GV: Phm Ngc Nam ôn tập toán 8 Đại số I. Lí thuyết: 1) Học thuộc các quy tắc nhân,chia đơn thức với đơn thức,đơn thức với đa thức,phép chia hai đa thức 1 biến. 2) Nắm vững và vận dụng đợc 7 hằng đẳng thức - các phơng pháp phân tích đa thức thành nhân tử. 3) Nêu tính chất cơ bản của phân thức,các quy tắc đổi dấu - quy tắc rút gọn phân thức,tìm mẫu thức chung,quy đồng mẫu thức. 4) Học thuộc các quy tắc: cộng,trừ,nhân,chia các phân thức đại số. 5. Thế nào là hai phơng trình tơng đơng? Cho ví dụ. 6. Hai quy tắc biến đổi phơng trình. 7. Phơng trình bậc nhất một ẩn. Cách giải. 8. Cách giải phơng trình đa đợc về dạng ax + b = 0. 9. Phơng trình tích. Cách giải. 10. Cách giải phơng trình đa đợc về dạng phơng trình tích. 11Phơng trình chứa ẩn ở mẫu. 12Các bớc giải bài toán bằng cách lập phơng trình. 13Thế nào là hai bất phơng trình tơng đơng. 14. Hai quy tắc biến đổi bất phơng trình. 15. Bất phơng trình bậc nhất một ẩn. 16. Cách giải phơng trình chứa dấu giá trị tuyệt đối. II. Bài tập: A.Một số bài tập trắc nghiệm 1) Chọn biểu thức ở cột A với một biểu thức ở cột B để có đẳng thức đúng Cột A Cột B 1/ 2x - 1 - x 2 a) x 2 - 9 2/ (x - 3)(x + 3) b) (x -1)(x 2 + x + 1) 3/ x 3 + 1 c) x 3 - 3x 2 + 3x - 1 4/ (x - 1) 3 4/ (x - 1) 3 d) -(x - 1) 2 4/ (x - 1) 3 4/ (x - 1) 3 d) -(x - 1) 2 e) (x + 1)(x 2 - x + 1) 2)Kết quả của phép tính 22 299301 12000 là: A. 1 B. 10 C. 100 D. 1000 3)Phân thức 18 48 3 x x đợc rut gọn : A. 1 4 2 x B. 1 4 2 x C. 124 4 2 ++ xx 4)Để biểu thức 3 2 x có giá trị nguyên thì giá trị của x là A. 1 B.1;2 C. 1;-2;4 D. 1;2;4;5 5)Đa thức 2x - 1 - x 2 đợc phân tích thành A. (x-1) 2 B. -(x-1) 2 C. -(x+1) 2 D. (-x-1) 2 ễn Tp Toỏn 8 Hố 2011 GV: Phm Ngc Nam 6)Điền biểu thức thích hợp vào ô trống trong các biểu thức sau : a/ x 2 + 6xy + = (x+3y) 2 b/ + yx 2 1 ( ) = 8 8 33 yx + c/ (8x 3 + 1):(4x 2 - 2x+ 1) = 7)Tính (x + 2y) 2 ? A. x 2 + x + 4 1 B. x 2 + 4 1 C. x 2 - 4 1 D. x 2 - x + 4 1 8) Nghiệm của phơng trình x 3 - 4x = 0 A. 0 B. 0;2 C. -2;2 D. 0;-2;2 B. Bi tp t lun: 1/ Thực hiện các phép tính sau: a) (2x - y)(4x 2 - 2xy + y 2 ) b) (6x 5 y 2 - 9x 4 y 3 + 15x 3 y 4 ): 3x 3 y 2 c) (2x 3 - 21x 2 + 67x - 60): (x - 5) d) (x 4 + 2x 3 +x - 25):(x 2 +5) e) (27x 3 - 8): (6x + 9x 2 + 4) 2/ Rút gọn các biểu thức sau: a) (x + y) 2 - (x - y) 2 b) (a + b) 3 + (a - b) 3 - 2a 3 c) 9 8 .2 8 - (18 4 - 1)(18 4 + 1) 3/ Chứng minh biểu thức sau không phụ thuộc vào biến x,y A= (3x - 5)(2x + 11) - (2x + 3)(3x + 7) B = (2x + 3)(4x 2 - 6x + 9) - 2(4x 3 - 1) C = (x - 1) 3 - (x + 1) 3 + 6(x + 1)(x - 1) 4/ Phân tích các đa thức sau thành nhân tử: a) x 2 - y 2 - 2x + 2y b)2x + 2y - x 2 - xy c) 3a 2 - 6ab + 3b 2 - 12c 2 d)x 2 - 25 + y 2 + 2xy e) a 2 + 2ab + b 2 - ac - bc f)x 2 - 2x - 4y 2 - 4y g) x 2 y - x 3 - 9y + 9x h)x 2 (x-1) + 16(1- x) n) 81x 2 - 6yz - 9y 2 - z 2 m)xz-yz-x 2 +2xy-y 2 p) x 2 + 8x + 15 k) x 2 - x 12 l) 81x 2 + 4 5/ Tìm x biết: a) 2x(x-5)-x(3+2x)=26 b) 5x(x-1) = x-1 c) 2(x+5) - x 2 -5x = 0 d) (2x-3) 2 -(x+5) 2 =0 e) 3x 3 - 48x = 0 f) x 3 + x 2 - 4x = 4 6/ Chứng minh rằng biểu thức: A = x(x - 6) + 10 luôn luôn dơng với mọi x. B = x 2 - 2x + 9y 2 - 6y + 3 7/ Tìm giá trị nhỏ nhất của biểu thức A,B,C và giá trị lớn nhất của biểu thức D,E: A = x 2 - 4x + 1 B = 4x 2 + 4x + 11 C = (x -1)(x + 3)(x + 2)(x + 6) D = 5 - 8x - x 2 E = 4x - x 2 +1 ễn Tp Toỏn 8 Hố 2011 GV: Phm Ngc Nam 8/ Xác định a để đa thức: x 3 + x 2 + a - x chia hết cho(x + 1) 2 9/ Cho các phân thức sau: A = )2)(3( 62 + + xx x B = 96 9 2 2 + xx x C = xx x 43 169 2 2 D = 42 44 2 + ++ x xx E = 4 2 2 2 x xx F = 8 1263 3 2 ++ x xx a) Với đIều kiện nào của x thì giá trị của các phân thức trên xác định. b)Tìm x để giá trị của các pthức trên bằng 0. c)Rút gọn phân thức trên. 10) Thực hiện các phép tính sau: a) 62 1 + + x x + xx x 3 32 2 + + b) 62 3 +x xx x 62 6 2 + c) yx x 2 + yx x 2+ + 22 4 4 xy xy d) 23 1 x 2 94 63 23 1 x x x + 11/ Chứng minh rằng: 5 2005 + 5 2003 chia hết cho 13 b) a 2 + b 2 + 1 ab + a + b Cho a + b + c = 0. chứng minh: a 3 + b 3 + c 3 = 3abc 12/ a) Tìm giá trị của a,b biết: a 2 - 2a + 6b + b 2 = -10 b) Tính giá trị của biểu thức; A = x zy y zx z yx + + + + + nếu 0 111 =++ zyx 13/ Rút gọn biểu thức: A = ++ 2222 1 2 1 yxyxyx : 22 4 xy xy 14) Chứng minh đẳng thức: + + 1 3 1 1 2 3 2 x x x xx : 1 21 = x x x x 15 : Cho biểu thức : + + = 1 2 2 1 4 2 2 1 2 xx x x x A a) Rút gọn A. b) Tính giá trị của biểu thức A tại x thoả mãn: 2x 2 + x = 0 c) Tìm x để A= 2 1 d) Tìm x nguyên để A nguyên dơng. 16. Cho biểu thức : ễn Tp Toỏn 8 Hố 2011 GV: Phm Ngc Nam + + = 3 1 1: 3 1 3 4 9 21 2 xx x x x x B a) Rút gọn B. b) Tính giá trị của biểu thức B tại x thoả mãn: |2x + 1| = 5 c) Tìm x để B = 5 3 d) Tìm x để B < 0. 17: Tìm các giá trị nguyên của x để phân thức M có giá trị là một số nguyên: 32 5710 2 = x xx M 18.Giải các phơng trình sau: a) 5 (x 6) = 4(3 2x) 3 5 2 6 13 2 23 ) += + + x xx d b) 3 4x(25 2x) = 8x 2 + x 300 3 1 7 6 8 5 5-2x - x) += + + xx e 5 5 24 3 18 6 25 ) + = + xxx c 19.Giải các phơng trình sau: a) 2x(x 3) + 5(x 3) = 0 d) x 2 5x + 6 = 0 b) (x 2 4) (x 2)(3 2x) = 0 e) 2x 3 + 6x 2 = x 2 + 3x c) (2x + 5) 2 = (x + 2) 2 20.Giải các phơng trình sau: )2)(1( 15 2 5 1x 1 ) xxx a + = + 1 2 1 3 1-x 1 ) 23 2 ++ = xx x x x d 2 4 25 22x 1-x ) x x x x b = + 168 1 )2(2 1 84 5 8x 7 ) 2 + = + xxx x xx x e 502 25 102 5 5x 5x ) 222 + = + + x x xx x x c 21.Giải các phơng trình sau: a) |x - 5| = 3 d) |3x - 1| - x = 2 b) |- 5x| = 3x 16 e) |8 - x| = x 2 + x c) |x - 4| = -3x + 5 22.Giải các bất phơng trình sau rồi biểu diễn tập nghiệm trên trục số: a) (x 3) 2 < x 2 5x + 4 f) x 2 4x + 3 0 b) (x 3)(x + 3) (x + 2) 2 + 3 g) x 3 2x 2 + 3x 6 < 0 ễn Tp Toỏn 8 Hố 2011 GV: Phm Ngc Nam 5 7 3 5 -4x ) x c > 0 5 2x ) + h 4 14 3 53 3 2 12x ) + + + xx d 0 3-x 2x ) < + i 5 2 32 4 12 5 3-5x ) + + xx e 1 3-x 1-x ) >k 23.Chứng minh rằng: a) a 2 + b 2 2ab 0 d) m 2 + n 2 + 2 2(m + n) ab b b + 2 a ) 22 4 1 a 1 b)(a ) ++ b e (với a > 0, b > 0) c) a(a + 2) < (a + 1) 2 24.Cho m < n. Hãy so sánh: a) m + 5 và n + 5 c) 3m + 1 và - 3n + 1 b) - 8 + 2m và - 8 + 2n 5 5 2 m ) 2 n và d 25.Cho a > b. Hãy chứng minh: a) a + 2 > b + 2 c) 3a + 5 > 3b + 2 b) - 2a 5 < - 2b 5 d) 2 4a < 3 4b 26.Lúc 7 giờ sáng, một ngời đi xe đạp khởi hành từ A với vận tốc 10km/h. Sau đó lúc 8 giờ 40 phút, một ngời khác đi xe máy từ A đuổi theo với vận tốc 30km/h. Hỏi hai ngời gặp nhau lúc mấy giờ. 27.Hai ngời đi bộ khởi hành ở hai địa điểm cách nhau 4,18 km đi ngợc chiều nhau để gặp nhau. Ngời thứ nhất mỗi giờ đi đợc 5,7 km. Ngời thứ hai mỗi giờ đi đợc 6,3 km nhng xuất phát sau ngời thứ nhất 4 phút. Hỏi ngời thứ hai đi trong bao lâu thì gặp ng- ời thứ nhất. 28.Lúc 6 giờ, một ôtô xuất phát từ A đến B với vận tốc trung bình 40km/h. Khi đến B, ngời lái xe làm nhiệm vụ giao nhận hàng trong 30 phút rồi cho xe quay trở về A với vận tốc trung bình 30km/h. Tính quãng đờng AB biết rằng ôtô về đến A lúc 10 giờ cùng ngày. 29.Hai xe máy khởi hành lúc 7 giờ sáng từ A để đến B. Xe máy thứ nhất chạy với vận tốc 30km/h, xe máy thứ hai chạy với vận tốc lớn hơn vận tốc của xe máy thứ nhất là 6km/h. Trên đờng đi xe thứ hai dừng lại nghỉ 40 phút rồi lại tiếp tục chạy với vận tốc cũ. Tính chiều dài quãng đờng AB, biết cả hai xe đến B cùng lúc. 30.Một canô tuần tra đi xuôi dòng từ A đến B hết 1 giờ 20 phút và ngợc dòng từ B về A hết 2 giờ. Tính vận tốc riêng của canô, biết vận tốc dòng nớc là 3km/h. ễn Tp Toỏn 8 Hố 2011 GV: Phm Ngc Nam 31.Một tổ may áo theo kế hoạch mỗi ngày phải may 30 áo. Nhờ cải tiến kĩ thuật, tổ đã may đợc mỗi ngày 40 áo nên đã hoàn thành trớc thời hạn 3 ngày ngoài ra còn may thêm đợc 20 chiếc áo nữa. Tính số áo mà tổ đó phải may theo kế hoạch. 32.Hai công nhân nếu làm chung thì trong 12 giờ sẽ hoàn thành công việc. Họ làm chung trong 4 giờ thì ngời thứ nhất chuyển đi làm việc khác, ngời thứ hai làm nốt công việc trong 10 giờ. Hỏi ngời thứ hai làm một mình thì bao lâu hoàn thành công việc. 33.Một tổ sản xuất dự định hoàn thành công việc trong 10 ngày. Thời gian đầu, họ làm mỗi ngày 120 sản phẩm. Sau khi làm đợc một nửa số sản phẩm đợc giao, nhờ hợp lý hoá một số thao tác, mỗi ngày họ làm thêm đợc 30 sản phẩm nữa so với mỗi ngày trớc đó. Tính số sản phẩm mà tổ sản xuất đợc giao. 34.Hai tổ sản xuất cùng làm chung công việc thì hoàn thành trong 2 giờ. Hỏi nếu làm riêng một mình thì mỗi tổ phải hết bao nhiêu thời gian mới hoàn thành công việc, biết khi làm riêng tổ 1 hoàn thành sớm hơn tổ 2 là 3 giờ. Hình học I. Lý Thuyt 1) Định nghĩa tứ giác,tứ giác lồi,tổng các góc của tứ giác. 2) Nêu định nghĩa,tính chất,dấu hiệu nhận biết của hình thang,hình than cân, hình thang vuông,hình chữ nhật,hình bình hành,hình thoi, hình vuông . 3) Các định lí về đờng trung bình của tam giác,của hình thang. 4) Nêu định nghĩa hai điểm đối xứng,hai hình đối xứng qua 1 đờng thẳng; Hai điểm đối xứng,hai hình đối xứng qua 1 điểm,hình có trục đối xứng,hình có tâm đối xứng. 5) Tính chất của các điểm cách đều 1 đờng thẳnh cho trớc. 6) Định nghĩa đa giác đều,đa giác lồi,viết công thức tính diện tích của: hình chữ nhật,hình vuông,tam giác,hình thang,hình bình hành,hình thoi. 7. Định lý Talet, định lý Talet đảo, hệ quả của định lý Talet. ễn Tp Toỏn 8 Hố 2011 GV: Phm Ngc Nam 8. Tính chất đờng phân giác của tam giác. 9. Các trờng hợp đồng dạng của tam giác. 10. Các trờng hợp đồng dạng của tam giác vuông. 11Công thức tính thể tích của hình hộp chữ nhật, diện tích xung quanh và thể tích của hình lăng trụ đứng, diện tích xung quanh và thể tích của hình chóp đều. II. Bi Tp: A. Một số bài tập trắc nghiệm 1)Một tứ giác là hình vuông nếu nó là : Tứ giác có 3 góc vuông Hình bình hành có một góc vuông Hình thoi có một góc vuông Hình thang có hai gốc vuông 2)Trong các hình sau hình nào không có trục đối xứng : A. Hình thang cân B. Hình bình hành C. Hình chữ nhật C. Hình thoi 3)Trong các hình sau hình nào không có tâm đối xứng : A. Hình thang cân B. Hình bình hành C. Hình chữ nhật C. Hình thoi 4)Cho MNP vuông tại M ; MN = 4cm ; NP = 5cm. Diện tích MNP bằng : A. 6cm2 B. 12cm 2 C. 15cm 2 D.20cm 2 13)Hình vuông có đờng chéo bằng 4dm thì cạnh bằng : A. 1dm B. 4dm C. 8 dm D. 3 2 dm 5)Hình thoi có hai đờng chéo bằng 6cm và 8cm thì chu vi hình thoi bằng A. 20cm B. 48cm C. 28cm D. 24cm 6)Hình thang cân là : A. Hình thang có hai góc bằng nhau B. Hình thang có hai góc kề một đáy bằng nhau C. Hình thang có hai cạnh bên bằng nhau B. BI TP T LUN 1/ Cho hình bình hành ABCD có BC = 2AB và góc A = 60 0 . Gọi E,F theo thứ tự là trung đIểm của BC và AD. Tứ giác ECDF là hình gì? Tứ giác ABED là hình gì? Vì sao ? Tính số đo của góc AED. 2/ Cho ABC. Gọi M,N lần lợt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M. a) C/m tứ giác BNCH và ABHN là hbh. b) ABC thỏa mãn điều kiện gì thì tứ giác BCNH là hình chữ nhật. 3/ Cho tứ giác ABCD. Gọi O là giao điểm của 2 đờng chéo ( không vuông góc),I và K lần lợt là trung điểm của BC và CD. Gọi M và N theo thứ tự là điểm đối xứng của điểm O qua tâm I và K. ễn Tp Toỏn 8 Hố 2011 GV: Phm Ngc Nam a) C/mrằng tứ giác BMND là hình bình hành. b) Với điều kiện nào của hai đờng chéo AC và BD thì tứ giác BMND là hình chữ nhật. c) Chứng minh 3 điểm M,C,N thẳng hàng. 4/ Cho hình bình hành ABCD. Gọi E và F lần lợt là trung điểm của AD và BC. Đờng chéo AC cắt các đoạn thẳng BE và DF theo thứ tự tại P và Q. a) C/m tứ giác BEDF là hình bình hành. b) Chứng minh AP = PQ = QC. c) Gọi R là trung điểm của BP. Chứng minh tứ giác ARQE là hình bình hành. 5/ Cho tứ giác ABCD. Gọi M,N,P,Q lần lợt là trung điểm của AB,BC,CD,DA. a) Tứ giác MNPQ là hình gì? Vì sao? b) Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình vuông? c) Với điều kiện câu b) hãy tính tỉ số diện tích của tứ giác ABCD và MNPQ 6/ Cho ABC,các đờng cao BH và CK cắt nhau tại E. Qua B kẻ đờng thẳng Bx vuông góc với AB. Qua C kẻ đờng thẳng Cy vuông góc với AC. Hai đờng thẳng Bx và Cy cắt nhau tại D. a) C/m tứ giác BDCE là hình bình hành. b) Gọi M là trung điểm của BC. Chứng minh M cũng là trung điểm của ED. c) ABC phải thỏa mãn đ/kiện gì thì DE đi qua A 7/ Cho hình thang cân ABCD (AB//CD),E là trung điểm của AB. a) C/m EDC cân b) Gọi I,K,M theo thứ tự là trung điểm của BC,CD,DA. Tg EIKM là hình gì? Vì sao? c) Tính S ABCD ,S EIKM biết EK = 4,IM = 6. 8/ Cho hình bình hành ABCD. E,F lần lợt là trung điểm của AB và CD. a) Tứ giác DEBF là hình gì? Vì sao? b) C/m 3 đờng thẳng AC,BD,EF đồng qui. c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành. d) Tính S EMFN khi biết AC = a,BC = b. 9.Cho hình thang ABCD (AB//CD) ,một đờng thẳng song song với 2 đáy, cắt các cạnh AD,BC ở M và N sao cho MD = 2MA. a.Tính tỉ số . b.Cho AB = 8cm, CD = 17cm.Tính MN? 10.Cho hình thang ABCD(AB//CD).M là trung điểm của CD.Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC. a.Chứng minh IK // AB b.Đờng thẳng IK cắt AD, BC theo thứ tự ở E và F.Chứng minh: EI = IK = KF. 11.Tam giác ABC có AB = 6cm, AC = 12cm, BC = 9cm.Gọi I là giao điểm của các đ- ờng phân giác , G là trọng tâm của tam giác. a.Chứng minh: IG//BC b.Tính độ dài IG ễn Tp Toỏn 8 Hố 2011 GV: Phm Ngc Nam 12.Cho hình thoi ABCD.Qua C kẻ đờng thẳng d cắt các tia đối của tia BA và CA theo thứ tự E, F.Chứng minh: a. b. c. =120 0 ( I là giao điểm của DE và BF) 13 Cho tam giác ABC và các đờng cao BD, CE. a,Chứng minh: b.Tính biết = 48 0 . 14.Cho tam giác ABC vuông ở A, đờng cao AH, BC = 20cm, AH = 8cm.Gọi D là hình chiếu của H trên AC, E là hình chiếu của H trên AB. a.Chứng minh tam giác ADE đồng dạng với tam giác ABC. b.Tính diện tích tam giác ADE 15.Cho tam giác ABC vuông ở A, AB = 15cm, AC = 20cm, đờng phân giác BD. a.Tính độ dài AD? b.Gọi H là hình chiếu của A trên BC. Tính độ dài AH, HB? c.Chứng minh tam giác AID là tam giác cân. 16.Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đờng cao AD và BE gặp nhau ở H. a.Tìm các tam giác đồng dạng với tam giác BDH. b.Tính độ dài HD, BH c.Tính độ dài HE 17.Cho tam giác ABC, các đờng cao BD, CE cắt nhau ở H.Gọi K là hình chiếu của H trên BC.Chứng minh rằng: a.BH.BD = BK.BC b.CH.CE = CK.CB 18.Cho hình thang cân MNPQ (MN //PQ, MN < PQ), NP = 15cm, đờng cao NI = 12cm, QI = 16 cm. a) Tính IP. b) Chứng minh: QN NP. c) Tính diện tích hình thang MNPQ. d) Gọi E là trung điểm của PQ. Đờng thẳng vuông góc với EN tại N cắt đờng thẳng PQ tại K. Chứng minh: KN 2 = KP . KQ 19.Cho tam giác ABC vuông tạo A; AB = 15cm, AC = 20cm, đờng cao AH. a) Chứng minh: HBA đồng dạng với ABC. b) Tính BC, AH. c) Gọi D là điểm đối xứng với B qua H. Vẽ hình bình hành ADCE. Tứ giác ABCE là hình gì? Tại sao? d) Tính AE. e) Tính diện tích tứ giác ABCE. ễn Tp Toỏn 8 Hố 2011 GV: Phm Ngc Nam 20.Cho tam giác ABC vuông tại A (AB < AC), đờng cao AH. Từ B kẻ tia Bx AB, tia Bx cắt tia AH tại K. a) Tứ giác ABKC là hình gì ? Tại sao? b) Chứng minh: ABK đồng dạng với CHA. Từ đó suy ra: AB . AC = AK . CH c) Chứng minh: AH 2 = HB . HC d) Giả sử BH = 9cm, HC = 16cm. Tính AB, AH. 21.Cho tam giác ABC có ba góc nhọn. Đờng cao AF, BE cắt nhau tại H. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By vuông góc với BC. Tia Ax và By cắt nhau tại K. a) Tứ giác AHBK là hình gì? Tại sao? b) Chứng minh: HAE đồng dạng với HBF. c) Chứng minh: CE . CA = CF . CB d) ABC cần thêm điều kiện gì để tứ giác AHBK là hình thoi. 22.Cho tam giác ABC, AB = 4cm, AC = 5cm. Từ trung điểm M của AB vẽ một tia Mx cắt AC tại N sao cho gócAMN = gócACB. a) Chứng minh: ABC đồng dạng với ANM. b) Tính NC. c) Từ C kẻ một đờng thẳng song song với AB cắt MN tại K. Tính tỉ số MK MN . 23.Cho ABC có AB = 4cm, AC = 5cm, BC = 6cm. Trên tia đối của tia AB lấy điểm D sao cho AD = 5cm. a) Chứng minh: ABC đồng dạng với CBD. b) Tính CD. c) Chứng minh: gócBAC = 2.gócACD 24.Cho tam giác vuông ABC (gócA = 90 o ), đờng cao AH. Biết BH = 4cm, CH = 9cm. a) Chứng minh: AB 2 = BH . BC b) Tính AB, AC. c) Đờng phân giác BD cắt AH tại E (D AC). Tính DBA EBH S S và chứng minh: DA DC EH EA = . 25.Cho hình bình hành ABCD. Trên cạnh BC lấy điểm F. Tia AF cắt BD và DC lần lợt ở E và G. Chứng minh: a) BEF đồng dạng với DEA. DGE đồng dạng với BAE. b) AE 2 = EF . EG c) BF . DG không đổi khi F thay đổi trên cạnh BC. ễn Tp Toỏn 8 Hố 2011 [...]... nghiệm của phương trình Ơn Tập Tốn 8 – Hè 2011 GV: Phạm Ngọc Nam Ơn Tập Tốn 8 – Hè 2011 GV: Phạm Ngọc Nam Ơn Tập Tốn 8 – Hè 2011 2.§Ị sè 2: GV: Phạm Ngọc Nam Ơn Tập Tốn 8 – Hè 2011 GV: Phạm Ngọc Nam 3.§Ị sè 3: Ơn Tập Tốn 8 – Hè 2011 GV: Phạm Ngọc Nam Ơn Tập Tốn 8 – Hè 2011 GV: Phạm Ngọc Nam C©u 6 C©u 7 C©u 8 C©u 9 Ơn Tập Tốn 8 – Hè 2011 GV: Phạm Ngọc Nam Ơn Tập Tốn 8 – Hè 2011 ... ®ång d¹ng víi ∆BDA b) Chøng minh: ∆DHC ®ång d¹ng víi ∆DCA Tõ ®ã suy ra: DC2 = DH DA c) Cho AB = 10cm, AE = 8cm TÝnh EC, HC a 28. Quan s¸t l¨ng trơ ®øng tam gi¸c (h×nh 1) råi ®iỊn sè thÝch hỵp vµo « trèng trong b¶ng sau: h a (cm) 6 10 b (cm) 3 c c (cm) 5 7 b h (cm) 8 Chu vi ®¸y (cm) 22 H×nh 1 88 Sxq (cm2) 29.H×nh l¨ng trơ ®øng ABC.A’B’C’ cã hai ®¸y ABC vµ A’B’C’ lµ c¸c tam gi¸c vu«ng t¹i A vµ A’ (h×nh... thức n 2 C n ≥ 10 D n ≤ 10 Câu 28 : Nếu ∆ ABC đồng dạng vớI ∆ A′B′C′ theo tỉ đồng dạng là 2 và diện tích ∆ 5 ABC là 180 cm2 thì diện tích của ∆ A′B′C′ là : A .80 cm B.120 cm2 C 288 0 cm2 D 1225 cm2 Câu 29 : Cho ∆ ABC vng tại A, có AB = 21 cm, AC = 28 cm và AD là phân giác · của BAC thì độ dài DB = ……… và DC = ………… Câu 30 : Cho một hình lập phương có diện tích tòan phần 1350 dm3 thì đường chéo của hình... sai Câu 46: Hình lăng trụ tam giác đều co mặt bên là hình gì? A Tam giác đều B Hình vuông C Hình bình hành D.Hình chữ nhật Câu 47 : Phương trình 2x – 2 = x + 5 có nghiệm x bằng : A) –7 B) 7/3 C) 3 D) 7 Câu 48 : Cho a + 3 > b + 3 Khi đó : A) a < b B) 3a + 1 > 3b + 1 C) –3a – 4 > - 3b – 4 D) 5a + 3 < 5b + 3 Ơn Tập Tốn 8 – Hè 2011 GV: Phạm Ngọc Nam Câu49 : Điều kiện xác đònh của phương trình x : (2x –... cm3 B 18 cm3 C 47 cm3 D 65 cm3 Câu 56: Di ện tich tồn ph ần cu ả m ột h ình l ập phương l à 216 cm2 khi đ ó th ể tich của nó là: 3 A 6 cm B, 36 cm3 C 144 cm3 D 216cm3 Câu 57: Ph ư ơng tr ình x + 1 + 2 = 0 có nghiệm là: A.x = -3 B.x = 0 C x = 1 D vơ nghiệm Câu 58: Bất phương trình n sau đây là bất phương trình bậc nhất một ẩn: A 2x2 + 4 > 0 B 0.x + 4 < 0 C 4 – x > 0 D x +1 >0 x −3 Ơn Tập Tốn 8 – Hè... Tốn 8 – Hè 2011 GV: Phạm Ngọc Nam A 0 B 1 C âu 26 : Có bao nhi êu số tự nhiên A 5 B 6 Câu 27: Để giá tr ị của biểu thức (n 100 thì giá trị của n l à : A n > 10 B n < 10 C 2 D 3 x thỏa mãn bất phương trình : x 2 − 2x ≤ 26 − 2x C 10 D 11 E 12 2 – 10 ) khơng bé hơn giá trị của biểu thức n 2 C n ≥ 10 D n ≤ 10 Câu 28 : Nếu ∆ ABC đồng dạng vớI ∆ A′B′C′ theo tỉ đồng dạng là 2 và diện tích ∆ 5 ABC là 180 cm2... 5 D x / x < 2 Câu 12: Cho bất phương trình x2 – 2x < 3x Các giá trò nào sau đây của x KHÔNG phải là nghiệm ? A x = 1 B x = 2 C x = 3 D x = 4 E x = 5 Câu 13 : Số nguyên x lớn nhất thỏa mãn bất phương trình 5,2 + 0,3 x < - 0,5 là: A –20 B x –19 C 19 D 20 E Một số khác Ơn Tập Tốn 8 – Hè 2011 GV: Phạm Ngọc Nam Câu 14 : Điền vào chỗ trống (…… ) kết quả đúng : a/ Hình hộp chữ nhật có ba... Câu 37/ Trong các câu sau câu nào đúng (Đ) ? Câu nào sai (S)? a)Hình lập phương có 4 mặt Đ S b) Phương trình bậc nhất một ẩn có một nghiệm duy nhất Đ S x x −1 Câu 38. / Điều kiện xác đònh của phương trình : 2 x − 1 + 2 + x = 0 là: Ơn Tập Tốn 8 – Hè 2011 GV: Phạm Ngọc Nam 1 1 A x ≠ 2 hoặc x ≠ -2 1 B x ≠ 2 C x ≠ - 2 và x ≠ 2 1 D x ≠ 2 và x ≠ -2 Câu 39: Bất phương trình nào dưới đây là bất phương trình bậc... 2 C âu 18 : Có bao nhiêu số ngun x thỏa mãn bất phương trình : x − 2x ≤ 26 − 2x A 5 B 6 C 10 D 11 E 12 Câu 19: Để giá trị của biểu thức ( n – 10 ) 2 khơng lớn hơn giá trị của biểu thức n 2 100 thì giá trị của n là : A n > 10 B n < 10 C n ≥ 10 D n ≤ 10 Câu 20 : Nếu ∆ ABC đồng dạng v ới ∆ A′B′C′ theo tỉ đồng dạng là đồng dạng với ∆A′′B′′C′′ theo tỉ đồng dạng là theo tỉ đồng dạng là : A 2 15 B 8 15 1 và... A′B′C′ theo tỉ đồng dạng là đồng dạng với ∆A′′B′′C′′ theo tỉ đồng dạng là theo tỉ đồng dạng là : A 2 15 B 8 15 1 và ∆ A′B′C′ 3 2 thì ∆ ABC đồng dạng với ∆A′′B′′C′′ 5 C 5 6 D 3 8 Câu 21 : Cho ∆ ABC vng tại A, có AB = 21 cm, AC = 28 cm và BD là phân giác · của ABC thì độ dài DA = ……… và DC = ………… Câu 22 : Cho hình hộp chữ nhật có ba kích thước là 25 cm, 34cm, 62 cm thì đường chéo cùa hình h ộp chữ nhật . nghiệm của phương trình Ôn Tập Toán 8 – Hè 2011 GV: Phạm Ngọc Nam Ôn Tập Toán 8 – Hè 2011 GV: Phạm Ngọc Nam Ôn Tập Toán 8 – Hè 2011 GV: Phạm Ngọc Nam 2.§Ò sè 2: Ôn Tập Toán 8 – Hè 2011 . tứ giác là hình vuông nếu nó là : Tứ giác có 3 góc vuông Hình bình hành có một góc vuông Hình thoi có một góc vuông Hình thang có hai gốc vuông 2)Trong các hình sau hình nào không có trục đối xứng. (27x 3 - 8) : (6x + 9x 2 + 4) 2/ Rút gọn các biểu thức sau: a) (x + y) 2 - (x - y) 2 b) (a + b) 3 + (a - b) 3 - 2a 3 c) 9 8 .2 8 - ( 18 4 - 1)( 18 4 + 1) 3/ Chứng minh biểu thức sau không phụ