1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi HSG toán 8 co đáp án

3 343 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 68 KB

Nội dung

Đề thi chọn học sinh giỏi thcs cấp tỉnh Năm học 2004 - 2005 Môn: Toán 8 Thời gian: 150 phút (Không kể thời gian giao đề) Câu 1 (2 điểm)a/ Phân tích đa thức thành nhân tử: x 3 - 7x - 6 b/ Giải phơng trình: x 4 - 30x 2 + 31x - 30 = 0 Câu 2 (2 điểm)a/ Cho đa thức f(x) = ax 2 + bx + c, với a, b, c là các số hữu tỉ. Biết rằng f(0), f(1), f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên. b/ Tìm giá trị nhỏ nhất của:A = 12 2 68 2 3 + + xx xx Câu 3 (2 điểm)a/ Chứng minh rằng với 4 số bất kỳ a, b, x, y ta có(a 2 + b 2 )(x 2 + y 2 ) (ax + by) 2 b/ Chứng minh rằng: x 3m+1 + x 3n+2 +1 chia hết cho x 2 + x + 1 với mọi số tự nhiên m,n. Câu 4 (3 điểm)Cho tam giác ABC có 3 góc nhọn với 3 đờng cao AA, BB, CC. Gọi H là trực tâm của tam giác ABC. Chứng minh rằng: 1 ' ' ' ' ' ' =++ CC HC BB HB AA HA Câu 5 (1 điểm)Cho 3 số dơng a, b, c có tổng bằng 1. Chứng minh rằng: 9 111 ++ cba Đáp án đề thi chọn học sinh giỏi THCS cấp tỉnh Năm học 2004 - 2005 Môn: Toán 8 Câu 1 a/ Phân tích đa thức thành nhân tử: x 3 - 7x - 6 = x 3 - 4x - 3x - 6 = x(x 2 - 2 2 ) - 3(x + 2) (1/2 điểm) = x(x + 2)(x - 2) - 3(x + 2) = (x + 2)(x 2 - 2x - 3) = (x + 2)(x 2 - 1 - 2x - 2) = (x + 2) [(x - 1)(x + 1) - 2(x + 1)] = (x + 2)(x + 1)(x - 3) (1/2 điểm) b/ x 4 -30x 2 + 31x - 30 = 0 <=> (x 2 - x + 1)(x - 5)(x + 6) = 0 (*) Vì x 2 - x + 1 = (x - 1/2) 2 + 1/4 > 0 (1/2 điểm) => (*) <=> (x - 5)(x + 6) = 0 <=> = = =+ = 6 5 06 05 x x x x (1/2 điểm) Câu 2 a/ Có f(0) = c; f(1) = a + b + c; f(2) = 4a + 2b + c là các số nguyên (1/2 điểm) => a + b + c - c = a + b nguyên => 2a + 2b nguyên => 4a + 2b nguyên => (4a + 2b) - (2a + 2b) = 2a nguyên => 2b nguyên Vậy 2a, 2b nguyên. b/ Có A = 2 )1( 1 1 2 3 2 )1( 1)1(2)12 2 (3 + = ++ x x x xxx (1/2 điểm) Đặt y = 1 1 x => A = y 2 2y + 3 = (y 1) 2 + 2 2 (1/2 điểm) => min A = 2 => y = 1 1 1 1 = x => x = 2 Vậy min A = 2 khi x = 2 (1/2 điểm) Câu 3 a/ Ta có (a 2 + b 2 )(x 2 + y 2 ) (ax + by) 2 <=> a 2 x 2 + a 2 y 2 + b 2 x 2 + b 2 y 2 a 2 x 2 + 2axby + b 2 y 2 (1/4 điểm) <=> a 2 y 2 - 2axby + b 2 x 2 0 <=> (ay - bx) 2 0 (1/4 điểm) Vì bất đẳng thức cuối cùng là bất đẳng thức đúng nên bất đẳng thức phải chứng minh là bất đẳng thức đúng. (1/4 điểm) Dấu = xảy ra khi và chỉ khi ay - bx = 0 hay y b x a = (1/4 điểm) b/ Ta có x 3m+1 + x 3n+2 + 1 = x 3m+1 - x + x 3n+2 - x 2 + x 2 + x + 1 (1/4 điểm) = x(x 3m - 1) + x 2 (x 3n - 1) + (x 2 + x + 1) (1/4 điểm) Ta thấy x 3m - 1 và x 3n - 1 chia hết cho x 3 - 1 do đó chia hết cho x 2 + x + 1 x 3m+1 + x 3n+2 + 1 chia hết cho x 2 + x + 1 Câu 4 + Có S ABC = 2 1 BC . AA (1/2 điểm) + Có S HBC = 2 1 BC . HA (1/2 điểm) + Có S HAC = 2 1 AC . HB (1/2 điểm) + Có S HAB = 2 1 AB . HC (1/2 điểm) + AA' HA' ABC S HBC S = ; BB' HB' ABC S HAC S = ; CC' HC' ABC S HAB S = (1/2 điểm) => 1 ABC S ABC S ABC S HAB S HAC S HBC S == ++ Vậy 1 ' ' ' ' ' ' =++ CC HC BB HB AA HA (1/2 điểm) Câu 5 Do a + b + c = 1 nên ++= ++= ++= c b c a c b c b a b a c a b a 1 1 1 1 1 1 (1/2 điểm) Vậy 922233 111 =+++++++++=++ b c c b a c c a a b b a cba Dấu đẳng thức xảy ra a = b = c = 1/3 A B C C' B' A' H . dơng a, b, c có tổng bằng 1. Chứng minh rằng: 9 111 ++ cba Đáp án đề thi chọn học sinh giỏi THCS cấp tỉnh Năm học 2004 - 2005 Môn: Toán 8 Câu 1 a/ Phân tích đa thức thành nhân tử: x 3 - 7x - 6. Đề thi chọn học sinh giỏi thcs cấp tỉnh Năm học 2004 - 2005 Môn: Toán 8 Thời gian: 150 phút (Không kể thời gian giao đề) Câu 1 (2 điểm)a/ Phân tích đa thức. giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên. b/ Tìm giá trị nhỏ nhất của:A = 12 2 68 2 3 + + xx xx Câu 3 (2 điểm)a/ Chứng minh rằng với 4 số bất kỳ a, b, x, y ta có(a 2 + b 2 )(x 2

Ngày đăng: 04/05/2015, 00:00

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w