1. Trang chủ
  2. » Trung học cơ sở - phổ thông

bài tập thể tích khối đa diẹn

26 739 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 895 KB

Nội dung

Sở Giáo Dục Và Đào Tạo Quảng Nam Trường THPT Lê Quý Đôn BÀI TẬP THỂ TÍCH KHỐI ĐA DIỆN GIÁO VIÊN : TRƯƠNG QUANG THÀNH Tổ : Toán - Tin Trường THPT Lê Quý Đôn Trong chương trình giáo dục phổ thông thì môn toán được nhiều học sinh yêu thích và say mê, nhưng nói đến phân môn hình học thì lại mang nhiều khó khăn và trở ngại cho không ít học sinh, thậm trí ta có thể dùng tứ ” SỢ” học.Đặc biệt là hình học không gian tổng hợp. Đây là phần có trong cấu trúc thi cao đẳng và đại học và thường xuyên xuất hiện trong các đề thi tuyển chọn học sinh giỏi vì kiến thức phần này yêu cầu học sinh phải tư duy cao,khả năng phân tích tổng hợp và tưởng tượng mà một chủ điểm của quan trọng của hình học không gian tổng hợp đó là tính thể tích khối đa diện. Nhằm giúp học sinh vượt qua khó khăn và trở ngại đó và ngày càng yêu thích và học toán hơn yêu cầu các thầy cô chúng ta phải có nhiều tâm huyết giảng dạy và nghiên cứu .Qua thực tế giảng dạy tôi có chút kinh nghiệm giảng dạy phần này mong được chia sẻ cùng các thầy cô đồng nghiệp và những người yêu thích môn toán. I )TÍNH THỂ TÍCH KHỐI ĐA DIỆN THEO CÔNG THỨC Việc áp dụng công thức thông thường yêu cầu a) xác định đường cao b) tính độ dài đường cao và diện tích mặt đáy Để xác định đường cao ta lưu ý • Hình chóp đều có chân đường cao trùng với tâm của đáy. • Hình chóp có các cạnh bên bằng nhau thì chân đường cao trùng với tâm đường tròn ngoại tiếp mặt đáy. • Hình chóp có các mặt bên cùng tạo với đáy những góc bằng nhau thì chân đường cao chính là tâm đường tròn nội tiếp mặt đáy. • Hình chóp có một mặt bên vuông góc với đáy thì chân đường cao nằm trên giao tuyến của mặt phẳng đó và đáy. • Hình chóp có hai mặt bên cùng vuông góc với đáy thì đường cao nằm trên giao tuyến của hai mp đó Để tính độ dài đường cao và diện tích mặt đáy cần lưu ý • Các hệ thức lượng trong tam giác đặc biệt là hệ thức lượng trong tam giác vuông. • Các khái niệm về góc, khoảng cách và cách xác định. Sau đây là các bài tập Bài1 Chóp tam giác đều SABC có đáy là tam giác đều cạnh bằng a, các cạnh bên tạo với đáy một góc 60 0 .Hãy tính thể tích của khối chóp đó. Bài giải Gọi D là trung điểm của BC và E là tâm đáy Khi đó A B C S D E AE= 3 2 AD= 3 3a Ta có ∠ SAD=60 0 nên SE=AE.tan60 0 =a S ABC = 4 3 2 a Do đó V SABC = 3 1 SE.S ABC = 12 3 3 a BÀI 2: Cho hình chóp tam giác SABC có SA=5a,BC=6a,CA=7a. Các mặt bên SAB,SBC,SCA cùng tạo với đáy một góc 60 0 .Tính thể tích của khối chóp Bài giải Ta có hình chiếu của đỉnh S trùng tâm D đường tròn nội tiếp đáy Ta có p= 2 CABCAB ++ =9a Nên S ABC = ))()(( cpbpapp −−− =6a 2 . 6 mặt khác S ABC =pr ⇒ r= p S = 6 3 2 a trong ∆ SDK có SD=KDtan60 0 = r.tan60 0 = 2a. 2 Do đó V SABC = 3 1 SD.S ABC =8a 3 . 3 A B C S D k Bài 3 Cho hình chóp SABC có các cạnh bên bằng nhau cùng hợp với đáy góc 60 0 , đáy là tam giác cân AB=AC=a và ∠ BAC=120 0 .Tính thể tích khối chóp đó. Bài giải O A C B S O Gọi D là trung BC và O là tâm đường tròn ngoại tiếp tam giác ABC Có SO chính là đường cao S ABC =1/2.AB.AC.sin120 0 = 4 3 2 a và BC=2BD=2.ABsin60 0 =a. 3 OA=R= s cba 4 =a ⇒ SO=OA.tan60 0 =a. 3 Do vậy V SABC = 3 1 SO.S ABC =1/4a 3 . Bài 4 Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh 2a,SA=a, SB=a 3 và mpSAB vuông góc với mặt đáy. Gọi M,N lần lượt là trung điểm của AB,BC. Hãy tính thể tích khối chóp SBMDN. Bài giải B A D C S H M N Hạ SH ⊥ AB tại H thì SH chính là đường cao S ADM =1/2AD.AM=a 2 S CDN =1/2.CD.CN=.a 2 Nên S BMDN =S ABCD -S ADM -S CDN =4a 2 -2a 2 =2a 2 . mặt khác 222 111 SBSASH += ⇒ SH= 22 22 . SBSA SBSA + = 2 3a do đó V SBMDN = 3 1 .SH.S BMDN = 3 3 3 a Bài 5 Cho hình chóp S.ABCD, đáy ABCD là hình thang vuông tại A,D; AB=AD=2a,CD=a. Góc giữa hai mpSBC và ABCD bằng 60 0 . Gọi I là trung điểm của AD, Biết hai mp SBI,SCI cùng vuông góc với mpABCD. Tính thể tích khối chóp S.ABCD. Bài giải A B D C S I H J Gọi H trung điểm là của I lên BC, J là trung điểm AB. Ta có SI ⊥ mpABCD IC= 22 DCID + =a 2 IB= 22 ABIA + =a 5 và BC= 22 JBCJ + =a 5 S ABCD =1/2AD(AB+CD)=3a 2 S IBA =1/2.IA.AB=a 2 và S CDI = 1/2.DC.DI=1/2 ⇒ S IBC =S ABCD -S IAB -S DIC = 2 3 2 a mặt khác S IBC = 2 1 .IH.BC nên IH = a BC S IBC 5 33 2 = SI=IH.tan60 0 = a 5 3.9 . Do đó V ABCD = 3 1 SI.S ABCD = 5 153 a 3 Bài 6 Cho chóp SABC có SA=SB=SC=a, ∠ ASB= 60 0 , ∠ CSB=90 0 , ∠ CSA=120 0 CMR tam giác ABC vuông rồi tính thể tích chóp. Bài giải Gọi E,D lần lượt là AC,BC A C B S E D ∆ SAB đều AB=a, ∆ SBC Vuông BC=a. 2 ∆ SAC có AE=SA.sin60 0 = 2 3a ⇒ AC=a 3 và SE=SAcos60 0 = 2 1 a. ⇒ ∆ ABC có AC 2 =BA 2 +BC 2 =3a 2 vậy ∆ ABC vuông tại B Có S ABC = 2 1 .BA.BC= 2 2 2 a ∆ SBE có BE= 2 1 AC= 2 3a SB 2 =BE 2 +SE 2 =a 2 nên BE ⊥ SE AC ⊥ SE Do đó SE chính là đường cao V SABC = 3 1 SE.S ABC = 3 12 2 a Bài 7 Cho khối lăng trụ đứng ABC.A 1 B 1 C 1 có đáy là tam giác vuông tại A,AC=a, ∠ ACB=60 0 Đường thẳng BC 1 tạo với mp(A 1 ACC 1 )một góc 30 0 .Tính thể tích khối lăng trụ. Bài giải A B C A1 B1 C1 Trong tam giác ABC có AB=AC.tan60 0 =a 3 AB ⊥ AC và AB ⊥ A 1 A Nên AB ⊥ mp(ACC 1 A) do đó ∠ AC 1 B=30 0 và AC 1 =AB.cot30 0 =3a. Á.D pitago cho tam giác ACC 1 : CC 1 = 2 2 1 ACAC − =2a 2 Do vậy V LT =CC 1 .S ABC = 2a 2 . 2 1 .a.a 3 =a 3 . 6 Bài 8 Cho khối trụ tam giác ABCA 1 B 1 C 1 có đáy là tam giác đều cạnh a, điểm A 1 cách đều ba điểm A,B.C,cạnh bên A 1 A tạo với mp đáy một góc 60 0 .Hãy tính thể tích khối trụ đó. Bài giải G A1 B1 C1 A B C H I Ta có tam giác ABC đều cạnh a nên S ABC = 4 3 2 a mặt khác A 1 A= A 1 B= A 1 C ⇒ A 1 ABC là tứ diện đều gọi G là trọng tâm tam giác ABC có A 1 G là đường cao Trong tam giác A 1 AG có AG=2/3AH= 3 3a và ∠ A 1 AG=60 0 A 1 G=AG.tan60 0 =a. vậy V LT =A 1 G.S ABC = 4 3. 3 a Bài 9 Cho khối trụ tam giác ABCA 1 B 1 C 1 có đáy là ABC là tam giác vuông cân với cạnh huyền AB= 2 .Cho biết mpABB 1 vuông góc với đáy,A 1 A= 3 ,Góc A 1 AB nhọn, góc giữa mpA 1 AC và đáy bằng 60 0 . hãy tính thể tích trụ. Bài giải Tam giác ABC có cạnh huyền AB= 2 và cân nên CA=CB=1; S ABC= 1/2.CA.CA=1/2. . MpABB 1 vuông góc với ABC từ A 1 hạ A 1 G ⊥ AB tại G. A 1 G chính là đường cao Từ G hạ GH ⊥ AC tại H Gt ⇒ góc A 1 HG=60 0 Đặt AH=x(x>0) Do ∆ AHG vuông cân tại H nên HG=x và AG=x 2 ∆ HGA 1 có A 1 G=HG.tan60 0 =x. 3 ∆ A 1 AG có A 1 A 2 =AG 2 +A 1 G 2 ⇔ 3=2x 2 +3x 2 hay x= 5 15 Do đó A 1 G= 5 53 vậy V LT =A 1 G.S ABC = 10 53 A1 B1 C1 A C B G H Bài 10 Cho khối hộp ABCD.A 1 B 1 C 1 D 1 có đáy là hcn với AB= 3 và AD= 7 . Các mặt bên ABB 1 A 1 và A 1 D 1 DA lần lượt tạo với đáy những góc 45 0 và 60 0 . Hãy tính thể tích khối hộp đó biết cạnh bên bằng 1. giải A1 D1 C1 A D B C F B1 N H M Gọi H là hình chiếu của A 1 lên mpABCD Từ H hạ HM ⊥ AD tại M và HN ⊥ AB tại N Theo gt ∠⇒ A 1 MH=60 0 và ∠ A 1 NH=45 0 Đặt A 1 H=x(x>0) ta có A 1 M= 0 60sin x = 3 2x tứ giác AMHN là hcn( góc A,M,N vuông) Nên HN=AM mà AM= 2 1 2 1 MAAA − = 3 43 2 x− [...]... giác ABC, tính thể tích khối tứ diện A1ABC theo a Bài 5 Cho khối lăng trụ đều ABC.A1B1C1 có cạnh đáy bằng a,khoảng cách từ tâm O của tam giác ABC đến mpA1BC bằng a hãy tính thể tích khối trụ đó 6 Bài 6 Cho khối lăng trụ đứng ABC.A1B1C1 có đáy ABC là tam giác cân tại A,góc giữa A1A và BC1 bằng 300, khoảng cách giữa chúng bằng a Góc giữa hai mặt bên qua A1A bằng 600 hãy tính thể tích khối trụ Bài 7 Cho lăng... α hãy tính thể tích khối lăng trụ Bài 8 cho hình chóp tứ giác đều S.ABCD có cạnh đáy bầng a, cạnh bên hợp với đáy góc 600, gọi M là điểm đối xứng với C qua D N là trung điểm SC.mpBMN chia khối S.ABCD thành hai phần Hãy tính tỉ số thể tích của hai phần đó Bài 9 cho hình hộp chữ nhật ABCD.A1B1C1D1 có AB=a,BC=2a,A1A=a,M thuộc đoạn AD sao cho AM=3MD.Hãy tính thể tích khối tứ diện MAB1C1, Bài 10 Cho hlp... GIÁN TIẾP Nghĩa là ta sử dụng phân chia lắp ghép khối đa diện, để đưa về bài toán áp dụng tính thể tích theo công thức hoặc dùng bài toán tính tỉ lệ hai khối tứ diện(chóp tam giác) Cho hình chóp SABC Trên các đoạn thẳng SA,SB,SC lấy lần lượt ba điểm A1,B1,C1 khác với S thì V A1B1C11 V ABC = SA1 SB1 SC1 SA SB SC Chứng minh bài toán Tỉ số thể tích hai khối tứ diện(chóp tam giác) A A1 B B1 H E S C1 C... khối chóp 1 3 khối chóp CA1B1C1 có VCA B C = VLT 1 1 1 1 3 khối chóp B1ABC có VB ABC = VLT 1 1 a Khối chóp A1B1CA do đó V A B AC = VLT = 1 1 3 3 4 Bài 3 :Cho khối hộp chữ nhật ABCD.A1B1C1D1 có AB=a,A1A=c,BC=b Gọi E,F lần lượt là trung điểm của B1C1 và C1D1 Mặt phẳng FEA chia khối hộp thành hai phần hãy tính tỉ số thể tích hai khối đa diện đó Bài giải DDF A D B C K D1 A1 J H F E B1 C1 I Mp(FEA) cắt các... 1 8 72 V1 25 47abc do vậy V = 47 72 2 III) BÀI TOÁN ÔN TẬP 72 Sau khi đã trang bị phần phương pháp như vậy ta cũng giúp học sinh đưa ra cách giải một bài toán linh hoạt bằng cả hai phương pháp để học sinh so sánh đối chiếu lựa chọn và đưa ra bài tập ở mức độ tổng hợp Bài 1 Cho khối lăng trụ đứng ABC.A1B1C1 có tất cả các cạnh đều bằng a a) hãy tính thể tích khối tứ diện A1BB1C b) Mp đi qua A1B1và trọng... (theo bài 6) 12 3 SA SB SC VSAB1C1 = a 2 SA SB1 SC1 2 Bài 2 : Cho khối trụ tam giác ABCA1B1C1 có đáy là tam giác đều cạnh a A1A =2a và A1A tạo với mpABC một góc 600 Tính thể tích khối tứ diện A1B1CA giải A1 C1 B1 A C H K B Gọi H là hình chiếu của A1 trên mpABC Khi đó A1H=A1A.sinA1AH=2a.sin600=a 3 Mà VLT=A1H.SABC= a 3 a 2 3 3a 3 = 4 4 nhận thấy khối lăng trụ được chia làm ba khối chóp 1 3 khối chóp... mpSBC bằng 600 Gọi H,K lần lượt là hình chiếu của A lên SB,SC Chứng minh rằng SA vuông KH và tính thể tích khối chóp S.ABC Bài 3 Cho hình chóp đều S.ABC cạnh đáy bằng a, Hãy tính thể tích khối chóp S.ABC biết a) MpSBA vuông góc với mpSCA b) Gọi M,N lần lượt là trung điểm SA,SC và mpBMN vuông góc mpSAC Bài 4 Cho khối lăng trụ ABC.A1B1C1 có BB1=a Góc giữa đường thẳng BB1và mpABC bằng 600 Tam giác ABC vuông... với đáy và có các cạnh góc vuông là SB=8a,SD=15a hãy tính thể tích khối chóp Bài 13 Cho tứ diện ABCD có tam giác ABC,ABD là hai tam giác đều cạnh a,mpADC vuông góc mpBCD Tính VABCD Bài 14 Cho tứ diện ABCD, các điểm M,N,P lần lượt BC,BD,AC sao cho BC=4BM, BD=2BN,AC=3AP MpMNP chia tứ diện làm hai phần tính tỉ số thể tích hai phần đó Bài 15 Cho khối lăng trụ ABC.A1B1C1 có các mặt bên (A1AB),(A1BC),(A1CA)... 54 Cách 2 dùng gián tiếp (sử dụng bài toán tỉ lệ thể tích ) A E C C2 G K F B C1 A1 Q B1 VCFEA1B1 = 2VCGQB1 = 2 CG CF 2 2 1 1 a 3 a 2 a 3 3 VCKQB1B = 2 = CK CB 3 3 3 2 2 2 54 Bài 2 :Cho hình chóp S.ABCD có đáy ABCD là hcn,AB=a,AD=a 3 ,SA=2a và SA ⊥ ABCD, Một mp đi qua A và vuông góc với SC,cắt SB,SC,SD lần lượt tại H,I,K Hãy tính thể tích khối chóp S.AHIK theo a Bài giải Cách 1 tính trực tiếp Ta... K thuộc CC1 sao cho CK=2/3.a.Mặt phẳng (P) qua A,K và song song với BD chia khối lập phương thành hai phần Tính tỉ số thể tích hai phần đó Bài 11 Cho hình chóp S.ABCD có đáy là hình thang vuông tại Avà D Tam giác SAD là tam giác đều cạnh 2a, cạnh BC =3a Các mặt bên tạo với đáy các góc bằng nhau Hãy tính thể tích khối chóp Bài 12 Cho hình chóp S.ABCD có đáy là hình thang với các cạnh AB=BC=CD=1/2.AD . TIẾP Nghĩa là ta sử dụng phân chia lắp ghép khối đa diện, để đưa về bài toán áp dụng tính thể tích theo công thức hoặc dùng bài toán tính tỉ lệ hai khối tứ diện(chóp tam giác) Cho hình chóp. sánh đối chiếu lựa chọn và đưa ra bài tập ở mức độ tổng hợp Bài 1 Cho khối lăng trụ đứng ABC.A 1 B 1 C 1 có tất cả các cạnh đều bằng a. a) hãy tính thể tích khối tứ diện A 1 BB 1 C. b) Mp đi. 2a 2 . 2 1 .a.a 3 =a 3 . 6 Bài 8 Cho khối trụ tam giác ABCA 1 B 1 C 1 có đáy là tam giác đều cạnh a, điểm A 1 cách đều ba điểm A,B.C,cạnh bên A 1 A tạo với mp đáy một góc 60 0 .Hãy tính thể tích khối trụ đó. Bài

Ngày đăng: 11/07/2015, 07:08

TỪ KHÓA LIÊN QUAN

w