3T h S L E H O A N H P H O
Nha gido Uu tu
- Danh cho HS lap 12 on tap & nGng cao kinang lam bai
- Chudn bi cho cdc ki thi quoc gia do Bo GD&DT td choc
erjd
© G
1 N6I NHA XUAT BAN DA! HQC QUOC GtA HA NQI
Trang 4L d i N 6 l D A U
De giup cho hoc sinh lap 12 cd them tai lieu tu boi dudng, nang cao va ren luyen ki nang gidi todn theo chuong trinh phdn ban moi Trung tdm sdch gido due ANPHA xin trdn trong gioi thieu quy ban dong nghiep vd cdc em hoc sinh cuon:
"Bdi dudng hoc sinh gidi todn Hinh hoc 12" nay
Cuon sdch nay nam trong bd sdch 6 cuon gom:
- Boi duong hoc sinh gidi todn Hinh hoc 10
- Bdi duong hoc sinh gidi todn Dqi so 10
- Boi dudng hoc sinh gidi todn Hinh hoc 11
- Bdi duong hoc sinh gidi todn Dqi so - Gidi tich 11
- Boi duong hoc sinh gidi todn Hinh hoc 12
- Boi duong hoc sinh gidi todn Gidi tich 12
do nhd gido uu tu, Thac si Le Hoanh Phd to chuc bien soqn Ndi dung sdch duoc bien soqn theo chuong trinh phdn ban: co bdn vd ndng cao mdi cua Bd
GD & DT, trong dd mdt so van de duoc mo rong vdi cdc dang bai tap hay va khd dephuc vu cho cdc em yeu thich muon ndng cao todn hoc, cd dieu kien phdt trien tot nhd't khd nang ciia minh Cuon sdch la sukethua nhung hieu bii't chuyen mdn
vd kinh nghiem gidng day cua chinh tdc gid trong qua trinh true tiep dung lop boi duong cho hoc sinh gidi cdc lop chuyen todn
Vdi mot noi dung sue tich, tdc gid dd cogang sap xep, chon loc cdc bdi todn tieu bieu cho tirng the loai khdc nhau ung vdi ndi dung ciia SGK Mot so bai tap cd the klw nhung cdch giai duoc dim tren nen tdng kien thuc vd ki ndng co ban Hoc sinh can tu minh hoan thien cdc ki ndng cung nhu phdt trien tu duy qua viec gidi cdu bdi tap cd trong sdch trudc khi ddi chie'u vdi loi giai cd trong sdch nay, cd the mot so ldi gidi cd trong sdch cdn cd dong, hoc sinh cd the'tu minh lam rd hon, chi tiei hon, cung nhu tu minh dua ra nhirng cdch lap luqn moi hon
Chung tdi hy vong bd sdch nay se la mdt tdi lieu thiet thuc, bo ich cho ngudi day vd hoc, dqc biet cdc em hoc sinh yeu thich mdn todn vd hoc sinh chuan bi cho cdc ky thi qudc gia do Bd GD & DT to chuc sap tdi
Trong qua trinh bien soqn, cudn sdch nay khdng the tranh khdi nhung thieu sdt, chung tdi ra't mong nhdn duoc gdp y ciia ban doc gan xa debo sdch hoan thien hon trong lan tdi ban
Moi y kien dong gop xin lien he:
Trung tam sach giao due Anpha
225C Nguyen Tri Phucmg, P.9, Q.5, Tp HCM
- Cong ti sach - thiet bi giao due Anpha
50 Nguyen Van Sang,'Q Tan Phii, Tp HCM
DT: 08 62676463, 38547464
Email: alphabookcenter@yahoo.com
Trang 6C h u o n g I : K H O I B A D I E N V A T H E T I C H
§ 1 K H O I D A D I E N V A P H E P B I E N H I N H
A KIEN THUC CO BAN
- Hinh da dien gom mot so huu han da giac phang thoa man hai dieu kien: (1) Hai da giac bat ki hoac khong co diem chung, hoac co mot dinh chung, hoac co mot canh chung
(2) M o i canh cua mot da giac la canh chung cua dung hai da giac
Hinh da dien chia khong gian lam hai phan: phan ben trong va phan ben ngoai Hinh da dien ciing voi phan ben trong cua no goi la khoi da dien Moi khoi da dien co the phan chia duoc thanh nhirng khoi tii dien Phep doi hinh trong khong gian la phep bien hinh bao toan khoang each giua hai diem bat ki
Phep tinh tien, phep doi xung true, doi xung tam, phep doi xung qua mat phang la nhirng phep ddi hinh
Hai hinh da dien gpi la bang nhau neu co mot phep doi hinh bien hinh nay thanh hinh kia
- Phep v i tu tam O ti so k * 0 la phep bien hinh moi diem M thanh diem
M ' sao cho O M ' = k O M
Hinh H duoc goi la dong dang vdi hinh H' neu co mot phep v i tu bien hinh H thanh Hi ma hinh Hi bang hinh H'
- Mot khoi da dien duoc goi la khoi da dien loi neu bat k i hai diem A va
B nao cua no thi moi diem cua doan thang A B cung thuoc khoi do
Khoi da dien deu goi la khoi da dien loi co hai tinh chat sau day:
(1) Cac mat la nhirng da giac deu va co cung so canh;
(2) M o i dinh la dinh chung cua cung mot so canh
- Co nam loai khoi da dien deu: khoi tu dien deu, khoi lap phuong, khoi tam mat deu, khoi mudi hai mat deu, khoi hai muoi mat deu
B P H A N D A N G T O A N
D A N G 1: K H 6 l O A D l £ N Hinh H ciing vdi cac diem nam trong H duoc goi la khoi da dien gidi han
bdi hinh H
Moi da giac cua hinh H duoc goi la mot mat ciia khoi da dien Cac dinh, cac canh cua moi mat con goi la dinh, canh cua khoi da dien Cac diem nam trong hinh H con goi la diem trong cua khoi da dien
Khoi da dien duoc goi la khoi chop, khoi chop cut neu no duoc gidi han bdi mot hinh chop, hinh chop cut Tuong tu cho kh6i chop n-giac, khoi chop cut n-giac, khoi chop deu, khoi tii dien,
Trang 7Khoi da dien dugc goi la khoi lang tru neu no duoc gioi han boi mpt hinh lang tru, tuong tu cho khoi hop, khoi hop chu nhat, khoi lap phuong
Phan chia va lap ghep cac khoi da dien: Moi khoi chop va khoi lang tru luon co the phan chia duoc thanh nhung khoi tu dien bang nhieu each khac nhau
Chu y: Dac so O-le cua khoi da dien loi:
Doi voi moi khdi da dien loi H ta ki hieu D la so dinh, C la so canh, M la
so mat ciia H thi so / ( H ) = B - C + M = 2
V i du 1: Chung minh rang neu khoi da dien co cac mat la tam giac thi so mat phai la so chan Hay chi ra nhirng khoi da dien nhu the voi so mat bang
4 6 8 10
Giai Gpi s6 canh cua khoi da dien la C so mat la M V i moi mat co ba canh
va moi canh lai chung cho hai mat nen 3M = 2C Suy ra M la so chan Sau day la mpt so khoi da dien co so cac mat tam giac la 4, 6 8 10
V i du 2: Chiing minh rang moi dinh ciia mpt hinh da dien la dinh chung ciia
it nhat ba canh va la dinh chung ciia it nhat ba mat
Giai
Ta dirng phan chiing Neu xuat phat tir mpt dinh nao do chi co hai canh thi moi canh nhu thi la canh ciia chi mpt da giac trai voi dieu kien trong djnh nghia ciia hinh da dien
Vay moi dinh phai la dinh chung ciia it nhat la ba canh va vi vay no ciing phai la dinh chung ciia ba mat
V i du 3: Chiing minh rang n i u khoi da dien co moi dinh la dinh chung cua
ba canh thi so dinh phai la so chan
Trang 8Giai Gia sir khoi da dien co C canh va co D dinh V i moi dinh la dinh chung cua ba canh va moi canh co hai dinh nen 3D = 2C Vay D phai la so chan
V i du 4: Chung minh rang n i u khdi da dien co cac mat la tam giac va moi dinh la dinh chung cua ba canh thi do la khoi tti dien A
Giai Goi A la mot dinh ciia khoi da dien Theo
gia thiet, dinh A la dinh chung cho ba canh,
ta goi ba canh do la A B , AC, A D Canh AB
phai la canh chung ciia hai mat tam giac, do B
la hai mat ABC va A D B (vi qua dinh A chi
do G chan
V i du 6: Chiing minh khong ton tai khoi da dien co mot so le mat va moi mat lai co mot so le canh
Giai Gia su ton tai khoi da dien co so mat la M le va moi mat chiia so le canh
Giai
Ta chiing minh quy nap theo so dinh D > 4
Khi D = 4 thi khdi da dien la tii dien co D = 4 C = 6, M = 4 nen
D - C + M = 4 - 6 + 4 = 2: diing
Gia sir khang dinh diing voi so dinh D : D- C + M = 2
Xet khoi da dien co D' = D + 1 dinh Goi A la mot dinh va mat A1A2 A,, la mot mat ciia khoi da dien sao cho mat phang chiia mat nay chia khong gian lam 2 phan, mot phan chiia dinh A va phan kia chiia khoi da dien loi co D dinh con lai, ta co D - C + M = 2
So dinh D' = D + 1 so canh C = C + n, s6 mat M ' = M + n - 1
Do do: B' - C + M' = (B + 1) - (C + n) + (M + n -1) = B - C + M = 2
Trang 9Ta co dac s6 O-le: D - C + M = 2 nen D + M = 9 V i D > 4, M > 4 nen hoac D = 4, M = 5 hoac D = 5, M = 4
Voi D = 4 thi khoi da dien loi la ru dien: loai
Voi M = 4 thi khoi da dien loi la tu dien: loai
Vay khong ton tai khoi da dien loi co 7 canh
V i du 9: Cho khoi da dien Chung minh tong so do cac goc ciia cac mat la
T = 2( C - M ) 7 t
Giai Goi Cj la so canh ciia mat thu i, i = 1, 2, ,M
M f M \
T a c 6 T = £ ( C , - 2 ) T T = £ C , - 2 M n = (2C -2 J v l > = 2(C - M ) T T
V i du 10: Hay phan chia mot khoi hop thanh nam khoi tir dien
Giai
Co the phan chia khoi hop
ABCD.A'B'C'D' thanh nam kh6i
tii dien sau day: ABDA', CBDC,
B'A'C'B, D'A'C'D, B D A ' C
V i du 11: Hay phan chia mot khoi tii dien thanh bon khoi tir dien bdi hai mat phang
Giai Cho khoi t i i dien ABCD Lay diem M
nam giua A va B, diem N nam giua C
va D Bang hai mat phang (MCD) va
(NAB), ta chia khoi t i i dien da cho
thanh bon khoi t i i dien: A M C N ,
A M N D , BMCN, B M N D
D A N G 2: PHEP D O I HINH
- Mot phep bien hinh F trong khong gian duoc goi la phep ddi hinh neu
no bao toan khoang each giua hai diem bat ki: neu F bien hai diem bat ki
M , N lan luot thanh hai diem M', N ' thi M'N' = M N
Phep ddi hinh bien dudng thang thanh dudng thang, mat phang thanh mat phang
Trang 10Hop thanh cua nhirng phep ddi hinh la phep ddi hinh
'- Phep tinh tiin: Phep tinh t i i n theo vecto v la phep bien hinh bien moi diem M thanh d i i m M ' sao cho M M ' = v
Phep doi xiing qua dudng thang (phep doi xung true): Cho dudng thang
d, phep doi xung qua dudng thang d la phep bien hinh bien moi diem thuoc
d thanh chinh no va bien moi diim M khong thuoc d thanh diem M ' sao cho trong mat phang (M, d), d la dudng trung true cua doan thang M M '
Phep doi xung qua mot diem (phep doi xung tam): Cho diem O, phep ddi xung qua diem O la phep bien hinh bien moi diem M thanh diem M ' sao cho OM + O M ' = 0 , hay O la trung d i i m cua M M '
Phep ddi ximg qua mat phang (P) la phep b i l n hinh bien moi diem thudc (P) thanh chinh nd va bien mdi diem M khdng thudc (P) thanh diem M ' sao cho (P) la mat phang trung true cua doan thang M M '
Hai hinh H va H' goi la bang nhau neu cd mdt phep ddi hinh bien hinh nay thanh hinh kia -
Ddi vdi cac khdi da dien ldi: Neu phep ddi hinh F bien tap cac dinh ciia khdi da dien ldi H thanh tap cac dinh ciia khdi da dien ldi H' thi F bien H thanh H'
Dinh ly: Hai hinh t i i dien ABCD va A'B'C'D' bang nhau neu chiing cd cac canh tuong ung bang nhau, nghia la A B = A'B', BC = B'C, CD = CD',
D A = D'A', AC = A ' C , BD = B'D'
V i du 1: Cho t i i dien ABCD Chiing td rang phep ddi hinh bien mdi diem A,
B, C, D thanh chinh nd phai la phep ddng nhat
Giai Gia sir phep ddi hinh f bien cac diem A, B, C, D thanh chinh cac diem
do, tiic la f(A) = A, f(B) = B, f(C) = C, f(D) = D Ta chiing minh ring f bien diem M bat ki thanh M That vay gia sir M ' = f ( M ) va M ' khac vdi
M Khi do vi phep ddi hinh khdng lam thay ddi khoang each giua hai
d i i m nen A M = A M ' , B M = B M ' , C M = CM', D M = D M ' , suy ra bon diem A, B, C, D nam tren mat phang trung true ciia doan M M ' , dieu do trai vdi gia thiet ABCD la hinh tii dien Vay M ' triing vdi M va do do f la phep ddng nhat
V i du 2: Cho hai tii dien ABCD va A'B'C'D' cd cac canh tuong img bang nhau:
AB = A'B', BC = B'C, CD = CD', DA = D'A', DB = D'B', AC = A'C Chung minh rang cd khdng qua mdt phep ddi hinh bien cac diem A, B, C, D lan luot thanh cac diim A', B', C, D'
Giai Gia sir cd hai phep ddi hinh f j va f2 deu bien cac diem A, B, C, D lan luot thanh cac diem A', B', C, D' NeU f i va f2 khac nhau thi cd it nhat mdt diem M sao cho neu M i = f\(M) va M2 = f 2( M ) thi M | va M2 la hai
d i i m phan biet Khi dd vi f, va f2 deu la phep ddi hinh nen A ' M i = A M
Trang 11ya A' M2 = A M , vay A ' M i = A ' M 2, tuong tu B'M, = B ' M2, C'Mi = C ' M2, D'M, = D' M2, do do bon diem A', B', C, D' cung nam tren mat phang trung true ciia doan thing M ) M2, trai voi gia thiet A'B'C'D' la hinh tu dien Do do vdi moi diem M ta deu co f i ( M ) = f2( M ) , tiic la hai phep ddi hinh fi va f2 trung nhau
Vay co khong qua mot phep ddi hinh bien cac diem A, B, C, D lan luot thanh cac diem A', B', C , D'
V i d u 3 :
a) Cho hai diem phan biet A, B va phep ddi hinh f bien A thanh A, bien
B thanh B Chiing minh rang f bien moi diem M nam tren dudng thang A B thanh diem M
b) Cho tam giac ABC va phep ddi hinh f bien tam giac ABC thanh chinh
no, tiic la f(A) = A, f(B) = B, f(C) = C Chiing minh rang f bien moi diem M ciia mp(ABC) thanh chinh no, tiic la f ( M ) = M
Giai a) Ta co f ( A ) = A, f(B) = B Gia sir diem M thuoc dudng thang A B va
f ( M ) = M' Khi do M ' thuoc dudng thing A B va A M = A M ' , B M = BM' Suy ra M ' triing M , tiic la f bien M thanh chinh no
Vay f bien moi diem M nam tren dudng thang A B thanh chinh diem M b) V i f(A) = A, f(B) = B va f(C) = C nen f bien mp(ABC) thanh mp(ABC)
Bdi vay neu M thuoc mp(ABC) va f(M) = M ' thi M ' thuoc mp(ABC) va
A M = A M ' , B M = BM', C M = CM' Neu M ' va M phan biet thi ba diim
A, B, C thuoc dudng thang trung true ciia doan thang M M ' tren mp(ABC), trai vdi gia thiet ABC la tam giac Vay f(M) = M
V i du 4:
a) Cho hai tam giac bing nhau ABC va A ' B ' C (AB = A'B', BC = B'C,
AC = A ' C ) Chiing minh rang co diing hai phep ddi hinh, moi phep bien tam giac ABC thanh tam giac A'B'C
b) Cho tam giac ABC Co nhung phep ddi hinh nao bien tam giac ABC thanh chinh no?
Giai a) Tren dudng thang a vuong goc vdi mp(ABC) tai
A lay diem D khac A, tren dudng thang a' vuong
goc vdi mp(A'B'C) tai A' co hai diem phan biet
Di va D2 sao cho A'Di = A ' D2 = AD
Ta co cac hinh tii dien ABCD, A'B'C'D) va
A ' B ' C D2 co cac canh tuong ung bang nhau Neu f
la phep ddi hinh bien tam giac ABC thanh tam
giac A'B'C thi hoac f bien D thanh Di hoac f bien
D thanh D2
Trang 12Vay co dung hai phep doi hinh bien tam giac ABC thanh tam giac
A'B'C Do la phep ddi hinh f, bien tu dien ABCD thanh tu dien A'B'CD,
va phep ddi hinh f2 b i l n tu dien ABCD thanh tu dien A'B'CD2
b) Day la trudng hop rieng ciia a) khi hai tam giac ABC va A'B'C trung
nhau Vay ta co hai phep ddi hinh bien ABCD thanh chinh no: do la phep
dong nhat va phep doi xiing qua mp(ABC)
V i du 5: Cho t i i dien deu ABCD va phep ddi hinh f bien ABCD thanh
chinh no, nghTa la bien moi dinh ciia t i i dien thanh mot dinh ciia t i i dien
Tim tap hop cac diem M trong khong gian sao cho M = f ( M ) trong cac
trudng hop sau day:
a) f(A) = B, f(B) = C, f(C) = A b) f(A) = B, f(B) = A, f(C) = D
c) f(A) = B, f(B) = C, f(C) = D
Giai a) Theo gia thiet f(A) = B va f(B) = C, f(C) = A Do do f(M) = M khi va chi khi
M A = M B = MC Suy ra tap hop cac diem M la true ciia dudng tron ngoai
tiep tam giac ABC
b) Theo gia thiet f(A) = B, f(B) = A, f(C) = D Do do f(M) = M khi va chi khi
M A = M B va MC = MD, tiic la M dong thdi nam tren cac mat phang trung
true ciia AB va CD Suy ra tap hop cac diem M la dudng thang di qua trung
diem cua AB va CD
c) Theo gia thiet f(A) = B, f(B) = C, f(C) = D Do do f(M) = M khi va chi khi
M A = M B = MC = MD Suy ra tap hop cac diem M gom mot diem duy nhat
la trong tam tii dien ABCD
V i du 6: Chiing minh rang cac phep tinh tien, phep doi xiing tam la cac phep
ddi hinh
Giai
- Neu phep tinh tien theo vecto v bien hai diem M , N lan luot thanh hai diem
M', N thi MM*' = NN*' = v*, suy ra M N = WW' va do do M N = M'N'
Vay phep tinh tien la mot phep ddi hinh
Neu phep doi xiing tam O bien hai diem M , N lan luot thanh hai diem
M ' , N ' thi O M ' = - O M O N' = - O N
Suy ra: M' N ' = ON' - OM' = - O N + OM = N M
Do do M ' N ' = M N , suy ra phep doi xung tam O la mot phep ddi hinh
V i du 7: Chiing minh rang cac phep doi xiing true, doi d M'
ximg qua mat phang la cac phep ddi hinh
Giai M Gia sir phep doi ximg qua dudng thang d
bien hai diem M , N lan luot thanh hai diem
M ' , N ' Goi H va K lan luot la trung diem
M N + M ' N ' = 2HK, M N - WW' ™
Trang 13Gia sir phep doi xung qua mat phang (P) bien M , N thanh M ' , N ' Neu
M; N thuoc (P) thi M ' = M , N ' s N nen M'N' = M N
Neu co it nhat mot trong hai diem M , N khong nam tren (P) thi qua bon diem M , N , M ' , N ' co mot mat phing (Q) ( M M1 va N N ' cimg vuong goc vdi (P) nen song song vdi nhau) Goi A la giao tuyen ciia (P) va (Q) thi trong mp(Q), phep doi xung qua dudng thang A bien hai diem M N thanh hai diem M ' va N ' nen M N = M'N'
V i du 8: Cho hai dudng thang song song a va a1
, hai mat phang (P) va (P') cimg vuong goc vdi a Tim phep tinh tien bien a thanh a' va bien (P) thanh (P')
Giai Goi O la giao diem ciia a va (P), O' la giao diem ciia a' va (P) Khi do phep tinh tien theo vecto v = OO ' se bien a thanh a' va bien (P) thanh (P')
V i du 9: Cho t i i dien ABCD noi tiep mat cau (S) ban kinh R = A B , mot diem
M thay doi tren mat cau Goi C, D', M ' la cac diem sao cho: CC' = DD'
= M M1
= AB Chung minh rang neu BC'D'M' la hinh tir dien thi tam mat cau ngoai tiep t i i dien do nam tren (S)
Giai Phep tinh tien T theo vecto v = AB bien A thanh B, C thanh C, D thanh D'
va M thanh M', tiic la bien t i i dien A C D M thanh t i i dien BC'D'M', do do T bien tarn O ciia mat cau (S) ngoai tiep tii dien A C D M thanh tam O' ciia mat cau ngoai tiep tti dien BC'D'M', tiic la OO ' = v = AB V i OO' = AB = R nen diem O' nam tren mat cau (S)
V i du 10: Chung minh rang hop thanh ciia cac phep tinh tien la mot phep tinh tien
Giai Gia sir Ti va T2 lan luot la cac phep tinh tien theo vecto va Neu
Ti b i l n d i i m M thanh diem M i va T2 bien M , thanh M 2 thi hop thanh T2
o T] bien diem M thanh diem M2
V i M M j = va M:M2 = nen M M 2 = M M j + M XM2 = + V2
Vay T2 o Ti la phep tinh tien theo vecto vx + v 2
Mot each tong quat: hop thanh ciia n phep tinh tien da cho la mot phep tinh tien co vecto tinh tien bang tong cac vecto ciia cac phep tinh tien da cho
Trang 14V i du 11: Cho h i dien ABCD Goi A i B i C, D, lan luot la trong tam cac tam giac BCD, ACD, A B D , ABC V o i diem M bat ki trong khong gian
ta goi M , la anh ciia M qua phep tinh tiin AA^ M2 la anh ciia M i qua phep tinh tien theo BB^ M3 la anh ciia M2 qua phep tinh tien theo CCX,
M4 la anh ciia M 3 qua phep tinh tiin theo Dl\ Chimg minh rang M triing voi M4
V i du 12: Cho phep doi hinh f thoa man dieu kien phep hop thanh ciia f va f
la phep dong nhat: f 0 f = e, biet rang co mot diem I duy nhat sao cho f bien I thanh chinh no Chiing minh rang f la phep doi xiing tam
Giai Voi mot diem M bat k i khac I , ta goi M ' la anh ciia M qua f, khi do M va
M ' khong triing nhau V i f o f = e nen f bien M ' thanh M , vay f bien doan thang M M ' thanh doan thang M ' M T i i do suy ra f bien trung diem doan thang M M ' thanh chinh no va vi vay, theo gia thiet trung diem M M ' phai
la diem I Vay f la phep doi xiing qua tam I
V i du 13: Chung minh rang hop thanh ciia mot so chan cac phep doi ximg tam la mot phep tinh tien, hop thanh ciia mot so le ciia phep doi ximg tam la phep doi xiing tam
Giai
- Gia sir Di va D2 la cac phep doi xiing tam co tam lan luot la Oi va 0 2 Goi M la mot diem bat k i M i = D i( M ) va M ' = D2( M i ) thi phep hop thanh D2oDi bien M thanh M '
Ta co: M M ' = M M , + MXM ' = 2 0 ^ + 2 M102 = 2 0 x02
Suy ra D2oDi la phep tinh tien theo vecto v = 2 0 x02
Voi diem M ta lay M i doi xiing voi M qua O, va lay M ' sao cho MXM ' = v Khi do hop thanh T- o Do bien M thanh M' Neu goi I la trung diem cua MM' thi 01 = — Vay diem I co dinh Suy ra T- o D0 la phep d6i xiing
2 qua I
Trang 15• V Tuong tir Do o T- la phep doi xung qua diem I' ma OI = - —
Vi hop thanh ciia hai phep d6i xiing tam la mot phep tinh tien nen hop
thanh ciia 2n phep ddi ximg tam la hop thanh ciia n phep tinh tien va do
do la mot phep tinh tien
Hop thanh ciia 2n + 1 phep d6i xiing tam la hop thanh cua mot phep tinh tien va mot phep doi ximg tam nen la mot phep doi ximg tam
V i du 14: Chiing minh rang mot hinh tir dien khong the co tam doi xiing, tong quat mot hinh chop khong co tam doi ximg
Giai Trudc het ta thly rang neu mot hinh chop co tam doi xung O thi so mat chin That vay neu M la d i i m bat ki thuoc mot mat nao do ciia hinh chop, thi diem M ' doi xiing vdi M phai thuoc mot mat hinh chop (vi phep d6i xiing bien mat thanh mat, canh thanh canh va dinh thanh dinh) Dieu
do chiing to moi cap mat ciia hinh chop ling vdi mot doan thang MM' Vi
so cac doan nhu vay la nguyen, nen so mat la chan Vay day ciia hinh chop co tam doi ximg da giac vdi so le canh nen O khong thuoc mat phang day va khong thuoc cac mat ben Goi (T) la thiet dien ciia hinh chop di qua O va song song vdi day ((T) ton tai vi phep doi xiing qua O bien dinh hinh chop thanh diem thuoc day chop), khi do (T) la da giac co tam doi ximg lai co so le canh (vi cac canh ciia (T) chi nam tren cac mat xung quanh ciia hinh chop) Mau thuan do chiing minh bai toan, va suy cho tii dien bat ki
V i du 15: Cho mat phang (P) va tii dien ABCD Vdi moi diem M thuoc (P) ta xac dinh diem N theo cong thiic: MA + MB + MC + MD = 2MN (1) Tim tap hop N , khi M di dong trong (P)
Giai Goi G la trong tam ciia tii dien ABCD thi G co dinh
(1) » 4MG = 2MN <=> MG = GN <=> GM = - G N
Do do N la anh ciia M qua phep doi ximg tam G
Vay tap hop N la mat phang doi xung vdi (P) qua G
V i du 16: Chiing minh rang:
a) Hop thanh ciia hai phep d6i xiing true co cac true doi xiing song song
la mot phep tinh tien
b) Hop thanh ciia mot phep ddi xiing true va mot phep tinh tiin theo vecto vuong goc vdi true d6i xiing la mot phep doi xiing true
Trang 16Giai a) Gia sir Da va Db la cac phep doi xirng true co
true lan luot la cac duong thang a va b song
song voi nhau Lay hai diem I va J lan luot
nam tren a va b sao cho IJ _L a V o i diem M
bat k i , ta gpi M , = Da( M ) va M ' = Db( M , ) thi
phep hop thanh Db o D a bien M thanh M' Neu
gpi H la trung diem cua M M , va K la trung
diem ciia M | M ' thi:
M M ' = MMl + MXM ' = 2HM7 + 2Mji = 2HK = 2IJ
Vay hop thanh Db o Da chinh la phep tinh tien theo vecto v = 2IJ
b) Gia sir Da la phep doi xiing qua duong thang a, T- la phep tinh tien theo vecto v vuong goc voi a Gpi b la anh ciia a qua phep tinh tien theo vecto thi phep tinh tien T- la hpp thanh ciia hai phep doi ximg Da va
Db qua cac duong thang a va b: T- = Db o Da
Bdi vay T- o Da = Db o D a o D a = Db o e = Db
Gpi b' la anh cua a qua phep tinh tien theo vecto — thi phep tinh tien T- la
hpp thanh cua hai phep doi ximg Db1 va Da qua cac duong thang b' va a:
T- = Da o Db>
Do do: Da o T- = D a o D a o Db> = e o Db> = D b'
Vi du 17: Cho tii dien deu ABCD Gpi M , N lan lupt la trung diem cac canh AB
va CD Gpi O la trung diem ciia doan MN Chung minh rang vdi moi diem K nam trong tii dien ta co KA + KB + KC + KD > OA + OB + OC + OD
Giai
Ta co M N la true doi xiing ciia tii dien deu ABCD
Gpi K' la diem doi xiing vdi K qua M N , H la giao ciia K K ' va M N Ta co
KA + KB = AK + AK' > 2AH va KC + KD = CK + CK > 2CH Ta chiing minh rang A H + CH > OA + OC
Xet trong mat phang (MCD), diem A' sao cho tia M A ' vuong goc vdi
M N , ngupc chieu vdi tia NC va dp dai M A ' = M A
Ta co HA' = H A nen HA + HC = HA' + HC > A'C V i A'C di qua O nen A'C - OC + OA' - OC + OA
Trang 17Giai Goi I , J la trung diem canh ben AA' va giao cac duong cheo hinh chu nhat BCC'B' Ta co IJ la true ddi xung cua hai doan AC va A'B', do do M
va M ' doi xung voi nhau qua IJ Vay tap hop cac trung diem ciia M M ' thuoc doan IJ
V i du 19: Goi D la phep ddi xung qua mat phang (P) va a la mot duong thang nao do Gia sir D bien duong thang a thanh duong thang a' Trong truong hop nao thi:
a) a triing voi a' b) a song song voi a'
c) a cat a' d) a va a' cheo nhau?
Giai a) a triing voi a' khi a nam tren mp(P) hoac a vuong goc voi mp(P)
b) a song song voi a' khi a song song voi mp(P)
c) a cat a' khi a cat mp(P) nhung khong vuong goc voi (P)
d) a va a' khong bao gio cat nhau
(Q) sao cho A B _L (P) V o i mot diem M bat k i ,
ta goi M i la diem doi xiing voi M qua mp(P) va
M ' la diem doi ximg voi M i qua mp(Q)
Goi H va K lan luot la trung diem cua M M ] va
M , M ' thi taco:
M M ' = M M , + M , M 1 = 2 (HTVL\ + M T K ) = 2HK = 2AB
Vay phep hop thanh la phep tinh tien theo
vecto 2 A B
b) Goi d la giao tuyen ciia (P) va (Q)
Voi mot diem M bat ki, ta goi M i la
diem doi ximg voi M qua mp(P) va
M' la diem doi xung ciia M i qua
mp(Q)
Neu M nam tren (P) hoac tren (Q)
thi thay M ' la diem doi xiing ciia M
qua d
Neu M khong nam tren ca (P) va (Q) thi ba diem M , M i va M ' xac dinh mat phang (R) vuong goc voi (P) va (Q), do do vuong goc voi d
A» 1 .H
Trang 18Goi giao tuyen cua (R) voi (P) va (Q) lan luot la p q, con O la giao diem cua p va q
Xet trong mat phing (R) thi diem M ' la anh cua diem M qua hop thanh cua phep doi xung qua duong thang p va phep doi xung qua duong thang q Suy
ra O la trung diem ciia MM'
Mat khac M M ' _L d nen phep hop thanh la phep doi xung qua dudng thang d
V i du 21: Cho mat phang (P) va cho phep ddi hinh f co tinh chat: f bien diem
M thanh diem M khi va chi khi M n i m tren (P) Chung to rang f la phep doi xung qua mat phang (P)
Giai Phep ddi hinh f bien moi diem M nam tren (P)
thanh M V d i diem A khong nam tren (P) ta
goi a la dudng thang di qua A va vuong goc
vdi (P) Neu H la giao diem cua a va (P), vi
f(H) = H nen f bien a thanh dudng thang di
qua H va vuong goc vdi (P), vay f(a) = a
Tir do suy ra diem A bien thanh diem A' nam tren a,
A' khac vdi A va HA = HA'
Vay (P) la mat phang trung true ciia doan thang AA' Suy ra f la phep doi xung qua mp(P)
V i du 22: Tim cac mat phang doi ximg ciia cac hinh sau day:
a) Hinh chop tii giac deu
b) Hinh chop cut tam giac deu
c) Hinh hop chu nhat ma khong co mat nao la hinh vuong
Giai a) Hinh chop t i i giac deu S.ABCD co 4 mat phang doi ximg: mp(SAC), mp(SBD), mat phang trung true ciia A B (dong thdi ciia CD) va mat phang trung true ciia A D (dong thdi ciia BC)
b) Hinh chop cut tam giac deu ABC.A'B'C co ba mat phang doi xiing, do la ba mat phang trung true ciia ba canh AB, BC CA
c) Hinh hop chir nhat ABCD.A'B'C'D' (ma khong co mat nao la hinh vuong) co ba mat phang doi xiing, do la ba mat phang trung true ciia ba canh A B A D , AA'
Trang 19V i d u 23:
a) Tim cac true ddi xung cua hinh tu dien deu ABCD
b) Tim tat ca cac mat phang ddi xung cua hinh tu dien deu ABCD
a)
b)
B' Giai
i ^
A ; 1 — - \ D1
C Gia sir d la true doi xung cua tir dien deu ABCD, tire la phep doi ximg D qua duong thang d bien cac dinh ciia tir dien thanh cac dinh ciia tir dien Trudc het ta nhan thay rang true doi ximg d khong the la dudng thang di qua hai dinh nao do cua hinh tir dien, vi hien nhien phep doi ximg qua dudng thang d nhu the khong bien hinh tir dien thanh chinh no
Bay gid ta chung to rang true doi ximg d cung khong di qua mot dinh nao ciia tii dien That vay, neu d di qua A thi vi B khong the nam tren d nen B bien thanh C hoac D Neu B bien thanh C thi C bien thanh B nen
D bien thanh D va do do d di qua A va D, vo li Neu B bien thanh D thi
D bien thanh B va do do C bien thanh C va d di qua A va C, vo li
Vay phep doi xung D qua dudng thang d bien diem A thanh mot trong ba diem B, C hoac D.Do do tir dien deu co 3 true doi xiing la 3 dudng thang
di qua trung diem 2 canh doi dien (dudng trung binh)
Gia sir a la mat phang doi ximg ciia tir dien deu ABCD, tiic la phep doi xiing D„ bien tap hop {A, B, C, D} thanh chinh no V i Da khong the bien moi dinh thanh chinh no (vi khi do D„ la phep dong nhat) nen phai co mot dinh, A chang han, bien thanh mot dinh khac, B chang han Khi do a
la mat phang trung true ciia doan thang AB (hien nhien a di qua C va D) Vay t i i dien ABCD co 6 mat phang doi xiing, do la cac mat phang trung true ciia cac canh
V i d u 2 4 : Cho hinh lap phuong ABCD.A'B'C'D' Tim
a) Tam doi ximg b) Mat doi ximg c) True doi ximg
Giai a) Tam ddi xung O la giao diem ciia 4 dudng cheo A C , BD', CA' va DB' b) Gpi a la mat doi xiing ciia hinh lap phuong thi phep doi xiing qua a bien hinh vuong ABCD thanh chinh no, hoac thanh hinh vuong chung canh hoac thanh hinh vuong A'B'C'D'
Tir do thi hinh lap phuong co 9 mat phang doi ximg la 3 mat phang trung true ciia cac canh va 6 mat phang chua hai canh doi
9 true ddi ximg gom 3 true ciia cac mat va 6 dudng thang di qua trung diem cua hai canh doi
c)
Trang 20V i du 25: Cho hinh lap phuong ABCD.A'B'C'D' Chung minh rang:
a) Cac hinh chop A.A'B'C'D' va C'.ABCD bang nhau
b) Cac hinh lang tru ABC.A'B'C va AA'D'.BB'C bang nhau
Giai a) Goi O la tam ciia hinh lap phuong V i phep doi xiing tam O bien cac dinh ciia hinh chop A.A'B'C'D' thanh cac dinh ciia hinh chop C'ABCD Vay hai hinh chop do bang nhau
b) Phep doi xung qua mp(ADC'B') bien cac dinh ciia hinh lang try ABC A'B'C thanh cac dinh cua hinh lang tru AA'D'.BB'C nen hai hinh lang tru do bang nhau
V i du 26: Chung minh 2 hinh lap phuong co canh bang nhau thi bang nhau
Giai Gia sir ABCD.A'B'C'D' va MNPQ.M'N'P'Q' la hai hinh lap phuong co canh deu bang a Hai tii dien ABDA1 va M N Q M ' co cac canh tuong ling bang nhau nen bang nhau, tuc la co phep ddi hinh F bien cac diem A, B,
D, A' lan luot thanh M , N , Q, M ' V i F la phep ddi hinh nen F bien hinh vuong thanh hinh vuong, do do F bien diem C thanh diem P, bien diem B' thanh N', bien diem D' thanh Q' va bien diem C thanh P' Vay hai hinh lap phuong da cho bang nhau
D A N G 3: KHOI D A DIEN DEU V A PHEP VI TU
• Cho so k khong doi khac 0 va mot diem O co dinh Phep bien hinh trong khong gian bien moi diem M thanh diem M ' sao cho O M ' = k OM goi la phep v i tu Diem O goi la tam vi tu, so k goi la ti so v i tu
Neu phep v i tu ti so k bien hai diem M , N thanh hai diem M ' , N ' thi
Khoi tii dien deu la loai {3; 3}; Khoi bat dien deu la loai {3; 4}
Kh6i lap phuong la loai {4; 3}; Khoi 20 mat deu la loai {3; 5}
Kh6i 12 mat deu la loai {5; 3}
Khoi tii dien deu Khoi bat dien deu Khoi lap phuong
Trang 21Khoi nhi thap dien deu Khoi thap nhi dien deu
Chii y: Be chung minh khoi da dien (K) la khoi da dien deu, ta co the dung dinh nghia cua 1 trong 5 loai khoi da dien hoac dung phep vi tu, khoi (K) la anh cua khoi da dien deu nao do
V i du 1: Chung minh rang phep vi tu bien moi duong thang thanh mot duong thang song song hoac trung voi no, bien moi mat phang thanh mpt mat phang song song hoac triing voi mat phang do
Giai Gia sir phep vi tu V ti so k bien duong thang a thanh dudng thang a1 Lay hai diem phan biet M , N nam tren a thi anh ciia chiing la cac diem
M ' , N1 nam tren a' Theo tinh chat ciia phep vi tu thi M ' N ' = k M N Do
do hai dudng thang a va a1 song song hoac triing nhau
Gia sir phep vi tu V bien mp(a) thanh mp(oc') Lay tren (a) hai dudng thang cat nhau a va b thi anh ciia chiing qua V la hai dudng thang a' va b' nam tren (a') va lan luot song song hoac triing vdi a va b Tir do suy ra hai mat phang (a) va (a1) song song hoac triing nhau
V i du 2: Cho phep vi nr V tam O ti so k * 1 va phep v i tu V tam O' ti so k' Chiing minh rang neu kk' = 1 thi phep hpp thanh V o V la mpt phep tinh tien
Giai Gpi V la phep v i tu tam O ti so k, V la phep v i tu tam O' ti so k' Vdi moi diem M ta lay M i sao cho O M , = k O M roi lay diem M ' sao cho O' M' = k' 01
M , thi phep hpp thanh V o V bien diem M thanh diem M'
Trang 22V i du 3: Cho phep vi tu V tam O ti s6 k va phep vi tu V tam O' ti so k' voi kk' * 1 Goi F = V' o V Chung minh rang:
a) Co diem I duy nhat sao cho F(I) = I
b) F la phep v i tu tam I ti so kk'
Giai a) Gia sir F(I) = I Dieu do xay ra khi va chi khi neu V bien I thanh I i thi V bien I , thanh I , tire la: neu OL~ = kOI thi O7! = k' O' I , hay:
OI - OO' = k (Of, - OO ) = k '(kOI - OO )
<=> (1 - kk') OI = (1 - k )00"' <=> Ol
1 - k k ' Vay diem I duoc xac dinh duy nhat voi kk' * 1
b) V o i diem M bat ki, goi M i la anh cua M qua phep v i tu V M ' la anh ciia
M , qua phep v i tu V , thi F bien M thanh M' Khi do ta co OM^ = kOM
Vay F la phep v i tu tam I ti so kk1
V i du 4: Cho phep vi tu V tam O ti so k * 1 va mpt phep tinh tien T theo vecto v Dat F = T o V va F' = V o T Chimg minh rang:
a) Co mpt diem I duy nhat sao cho F(I) = I va diem I ' duy nhat sao cho
F '(T) = r
b) F la phep v i tu tam I ti so k, F ' la phep v i tu tam I' ti so k
Giai a) Gia sir F(I) = I Dieu do xay ra khi va chi khi neu V bien I thanh F thi T bien
Ii thanh I , tuc la: neu 0 1 , = kOI thi 1,1 = v Tir do suy ra:OI - 01, = v hay 01 - kOI = v , do do 01
l - k Vay diem I xac dinh duy nhat, voi k * 1
Gia sir F'(I') = I' Dieu do xay ra khi va chi khi neu T bien I' thanh I'i thi
V bien I'i thanh I ' , tiic la: neu I T ' i = v thi 0 1 ' = k O I ' , Tir do suy ra:
o f = k(oT' + r T \ )
hay (1 -k)0T =klTi=k V do do OF
l - k Vay diem I' xac dinh duy nhat, voi k * 1
b) V o i moi diem M bat ki ta lay diem M , sao cho OM, = k O M , roi lay diem M ' sao cho M , M ' = v Khi do phep hpp thanh F = T o V bien M
Trang 23thanh M ' Ta xac dinh diem O' sao cho OO'
dinh khong phu thuoc M va co:
V i hai vecto A ' C va B ' C khong ciing phuong nen dang thiic tren xay
ra khi va chi khi n — k
BC
m - k = 0, tuc la n = m, vay AC = k A' C' va
k B ' C
Cac dang thiic con lai duoc chiing minh tuong tu
Xet truong hop k :
•AA' = BB"' = CC*'
1 Khi do AB = A ' B ' BC = B ' C nen
Suy ra phep tinh tien theo vecto v = A A ' bien t i i dien A B C D thanh tii dien A'B'CD'
Neu k * 1 thi hai duong thang AA' va BB' cat nhau tai mot diem 0 nao
do Khi do phep vi tu V tam 0 ti so k bien t i i dien ABCD thanh tii dien A'B'C'D'
V i du 6: Cho tii dien ABCD Diem M luu dong trong
tam giac ABC Cac diem A', B', C lan luot thuoc
cac mat (BCD), (CAD), (ABD) sao cho M A ' // A D ,
MB' // BD, M C // CD Tim tap hop cac trong tam
ciia tam giac A'B'C
Giai
Ta chiing minh: DAT' + DET + D C = 2DM
V i G la trong tam tam giac A'B'C nen
DA? + DlT + D C = 3DG
Trang 24Do do 3DG = 2DM nen DG = - DM
3 Phep vi tu tam D ti s6 k = - bien M thanh G nen tap hop cac diem G la anh ciia tam giac ABC qua phep vi tu do
V i du 7: Chiing minh chi co nam loai khoi da dien deu do la cac loai {3; 3), {4;3|, {3;4}, (5;3), (3;5)
Giai Gia sir khoi da dien deu loai {n; p} co D dinh C canh va M mat V i moi mat co n canh nen M mat se co n M canh nhimg moi canh lai chung cho hai mat nen 2C = nM V i moi dinh chung cho p canh nen D dinh se co
pD canh, nhung moi canh lai di qua hai dinh nen 2C = pD
5) n —2 = 1, p — 2 = 3 hay n = 3, p = 5, ta co khoi da dien deu loai {3; 5} Khi do D = 12, C = 30, M = 20: Khoi hai muoi mat deu (khoi nhi thap dien deu)
V i du 8: Hai dinh ciia mot khoi tam mat deu duoc goi la hai dinh doi dien neu chiing khong ciing thuoc mot canh ciia khoi do Doan thang noi hai dinh doi dien goi la dudng cheo ciia khoi tam mat deu Chiing minh rang trong khoi tam mat deu thi ba dudng cheo cat nhau tai trung diem cua mdi dudng; doi mot vuong goc vdi nhau va bang nhau
Giai Gia sii ABCDEF la khoi tam mat deu Ba dudng cheo ciia no la EF, AC
va BD Bon diem A, B, C, D each deu hai diem E va F nen ciing nam tren mot mat phang
Trang 25c) True doi xung
Vay ABCD la hinh thoi, ngoai ra E
each deu A, B, C, D nen hinh thoi do
la hinh vuong
Suy ra hai duong cheo AC va BD cat
nhau tai trung diem cua moi dudng,
chiing vuong goc vdi nhau va co do
dai bang nhau Tuong tu doi vdi cac
cap dudng cheo con lai
V i du 9: Cho hinh bat dien deu Tim:
a) Tam doi xiing b) Mat doi xiing
Giai Hinh bat dien deu ABCDEF co tam doi xung O la giao diem ciia 3 dudng cheo AC, BD va EF
Hinh bat dien deu ABCDEF co tat ca 9 mat phang doi xiing: ba mat phang (ABCD), (BEDF), (AECF) va 6 mat phang, moi mat phang la mat phang trung true ciia hai canh song song (chang han A B va CD)
Hinh bat dien deu ABCDEF co 9 true doi xiing: ba true ciia mat (ABCD), (BEDF), (AECF) va 6 dudng thang di qua 2 trung diem ciia 2 canh song song
V i du 10: Cho hinh t i i dien ABCD Goi A', B', C, D' lan luot la trong tam ciia cac tam giac BCD, ACD, ABD, ABC Chiing minh rang hai t i i dien ABCD va A'B'C'D' ddng dang Suy ra neu ABCD la t i i dien deu thi A'B'C'D' cung la tir dien deu
Giai Goi G la trong tam ciia tii dien ABCD
3
G D '=- - G D
3 Suy ra phep v i tu V tam G, ti so k = — bien cac diem A, B, C, D lan
3 luot thanh cac didm A', B', C, D'
Vay V bidn tii dien ABCD thanh tii dien A'B'C'D' nen 2 t i i dien do ddng dang => dpcm
V i du 11: Cho hai tii dien ABCD va A'B'C'D' co cac canh tuong ling ti le:
A ' B ' B ' C _ C D ' _ D ' A _ A ' C _ B ' D ' _
AB " BC " CD ~ DA ~ AC ~ BD
Chiing minh hai tii dien dong dang
Giai Xet phep vi nr V tam O nao do va co ti so k
Goi A i B , C , D | la anh ciia ABCD qua V
Ta co: AiBi = kAB, B1Cl = kBC, C D , = kCD,
Trang 26D i A i = kDA, A i d = kAC, B1D1 = kBD
Theo gia thiet thi A , B , = A'B', B,C, = B'C, CjD, = CD', D,A, = D'A',
AiC, = A'C, B,D, = B'D', do do hai at dien A , B , C D i va A'B'C'D' bang nhau
Vay hai tu dien ABCD va A'B'C'D' ddng dang
V i du 12: Chung minh rang hai hinh lap phuong bat ki deu dong dang voi nhau
Giai Gia sir hinh lap phuong ABCD.A'B'C'D' canh a va hinh lap phuong
MNPQ M'N'P'Q' canh b
b Xet phep vj tu V tam O nao do va ti so k = — Khi do anh cua hinh lap
a phuong ABCD.A'B'C'D' canh a thanh hinh lap phuong EFGH.E'F'G'H'
co canh la ka = b
Do do hai hinh lap phuong EFGH.E'F'G'H' va MNPQ.M'N'P'Q' co ciing
canh b nen bang nhau
Vay hai hinh lap phuong ABCD.A'B'C'D' va MNPQ.M'N'P'Q' ddng dang
V i du 13: Cho mot khoi tu dien deu Chung minh
rang cac trung diem cua cac canh ciia no la cac
dinh ciia mot khoi tam mat deu
Giai Goi M , N , P, Q, R, S lan luot la trung
diem cua cac canh A B , CD, AC, BD,
AD, BC cua khdi tii dien ddu ABCD
Khi do, tam tam giac MPR, MRQ,
MQS, MSP, NPR, NRQ, NSP la nhung
tam giac deu, chiing lam thanh khoi da
dien voi cac dinh la M , N , P, Q, R, S ma
moi dinh la dinh chung ciia bon canh
Vay do la khoi tam mat deu
V i du 14: Chiing minh tam cac mat ciia mot
khoi tam mat deu la cac dinh ciia mot khoi
lap phuong
Giai Cho khdi tam mat ddu SABCDS'
Goi M , N , P, Q, M ' , N \ P', Q' lan luot
la trong tam ciia cac mat SAB, SBC,
SCD, SAD, S'AB, S'BC, S'CD, S'DA
thi cac tii giac MNPQ, M'N'P'Q',
MNN'M', PQQ'P' NPP'N', MQQ'M'
deu la hinh vuong va moi dinh M , N ,
P, Q, M ' , N ' , P' Q' ddu la dinh chung
ciia 3 canh
Vay MNPQ.M'N'P'Q' la khdi lap phuong
Trang 27C BAI LUYEN T A P
Bai 1: Hay chia mot khoi tu dien thanh sau khdi tii dien bang ba mat phang Bai 2: Cho ba doan A A ' B B ' C C n i m tren 3 duong thing song song va
khong dong phang sao cho : A A ' < B B ' < C C Hay chia hinh da dien
A B C A' B' C thanh mot hinh chop va mot hinh lang tru
HD: qua mut ciia doan ngan nhat, ve mat phang song song voi mat day kia Bai 3: Hay chia mot khoi hop thanh hai khoi lang try, bon khoi lang tru Bai 4: Hay chia mot khoi hop thanh 4 khoi chop
H D : co the diing cac mat cheo
Bai 5: Chiing minh so canh cua mot khoi da dien loi khong nho hon 5 Bai 6: Chiing minh trong mot khoi da dien loi thi tat ca cac goc tam dien,
goc tii dien, .co dinh la dinh ciia khoi da dien deu loi
H D : diing phan chiing
Bai 7: Chiing minh phep dong nhat e trong khong gian la mot phep ddi hinh
H D : diing dinh nghia
Bai 8: Chiing minh phep ddi hinh bien mot mat cau thanh mot mat cau bang no Bai 9: Chiing minh hop thanh cac phep ddi hinh fog la mot phep doi hinh
H D : dting dinh nghia
Bai 10: Cho diem I nam tren dudng thang d, dudng thang d nam trong mat phang (P) Chiing minh phep ddi hinh f bien (P) thanh (P), d thanh d va
co mot diem bat dong duy nhat I la phep doi xiing tam I
Bai 11: Chiing minh mot phep tinh tien co the xem la hop thanh ciia 2 phep doi xiing tam bang nhieu each
Bai 12: Dung 4 diem A, B, C D trong khong gian cho biet 4 trung diem ciia
4 doan A B , BC, CD, D A lan luot la I , J, K, L
Bai 13: Dung 5 diem A, B, C, D, E trong khong gian cho biet 4 trung diem ciia 5 doan A B , BC, CD, DE, EA lan luot la I , J, K, L, M
H D : hop thanh ciia 5 phep doi xiing tam la phep doi ximg tam
Bai 14: Cho hai cap dudng thang cheo nhau a va b, a' va b' co goc va khoang each giua cac cap dudng thang cheo nhau do bang nhau Chiing minh co mpt phep ddi hinh bien dudng thang a thanh a' va dudng thang b thanh b
H D : gpi doan vuong goc chung A B va A ' B ' tir do dung cac tii dien tren hai dudng thang cheo nhau da cho co canh tuong img bang nhau
Bai 15: Trong khong gian cho 4 dudng thang a, b, a b' sao cho a cat b, a" cat b' a // a' b // b' Tim phep tinh tien bien dudng thang a thanh a' va dudng thang b thanh b'
Bai 16: Hpp thanh ciia n phep doi xiing qua cac n mat song song la phep gi? DS: n chin la phep tinh tien con n le la phep doi ximg qua mat phang Bai 17: Cho vecto u co gia song song vdi mat phang (P) Phep hop thanh ciia phep tinh tidn vecto u va phep doi xiing qua mat phang (P) gpi la phep d6i xiing trupt Chiing minh rang: Neu phep doi ximg truol bien
M thanh M ' thi cac trung diem ciia M M ' nam tren mpt mat phing c6 dinh
Trang 28Bai 18: Hop thanh cua n phep ddi xung true qua cac true song song la phep gi?
DS: n chin la phep tinh tien con n le la phep doi ximg true
Bai 19: Chung minh hop thanh ciia 3 phep doi ximg qua 3 mat phang doi mot vuong goc la phep doi ximg tam
Bai 20: Cho tir dien ABCD co cac canh doi bang nhau Goi M , N lan luot la trung diem ciia AB va CD Goi A', B' la hinh chieu cua A, B len CD va C D" la hinh chieu ciia C, D len AB Chirng minh doan A ' C = B ' D ' va A ' D ' = B ' C
H D : diing phep doi xiing true
Bai 21: Tim cac true doi ximg ciia hinh binh hanh, hinh thang can, hinh thoi trong khong gian
Bai 22: Tim cac true doi xiing ciia tam giac deu, tam giac can trong khong gian Bai 23: Cho hinh chop S.ABCD co day la hinh binh hanh va co SA = SC,
SB = SD Chiing minh duong thang di qua dinh S va tam hinh binh hanh
la true doi ximg ciia hinh chop S.ABCD
Bai 24: Cho tir dien ABCD co dien tich hai tam giac ACD va BCD, ABC va ABD bang nhau Chiing minh tir dien ABCD co true doi xiing
H D : true doi ximg di qua trung diem cua AB va CD
Bai 25: Cho hinh lap phuong A B C D A' B ' C ' D ' Xet hinh (H) gdm 3 dudng thang A B , CC" va A ' D ' Chung minh hinh (H) co true doi xiing
Bai 26: Cho hai duong thang d, d' va mat phang (P) Dirng diem A thuoc (P)
va B thuoc d sao cho d' la trung true ciia A B
HD: diing phep doi ximg qua trung true ciia d'
Bai 27: Cho diem A nam ngoai dudng thang d Dung hinh lap phuong
A B C D A ' B ' C ' D ' sao cho dudng thang d di qua tam hai mat song song ciia hinh lap phuong
Bai 28: Cho hinh hop chu nhat A B C D A ' B ' C ' D ' Tren doan AC va B ' D ' lay hai diem thay doi M va N sao cho A M = D ' N Tim tap hop cac trung diem I ciia doan M N
Bai 29: Cho tir dien deu ABCD Lay diem M bat ki trong tam giac ACD, goi
E la giao diem ciia B M vdi mat phang trung true ciia A B Chiing minh
EM + EA > AB
HD: diing phep doi xiing qua mat phang
Bai 30: Tim cac mat doi xiing ciia hinh binh hanh hinh thang can, hinh thoi trong khong gian
Bai 31: Tim cac mat doi ximg ciia tam giac deu, tam giac can trong khong gian Bai 32: Chiing minh mot hinh (H) co diing hai mat phang doi ximg thi hai mat phang do phai vuong goc nhau
H D : diing djnh nghia
Trang 29Bai 33: Chung minh mot hinh (H) co dung mot mat phang doi xung va mot true doi xung thi true doi xung hoac vuong goc voi mat phang do hoac thuoc mat phang do
Bai 34: Chung minh mot hinh (H) co dung mot mat phing doi xung va mot tam doi ximg thi tam doi xung phai thuoc mat phang do
Bai 35: Cho ba mat phang (P), (Q), (R) ciing qua duong thang d V o i diem
M bat k i thuoc (R), goi M ' la anh ciia M qua phep d6i ximg mat phang (P), goi M " la anh ciia M ' qua phep doi xiing mat phang (Q) Tim tap hop cac trung diem I ciia doan M M "
H D : mat phan giac
Bai 36: Cho goc xOy, tim tap hop cac diem M trong khong gian sao cho tia
OM hop voi cac tia Ox, Oy nhiing goc bang nhau
H D : mat doi xiing bien goc xOM thanh goc y O M
Bai 37: Cho hai diem A, B va mat phang (P) T i m diem M thuoc (P) sao
M A + M B be nhat
H D : xet hai truong hop A, B ciing phia, khac phia doi voi (P)
Bai 38: Cho hai diem A, B va mat phang (P) Tim diem M thuoc (P) sao
| M A - MB| Ion nhat
H D : xet hai truong hop A, B ciing phia, khac phia doi voi (P)
Bai 39: Cho hinh hop chu nhat A B C D A' B ' C ' D ' Tim diem M thuoc
m p( A ' B' C' D ' ) sao cho M A + M B + MC + M D be nhat
Bai 40: Cho hinh chop S.ABCD co day la hinh binh hanh va khoang each tir
S den (ABCD) khong doi Tim vi tri ciia S de hinh chop S.ABCD co dien tich xung quanh be nhat
H D : S thuoc mat phang co dinh song song voi (ABCD)
Bai 41: Cho tii dien deu ABCD co canh bang 1 Chiing minh moi thiet dien
co chu vi khong be hon 2
H D : diing phep quay quanh true la cac canh tii dien
Bai 42: Cho hinh lap phuong ABCD.A'B'C'D' co canh bing 1 Chiing minh moi thiet dien luc giac co chu vi khong be hon 3 V2
Bai 43: Cho hai diem A, B va duong thang d Tim diem M thuoc d sao
DS: a + b " c
3
Trang 30Bai 46: Tren mat phang (P) cho doan CD = a, ngoai (P) cho 2 diem A B cung phia ddi voi (P) Tim vi tri doan CD sao cho AC + BD be nhat
H D : diing phep tinh tien vecto CD
Bai 47: Cho diem O nam ngoai hai mat phang (P), (Q) Tim diem M thuoc (P) va N thuoc (Q) sao cho O la trung diem cua M N
H D : diing phep doi xung tam O
Bai 48: Cho mat cau (S) va 4 diim A, B, C, D M o i d i i m M thuoc (S) ta xac dinh d i i m N sao cho 7MN = 2MA + 3MB + 4MC + 5MD Tim tap hop cac diem N
H D : diing tam ti cu
Bai 49: Cho 2 mat cau S(0; R) va S'(0'; R') Tim cac phep vi tu biln mat cau nay thanh mat cau kia
Bai 50: Chung minh phep vi tu bien 2 duong thang cheo nhau thanh 2 duong thang cheo nhau
Bai 51: Cho tir dien ABCD Chiing minh ban kinh mat cau di qua trong tam
4 mat khong nho hon ban kinh mat cau noi tiep
Bai 52: Cho tu dien ABCD Chiing minh ban kinh mat cau ngoai tiep khong nho hon 3 lan ban kinh mat cau noi tiep
H D : diing phep vi tu tam G la trong tam tir dien va ti so k = -1/3
Bai 53: Cho hinh lang try A B C A ' B ' C Goi M , N , P lan luot la trung d i i m ciia B ' C C A ' A ' B ' Chung minh AM>BN, CP dong quy
H D : diing phep vi tu
Bai-54: Cho 3 tia Ox, Oy, Oz va dudng thang d Ba diem thay doi A, B, C lan luot tren 3 tia do sao cho mp(ABC) vuong goc vdi d Tim tap hop trong tam G, true tam H ciia tam giac ABC
Bai 55: Cho 3 tia Ox, Oy, Oz va 3 diem A, B, C lan luot tren 3 tia do Lay diem M thuoc tam giac ABC, tim vi tri A, B, C de M la trong tam tam giac ABC
H D : diing phep vi tu tam O ti so k = 3
Bai 56: Cho 2 hinh chop tam giac deu S.ABC va S'.A'B'C" Chiing minh neu goc ASB bang goc A ' S ' B ' thi 2 hinh chop dong dang
Bai 57: Cho 2 hinh chop tu giac deu S.ABCD va S ' A ' B ' C ' D ' Chirng minh
SA AB
neu = thi 2 hinh chop done dang
Trang 31§ 2 T H E T I C H K H ( 5 l D A D I E N
A T O M T A T KIEN T H l / C
The tich cua khoi da dien: moi kh6i da dien co the tich la mot so duong, thoa man ba tinh chat sau day:
(1) Hai khoi da dien bang nhau thi co the tich bang nhau
(2) Neu mot khoi da dien dugc phan chia thanh nhieu khoi da dien nho thi the tich cua no bang tong the tich ciia cac khoi da dien nho do
(3) Khoi lap phuong co canh bang 1 thi co the tich bang 1
The tich ciia mot khoi hop chu nhat bang tich so ciia ba kich thuoc The tich ciia mot khoi chop bang mot phan ba tich so ciia dien tich mat day va chieu cao ciia khoi chop do
The tich ciia khoi lang tru bang tich so ciia dien tich mat day va chieu cao ciia khoi lang tru do
Chii y: Be don gian, the tich ciia khoi da dien gioi han bdi hinh da dien H cung dugc goi la the tich ciia hinh da dien H
B P H A N D A N G T O A N
D A N G 1: K H 6 l LANG TRU - KHOI HOP Hinh lang try: Co 2 day song song bang nhau va cac canh ben song song bang nhau Ta thudng phan loai theo da giac day: lang tru tam giac, tii giac
- Lang tru diing khi canh ben vuong goc vdi day
- Lang tru deu la lang tru dting va co day la da giac deu
- The tich khoi lang tru: V = B h
Hinh hop: La hinh lang tru tii giac co day la hinh binh hanh
Hinh hop co 6 mat la hinh binh hanh, 4 dudng cheo dong qui tai tam hinh hop
- Hinh hop chir nhat: hop dung va co day la hinh chu nhat
Goi a, b, c la 3 kich thudc thi co dudng cheo: d = Va2 + b2 + c2
dien tich toan phan: S = 2(ab + be + ca) va the tich khoi hop chu nhat:
V *= abc
Chii y: Be tim gia tri ldn nhat
nho nhat ta co the diing bat dang
thiic Cosi hoac diing dao ham A
Trang 32V j du 1: Tinh the tich cua khoi lang tru n-giac deu co tat ca cac canh deu
bang a
Giai Goi AiA2 An la day cua khoi lang tru deu va O la tam ciia da giac deu
ON = AiNcotNOA, = c o t
Do do dien tich day ciia khoi lang tru deu la:
S n-SOA!A2 = n- - A,A9.ON = — na2 cot —
Vi lang try da cho la lang try deu nen chieu cao ciia no bang canh ben: h = a
Vay the tich ciia khoi lang tru la: V = S h = — na3 cot —
4 n
V i du 2: Cho khoi lang try tii giac deu A B C D A I B J C I D I co khoang each
gitia hai duong thang AB va A i D bang 2 va do dai duong cheo ciia mat
ben bang 5
a) Ha A K ± A , D (K e A,D) Chiing minh ring: A K = 2
b) Tinh t h i tich kh6i lang try ABCD.A,BiCiDi B] c
Giai a) A B / / A, B i => A B / / ( A, B, D )
=> d(A, (A,B,D)) = d(AB, A,D)
Ta co A| B , 1( A A | D , D )
=> A ] B | J_ A K
Mat khac: A i D 1 A K => A K _L (AiB,D)
b) Xet tam giac vuong A i A D , ta co: A K ' = A , K K D
V i AA'B'D' la tir dien deu nen duong cao A H ciia no co hinh chieu H la
tam ciia tam giac deu A'B'D' Suy ra:
A'H= 52-1 AH = VAA' 2 -A'H 2
3 3
Ta co day A'B'C'D' la hinh thoi co goc B'A'D
bing 60° nen:
Trang 33SA'B'CD' = A'B' A'D'sin60° V3
Vay the tich khoi hop da cho la: V = S h
2 3 2
V i du 4: Cho hinh hop ABCD.A'B'C'D' co the tich V Hay tinh the tich cua
tic dien ACB'D' A D
Giai Cac tu dien BACB', C'B'CD', DD'AC, A'AB'D'
V deu co the tich bane —
6 Dodo: V ACB'D' V 4 X
6
V
~3
V i du 5: Cho khoi hop ABCD.A'B'C'D' Chung minh rang sau trung diem
ciia sau canh A B , BC, CC, CD', D'A' va A'A nam tren mot mat phang va
mat phang do chia khoi hop thanh hai phan co the tich bang nhau
Giai Goi M , N , I , J, K, E lan luot la trung diem
ciia cac canh A B , BC, CC, CD', D'A', A ' A
ciia kh6i hop ABCD.A'B'C'D', con O la giao
diem cua cac duong cheo ciia khoi hop
Ta co ba duong thang M N , EI va KJ doi
mot song song va chiing lan luot
di qua ba diem thang hang M , O, J nen ba
duong thang do dong phang
Vay sau diem M , N , I , J K E cung nam tren mot mat phang (a)
Mat phang (a) chia khoi hop thanh hai khoi da dien, khoi thu nhat co cac
dinh la M , N , I , J, K, E, A, C, D, D'; kh6i thu hai co cac dinh la M , N , I ,
J, K, E, C, A', B, B' Phep doi ximg qua diem O bien tap hop dinh ciia
khoi da dien thu nhat thanh tap hop dinh ciia khoi da dien thir hai
Vay hai khoi da dien do bang nhau va do do co the tich bang nhau
V i du 6: Cho hinh hop ABCD.A'B'C'D' co tat ca cac canh deu bang d va ba
goc ciia dinh A deu bang 60°
a) Tinh dp dai cac duong cheo va the tich V ciia hinh hop
b) Tinh khoang each giua hai mat song song cua hinh hop
c) Co the cat hinh hop bang mpt mat phang sao cho thiet dien nhan dupe
la mpt hinh vuong?
Giai a) Dat AAr' = a, AB = b , AD = c thi
a b = b c = c a = —
2 Taco: A C '2 = (a +b + cf
Trang 3412 12 b) Goi h la khoang each giua hai mat phang (ABCD) va (A'B'C'D') thi
V = S ABCD .h = d
2V3
h = dV6 Vay khoang each giua hai mat song song nao ciing bang dV6
c) Hinh binh hanh BCD'A' co cac canh bang d, va hai duong cheo bang d72 nen no la hinh vuong Vay hinh hop co thiet dien BCD'A' la hinh vuong Tuong tu thiet dien CDA'B' ciing la hinh vuong
V i du 7: Cho khoi hop ABCD.A1B1CD1 co tat ca cac canh bang nhau va bang a,
A TA B = BAD = AT~AD = a (0° < a < 90°) Hay tinh thi tich ciia khdi hop
Giai
Ha A ] H 1 AC (H e AC)
Tam giac AtB D can (do A]B = A i D )
suy ra BD 1 A , 0 Mat khac BD ± AC
Y 2 AA, AH AA,
Do do: AiH = asincp = a
cosa nen coscp
cos • cos2 a
a \| 2
3 • a 2 CC 2a sin — cos — cos
2 a
V i du 8: Cho khdi hop ABCD.A'B'C'D' cd day la hinh chu nhat vdi AB = 73
AD = 77 Hai mat ben (ABBA') va (ADD'A') lan luot tao vdi day nhung gdc 45° va 60° Hay tinh the tich khdi hop neu biet canh ben bang 1
Trang 35V i du 9: Cho kh6i lang tru dung ABC.A'B'C co day la tam giac ABC
vuong tai A, AC = b, ACB = 60° Duong thing B C tao voi mp(AA'CC)
mot goc 30° c a) Tinh do dai doan thang A C
b) Tinh the tich khoi lang tru da cho
Giai a) Ta co BA 1 AC, BA 1 A A ' nen BA ± (ACCA')
Vay A C la hinh chieu ciia B C tren mp(ACCA')
Do do goc B C A bang 30° nen:
V i du 10: Cho hinh lang Uu diing ABC.A'B'C co mat day la tam giac ABC
vuong tai B va AB = a, BC = 2a, AA' = 3a Mot mat phang (P) di qua A va
vuong goc voi CA' lan luot cat cac doan thang CC va BB' tai M va N
a) Tinh the tich khoi chop C A ' A B
b) Chiing minh rang A N _L A'B va tinh dien tich tam giac A M N
a) VC A,A D = V V ABC = i s
3 ABCAA'
Giai -a.2a.3a = a3
6 b) Ta co: CB 1 A B , CB 1 AA' (do AA' ± (ABC);
suy ra CB _L (A'AB)
Mat khac A N ± CA' suy ra A N 1 A'B 3a
Ta co: VA-AMN — SAMN A'l
\ N j N
> ' ! B S
2a"->K
Trang 36V i NB // AA', MC // (AA'B) => VA
Va A'l A'C = A'A:' => A'l =
AMN (3a)2
V M.AA'N = v M.AA'B = Vc.AA'B = a
= Sh - - (a + b + c)S = - (3h - a - b - c)S
3 3 b) Dieu kien V ABC.AJBICJ - V A J B^ A B'C' <=> — (a + b + c)S 1 Sh
AC = d, goi B'I va A H la cac dudng cao
Taco A H B'C = AC.B'I => AH.d72 = d.B I
Trang 37Dat AA = a , AB = b AC = c thi b c = b |c cos60° =
Taco: A'W'C = (b -a ).(c-a-b) = ^-d2 + d2 =
d2 dien tich day la — con duong cao chinh la khoang each tu A1 toi
mp(BCC'B') nen bang dV3 Vay: VABB'C = — •
b) Tinh t h ! tich tii dien ACA'B' bik tam giac ABC la tam giac deu canh
bang a, AA' = b va AA' tao voi mat phang (A'B'C) mot goc bang 60°
Giai a) Ta co: VA.CA'B' = VB'.AA'C = VB'.CA'C = Vc A'B'C = — VABC.A'B'C-
Dodo V C ' B
V4 'ABC.A'B'C °
b) Goi H la chan duong cao di qua A ciia lang try
Khi do goc (AA', A'B'C')) = goc (AA', A'H) = 60°
V i du 14: Cho lang try tam giac ABC.A'B'C co tat ca cac canh day deu bang
a, goc tao thanh bdi canh ben va mat day la 60° va hinh chiiu H ciia dinh
A len mp(A'B'C') triing vdi trung diem ciia canh B'C
Trang 38a) Tinh khoang each giua hai mat day va goc giua hai duong thang BC
va A C
b) Tinh goc giiia mp(ABB A') va mat day va tinh the tich cua khoi lang try
Giai a) Ta co A H la khoang each giira hai mat phang day
V i A ' H la hinh chieu vuong goc ciia canh ben A A '
tren mat phang day nen AATL = 60°
Trong tam giac A A ' H co:
AH = A'Htan60° = 73 = —
2 2 Goc giira BC va A C la AC' B '
Trong tam giac vuong A H C co:
A H 3a a _ g
2
tan AC 1B ' =
H C 2 2 b) Tir H ha H K 1 A'B' Ta co H K la hinh chiiu ciia A K tren mat phang (A'B'C) Suy ra A K 1 A'B'
Vay goc giira mat phing (ABB'A') va mat phing (A'B'C) la A K H
Gpi I la trung diem ciia A'B', ta co C I ± A'B', suy ra CI // HK
V i H la trung diem ciia B'C nen H K la duong trung binh ciia tam giac B'C'I, suy ra HK = — =
2 4
AH 3a aV3 Trong tam giac vuong A K H co: tan AKH = = — :
a) Tinh the tich ciia khoi lang try do
b) Tinh dien tich xung quanh ciia hinh lang try
Giai a) Gpi O la tam ciia tam giac deu ABC
V i A ' A = A'B = A'C nen A'O 1 mp(ABC)
Trang 39b) V i BC ± AO nen BC 1 AA' hay BC 1 BB' nen BB'C'C la hinh chu nhat
Goi H la trung diem ciia AB Ta co:
2 S AA B B + SBB ' CC = 2AH.AB + BB'.BC
2V3 (N/13 + 2 )
V i du 16: Cho khoi lang try tam giac ABC.A1B1G co day ABC la tam giac
vuong can voi canh huyen A B bang 7 2 Mat phang (AA;B) vuong goc
voi mat phang (ABC), A A i = 73 , goc A1ABnhon va mat phang (AiAC)
tao mot goc 60° voi mat phang (ABC) Hay tim the tich khoi lang try
Giai B
Ha A , K 1 AB (K e AB)
K thuoc doan A B v i A1AB nhon
Ha K M 1 AC
=> A | M _L AC (dinh li ba duong vuong goc)
Taco A, K ± ( A B C ) vi (AA,B) ± (ABC)
V i du 17: Cho hinh lang try ABC.A'B'C voi canh ben khong vuong goc voi
mat day Goi (a) la mat phang vuong goc voi cac canh ben ciia hinh lang
try va cat chiing tai P, Q, R Phep tinh tien theo vecto AA'bien tam giac
PQR thanh tam giac P'Q'R
a) Chimg minh rang the tich V ciia hinh lang try da cho bang the tich ciia
hinh lang try PQR.P'Q'R
b) Chimg minh rang V = SP Q R A A ' , trong do S P Q R la dien tich tarn giac
PQR
Giai Mat phang (PQR) chia khoi lang try
ABC.A'B'C thanh hai kh6i da dien H, va
H2, trong do H] chiia tam giac ABC con H2
chiia tam giac A'B'C Mat phang (A'B'C)
chia khdi lang try PQR.P'Q'R thanh hai
khoi da dien H? va H3 trong do H3 chiia
tam giac P'Q'R'
a)
Trang 40Goi V i , V2, V3 lan luot la t h i tich cua cac khoi da dien H i , H 2, H3, ta co: VABCABC = V i + V2 VPQR.P QR' - V2 + V 3
V i phep tinh t i i n theo vecto A A ' bien tam giac ABC thanh tam giac A'B'C va b i l n tam giac PQR thanh tam giac P'Q'R nen khoi da dien Hi bien thanh khoi da dien H3, vi vay ta co V i = V3
Tu do suy ra: VABC.A BC = V P Q R P Q R
b) V i lang tru PQR.P'Q'R' la lang tru dung co chieu cao PP' = A A1 nen:
VABCABC = V P Q R P Q'R' = SPQR AA
V i du 18: Cho lang tru tam giac ABC.A'B'C co BB' = a, goc giua BB' va mp(ABC) bang 60°; tam giac ABC vuong tai C va BAC = 60° Hinh chieu vuong goc cua B' len mp(ABC) trung voi trong tam tam giac ABC Tinh t h i tich tii dien A'ABC
Giai Goi G la trong tam tam giac ABC va D la trung
diim AC thi B'G ± (ABC),
B'BG = 6 0 ° nen B'G = IN/3 BG a
2 3a
Giai Trong mot tir dien deu, doan noi hai trung
diem ciia hai canh doi la doan vuong goc
chung ciia hai canh do
Gia sir tir dien deu co hai dinh nam tren
dudng cheo A C va hai dinh con lai nam
tren dudng cheo B'D' ciia mat ben nen
doan vuong goc chung ciia hai canh doi
dien ciia tir dien chinh la doan vuong goc
chung ciia A C va B'D'