các bài toán biên phí tuyến xuất hiện trong khoa học ứng dụng( vật lý. hóa học, cơ học, kỹ thuật...) rất phong phú và đa dạng. đây là nguồn đề tài mà rất nhiều nhà toán học từ trước đến nay quan tâm nghiên cứu
100 TÀI LIỆU THAM KHẢO [1] Nguyễn Thúc An, Nguyễn Đình Triều, Shock between absolutely solid body and elastic bar with the elastic viscous frictional resistance at the side , J. Mech. NCSR. Vietnam Tom XIII (2) (1991), 1-7. [2] Đặng Đình Áng, Alain Phạm Ngọc Đònh, Mixed problem for some semilinear wave equation with a nonhomogeneous condition , Nonlinear Anal. 12 (1988), 581-592. [3] Adams R. A., Sobolev Spaces , Academic Press, NewYork, 1975. [4] H. Brézis, Analyse Fonctionnel. Théorie et applications , Masson Paris, 1983. [5] Maitine Bergounioux, Nguyễn Thành Long, Alain Phạm Ngọc Đònh, Mathematical model for a shock problem involving a linear viscoelastic bar , Nonlinear Anal. 43, No. 5 (2001), 547-561. [6] J. Boujot, Alain Phạm Ngọc Đònh, J.P. Veyrier, Oscillateurs harmoniques faibleent perturbés: L’algorithme numérique des “par de géants” , RAIRO, Analyse numérique, 14 (1980), 3-23. [7] C.F. Carrier, On the nonlinear vibrations problem of elastic string , Q. J. Appl. Math. 3 (1945), 151-165. [8] T. Caughey, J. Ellison, Existence, uniqueness and stability of solutions of a class of nonlinear differential equations , J. Math. Anal. Appl. 51 (1975), 1-32. [9] Nguyễn Thành Long, Trần Ngọc Diễm, On the nonlinear wave equation xxtt uu − ),,,,( tx uuutxf= associated with the mixed homogeneous conditions , Nonlinear Anal. 29 (1997), 1217-1230. [10] Zh. N. Dmitriyeva, On stable solutions in nonlinear oscillations of rectangular plates under random loads , Prikl. Mat. Mekh. L. 4 (1979), 189-197. 101 [11] Alain Phạm Ngọc Đònh, Sur un problème hyperbolique faiblement non- linéaire en dimension 1, Demonstratio Math., 16 (1983), 269-289. [12] Alain Phạm Ngọc Đònh, Nguyễn Thành Long, Linear approximation and asymptotic expansion associated to the nonlinear wave equation in one dimension , Demonstratio Math. 19 (1986), 45-63. [13] Alain Phạm Ngọc Đònh, Nguyễn Thành Long, On the quasilinear wave equation with a mixed nonhomogeneous condition , SEA. Bull. Math. 19 (1995), 127-130. [14] Alain Phạm Ngọc Đònh, Nguyễn Thành Long, The semilinear wave equation associated with a nonlinear boundary , Demonstratio Math. 30 (1997), 557-572. [15] Y.Ebihara, L.A. Medeiros, Milla M. Minranda, Local solutions for a nonlinear degenerate hyperbolic equation , Nonlinear Anal. 10 (1986), 27-40. [16] F. Ficken, B. Fleishman, Initial value problems and time periodic solutions for a nonlinear wave equation , Communs Pure Appl. Math., 10, (1957), 331-356. [17] M. Hosoya, Y. Yamada, On some nonlinear wave equation I: Local existence and regularity of solutions , J. Fac. Sci. Univ. Tokyo. Sect. IA, Math. 38 (1991), 225-238. [18] Kirchhoff G.R, Vorlesungen uber Mathematiche Physik : Mechanik, Teuber, Leipzig, 1876, Section 29.7. [19] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires , Dunod-Gauthier-Villars, Paris. 1969. [20] V. Lakshmikantham, S. Leela, Differential and Integral Inequalities , Vol.1, New York: Acad. Press 1969. 102 [21] Nguyễn Thành Long, Alain Phạm Ngọc Đònh, On the quasilinear wave equation: ),( ttt uufuu +Δ− 0= associated with a mixed nonhomogeneous condition , Nonlinear Anal. 19 (1992), 613-623. [22] Nguyễn Thành Long, et al., On the nonlinear vibrations equation with a coefficient containing an integral , Comp. Maths. Math. Phys. 33 (1993), 1171- 1178. [23] Nguyễn Thành Long, Alain Phạm Ngọc Đònh, A semilinear wave equation asso-ciated with a linear differential equation with Cauchy data , Nonlinear Anal. 24 (1995), 1261-1279. [24] Nguyễn Thành Long, Trần Minh Thuyết, On the existence, uniqueness of solution of the nonlinear vibrations equation , Demonstratio Math. 32 (1999), 749- 758. [25] Nguyễn Thành Long, Trần Minh Thuyết, A semilinear wave equation associated with a nonlinear integral equation , Demonstratio Math. 36, (2003), 915-938. [26] Nguyễn Thành Long, Asymptotic expansion of the solution for nonlinear wave equation with the mixed homogeneous conditions , Nonlinear Anal. 45 (2001), 261-272. [27] Nguyễn Thành Long, On the nonlinear wave equation =− xxxtt uutBu ),( 2 ),,,,( tx uuutxf associated with the mixed homogeneous conditions , J. Math. Anal. Appl. 274, No.1 (2002), 102-123. [28] Nguyễn Thành Long, On the nonlinear wave equation ,,( 2 utBu tt − ),,,,,,,(), 22222 txtxxxtx uuuuuutxfuuu = associated with the mixed homogeneous conditions , Nonlinear Anal., Ser. A: Theory Methods, 58, No. 7-8 (2004), 933-959. 103 [29] Nguyễn Thành Long, Bùi Tiến Dũng, On the nonlinear wave equation − tt u ),,,,,()( 22 xtxxxx uuuutxfuuB = associated with the mixed homogeneous conditions , Nonlinear Anal. 55 (2003), No.5, Ser. A: Theory Methods, 493-519. [30] Nguyễn Thành Long, Bùi Tiến Dũng, On the nonlinear wave equation ,(tBu tt − ),,,,,() 22 xtxxxx uuuutxfuu = associated with the mixed nonhomogeneous conditions , J. Math. Anal. Appl. 292 (2004), No.2, 433-458. [31] Nguyễn Thành Long, Bùi Tiến Dũng, A nonlinear wave equation associated with a nonlinear integral equation involving boundary value , Electronic Journal of Differential Equations, Vol. 2004(2004), No. 103, pp.1-21. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu. [32] Nguyễn Thành Long, Nguyễn Công Tâm, Nguyễn Thò Thảo Trúc, On the nonlinear wave equation with the mixed nonhomogeneous conditions : Linear approximation and asymptotic expansion of solution , Demonstratio Math., 38 (2005), No.2, 365-386. [33] Nguyễn Thành Long, Lê Văn Út, Nguyễn Thò Thảo Trúc, On a shock problem involving a linear viscoelastic bar , Nonlinear Anal., 32 (2005), 198-224. [34] L.A. Medeiros, On some nonlinear perturbation of Kirchhoff -Carrier operator , Comp. Appl. Math. 13 (1994), 225-233. [35] L.A. Medeiros, J. Limaco, S.B. Menezes, Vibrations of elastic strings : Mathematical aspects, Part one , J. Computational Anal. Appl., 4, No. 2, (2002), 91-127. [36] L.A. Medeiros, J. Limaco, S.B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part two , J. Computational Anal. Appl., 4, No. 3, (2002), 211-263. 104 [37] E.L. Ortiz, Alain Phạm Ngọc Đònh, Linear recursive schemes associated with some nonlinear partial differential equations in one dimension and the Tau method , SIAM J. Math. Anal. 18 (1987), 452-464. [38] S.I. Pohozaev, On a class of quasilinear hyperbolic equation , Math. USSR. Sb. 25 (1975), 145-158. [39] J. Y. Park, J.J. Bae, I. H. Jung, Uniform decay of solution for wave equation of Kirchhoff type with nonlinear boundary damping and memory term , Nonlinear Anal. 50 (2002), 871-884. [40] J. Y. Park, J.J. Bae, On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term , Applied Math. Comput., 129 (2002), 87-105. [41] P.H. Rabinowitz., Periodic solutions of nonlinear hyperbolic differential equations, Communs Pure Appl. Math., 20, (1967), 145-205. [42] P.A. Raviart, J.M. Thomas, Introduction à l'analyse numérique des equations aux dérivées partielles , Paris, Masson 1983. [43] T.N. Rabello, M.C.C. Vieira, C.L. Frota, L.A. Medeiros, Small vertical vibrations of strings with moving ends , Rev. Mat. Complutent 16, (2003), 179 – 206. [44] Y.Yamada, Some nonlinear degenerate wave equation , Nonlinear Anal. 11 (1987), 1155-1168. . Math. Anal. Appl. 27 4, No.1 (20 02) , 1 02- 123 . [ 28 ] Nguyễn Thành Long, On the nonlinear wave equation ,,( 2 utBu tt − ),,,,,,,(), 22 222 txtxxxtx uuuuuutxfuuu. Sect. IA, Math. 38 (1991), 22 5 -2 38. [ 18] Kirchhoff G.R, Vorlesungen uber Mathematiche Physik : Mechanik, Teuber, Leipzig, 187 6, Section 29 .7. [19] J.L.