1. Trang chủ
  2. » Giáo án - Bài giảng

he thuc vi-et hay(hoy)

23 316 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 7,63 MB

Nội dung

Chuyeân ñeà Toå Toaùn Giải phương trình: x 2 – 6 x + 5 = 0 Giải: KIỂM TRA BÀI CŨ Giải bằng cách đưa về phương trình tích: Ta có: x 2 – 6 x + 5 = 0 ⇔ x 2 – x – 5x + 5 = 0 ⇔ x( x – 1 ) – 5 ( x – 1 ) = 0 ⇔ ( x – 1 ) ( x – 5 ) = 0 Phương trình có 2 nghiệm: 1 2 x 1;x 5= =  ’ = b’ 2 – ac = 9 – 5 = 4 > 0 ⇒ ∆ , 2= Vậy pt có hai nghiệm phân biệt là: ∆ , , 1 b 3 2 x 5 a 1 − + + = = = ∆ , , 2 b 3 2 x 1 a 1 − − − = = = ; Ta có : a = 1 , b’= -3 , c = 5 Tiết 57 BÀI 6 HỆ THỨC VI-ÉT VÀ ỨNG DỤNG 1. HÖ thøc vi- Ðt Nếu phương trình bậc hai ax 2 + bx +c = 0 có nghiệm thì dù đó là hai nghiệm phân biệt hay nghiệm kép ta đều có thể viết các nghiệm đó dưới dạng: a b x, a b x 22 21 ∆−− = ∆+− = H y tÝnh : x· 1 +x 2 = (H/s1) x 1 . x 2 = (H/s2) 1. HÖ thøc vi- Ðt 1 2 2 2 b b x x a a − + ∆ − − ∆ + = + ( ) 2 2 2 b b a b a − + ∆ + − − ∆ = − = = - b a 1 2 . 2 2 b b x x a a     − + ∆ − − ∆ = ×  ÷  ÷  ÷  ÷     2 2 2 2 2 2 ( 4 ) 4 4 4 4 b b b ac a a ac a −∆ − − = = = = c a Tiết 57 BÀI 6 HỆ THỨC VI-ÉT VÀ ỨNG DỤNG 1. HÖ thøc vi- Ðt Phrăng-xoa Vi-ét là nhà Toán học- một luật sư và là một nhà chính trị gia nổi tiếng người Pháp (1540 - 1603). Ông đã phát hiện ra mối liên hệ giữa các nghiệm và các hệ số của phương trình bậc hai và ngày nay nó được phát biểu thành một định lí mang tên ông . F.Viète Tiết 57 BÀI 6 HỆ THỨC VI-ÉT VÀ ỨNG DỤNG §Þnh lÝ vi- Ðt NÕu x 1 , x 2 lµ hai nghiÖm cña ph ¬ng tr×nh ax 2 + bx + c= 0 (a≠0) th×        = −=+ a c x.x a b xx 21 21 1. Hệ thức vi ét p dng: Bit rng cỏc phng trỡnh sau cú nghim, khụng gii phng trỡnh, hóy tớnh tng v tớch ca chỳng: a/ 2x 2 - 9x + 2 = 0 b/ -3x 2 + 6x -1 = 0 Giải a/ x 1 + x 2 = x 1 .x 2 = 1 ( ) 9 9 2 2 = b/ x 1 + x 2 = x 1 .x 2 = 6 2 3 = 1 1 3 3 = áp dụng Tit 57 BI 6 H THC VI-ẫT V NG DNG Định lí vi- ét Nếu x 1 , x 2 là hai nghiệm của ph ơng trình ax 2 + bx + c= 0 (a0) thì = =+ a c x.x a b xx 21 21 1. Hệ thức vi ét Định lí vi- ét Nếu x 1 , x 2 là hai nghiệm của phơng trình ax 2 + bx + c= 0 (a 0) thì = =+ a c x.x a b xx 21 21 Giải áp dụng Tit 57 BI 6 H THC VI-ẫT V NG DNG Khụng gii phng trỡnh hóy tớnh tng v tớch hai nghim ca phng trỡnh x 2 6x + 5 = 0 v tớnh nhm nghim ca phng trỡnh. Vỡ = 9 5 = 4>0 x 1 + x 2 = x 1 .x 2 = ( ) 6 6 1 b a = = 5 5 1 c a = = Suy ra: 1 + 5 = 6 1 . 5 = 5 Vy hai nghim ca phng trỡnh l: x 1 =1 ; x 2 =5 Hoạt Động nhóm Nhóm 1 và nhóm 2 ( Làm ?2 ) Cho phơng trình 2x 2 - 5x+3 = 0 . a) Xác định các hệ số a,b,c rồi tính a+b+c. b) Chứng tỏ x 1 = 1 là một nghiệm của ph ơng trình. c) Dùng định lý Vi- ét để tìm x 2. . Nhóm 3 và nhóm 4 (Làm ?3) Cho phơng trình 3x 2 +7x+4=0. a) Chỉ rõ các hệ số a,b,c của phơng trình v tính a-b+c b) Chứng tỏ x 1 = -1 là một nghiệm của phơng trình. c) Tìm nghiệm x 2. 1. Hệ thức vi ét Định lí Vi-ét: Nếu x 1 , x 2 là hai nghiệm của phơng trình ax 2 + bx + c= 0(a0) thì = =+ a c x.x a b xx 21 21 áp dụng Tit 57 BI 6 H THC VI-ẫT V NG DNG 1. HÖ thøc vi Ðt §Þnh lÝ Vi-Ðt: NÕu x 1 , x 2 lµ hai nghiÖm cña ph¬ng tr×nh ax 2 + bx + c= 0 (a≠0) th× :        = −=+ a c x.x a b xx 21 21 ¸p dông Tæng qu¸t 1 : NÕu ph¬ng tr×nh ax 2 +bx+c= 0 (a≠ 0 ) cã a+b+c=0 th× ph ¬ng tr×nh cã m«t nghiÖm x 1 =1, cßn nghiÖm kia lµ c a x 2 = Ho¹t §éng nhãm Nhãm 1 vµ nhãm 2 ( Lµm ?2 ) Trả lời: Phương trình 2x 2 -5x + 3 = 0 a/ a =2 ; b = - 5 ; c = 3 a+b+c =2+(-5)+3=0 b/ Thay x=1 vào phương trình ta được: 2+(-5)+3=0 Vậy x=1 là một nghiệm của phương trình c/ Ta có x 1 .x 2 = c/a = 3/2 => x 2 = 3/2 Tiết 57 BÀI 6 HỆ THỨC VI-ÉT VÀ ỨNG DỤNG 1. HÖ thøc vi Ðt §Þnh lÝ Vi-Ðt: NÕu x 1 , x 2 lµ hai nghiÖm cña ph¬ng tr×nh ax 2 + bx + c= 0 (a≠0) th×        = −=+ a c x.x a b xx 21 21 ¸p dông Tæng qu¸t 1 : NÕu ph¬ng tr×nh ax 2 +bx+c= 0 (a≠ 0 ) cã a+b+c=0 th× ph ¬ng tr×nh cã m«t nghiÖm x 1 =1, cßn nghiÖm kia lµ c a x 2 = Tæng qu¸t 2: NÕu ph¬ng tr×nh ax 2 +bx+c=0 (a≠0 ) cã a-b+c = 0 th× ph ¬ng tr×nh cã mét nghiÖm x 1 = -1, cßn nghiÖm kia lµ x 2 = c a − Ho¹t §éng nhãm Nhóm 3 và nhóm 4: Phương trình 3x 2 +7x + 4= 0 a/ a =3 ; b = 7 ; c = 4 a-b+c =3 + (- 7) + 4 = 0 b/ Thay x= -1 vào phương trình ta được: 3+(-7)+4=0 Vậy x= -1 là một nghiệm của phương trình c/ Ta có x 1 .x 2 = c/a = 4/3 => x 2 = -4/3 Tiết 57 BÀI 6 HỆ THỨC VI-ÉT VÀ ỨNG DỤNG [...]... hai nghiƯm cđa ph­¬ng tr×nh ax2 + bx + c= 0(a≠0) th× ¸p dơng b  x1 + x 2 = −   a  x x = c  1 2 a  Tỉng qu¸t 1 :(SGK) + Cho hai sè cã tỉng là S vµ tÝch b»ng P Gäi mét sè lµ x th× sè kia lµ S -x Theo gi¶ thiÕt ta cã ph­¬ng tr×nh x(S – x) = P x2 - Sx + P= 0 (1) NÕu Δ= S2- 4P ≥0, th× ph­¬ng tr×nh (1) cã nghiƯm.C¸c nghiƯm nµy chÝnh lµ hai sè cÇn t×m ¸p dơng VÝ dơ 1: T×m hai sè, biÕt tỉng cđa chóng . = 729-720 = 9 >0 12 2 327 15 2 327 21 = == + = x,x Vậy hai số cần tìm là 15 và 12 S -x . Theo giả thiết ta có phơng trình <=> x 2 - Sx + P= 0 (1) Tit 57 BI 6 H THC VI-ẫT V NG DNG 9 = =

Ngày đăng: 11/05/2015, 22:00

TỪ KHÓA LIÊN QUAN

w