Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 19 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
19
Dung lượng
347 KB
Nội dung
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT ĐẶNG THAI MAI SÁNG KIẾN KINH NGHIỆM TÊN ĐỀ TÀI “ KHẮC PHỤC SAI LẦM KHI GIẢI CÁC BÀI TOÁN TÍCH PHÂN CHO HỌC SINH ” Người thực hiện: Nguyễn Ngọc Hồng Chức vụ: Phó Hiệu trưởng SKKN thuộc lĩnh mực (môn): Toán THANH HOÁ NĂM 2013 PHẦN I: MỞ ĐẦU I. ĐẶT VẤN ĐỀ. Trong chương trình toán học lớp 12 và cụ thể là các đề thi Đại học – Cao đẳng và Trung học chuyên nghiệp bài toán tích phân là một trong những bài toán khó mà học sinh của chúng ta hay mắc phải sai lầm, vì nó cần đến sự áp dụng linh hoạt của Định nghĩa, các tính chất, các phương pháp tính tích phân. Trong thực tế đa số học sinh tính tích phân một cách máy móc: Tìm nguyên hàm của hàm số cần tính tích phân rồi dùng định nghĩa của tích phân hoặc phương pháp đổi biến số, phương pháp tính tích phân từng phần mà rất ít học sinh để ý đến nguyên hàm của hàm số tìm được có phải là nguyên hàm của hàm số đó trên đoạn lấy tích phân hay không? Phép đặt biến mới trong phương pháp đổi biến số có nghĩa không? Phép biến đổi hàm số có tương đương không? Vì thế trong quá trình tính tích phân học sinh thường mắc phải những sai lầm dẫn đến lời giải sai. Trong quá trình giảng dạy và trao đổi với các đồng nghiệp khác trong tổ chuyên môn khi dạy phần kiến thức này, tôi nhận thấy rất nhiều các học sinh ở những lớp khác nhau nhưng mắc những sai lầm giống nhau khi giải các bài toán đó thậm chí có cả học sinh khá, giỏi. Những lỗi đơn giản mà học sinh vẫn thường mắc phải như : - Tính nguyên hàm sai, hiểu sai bản chất công thức; - Đổi biến số nhưng không đổi cận; - Khi đổi biến không tính vi phân; - Giải sai hoặc tính toán nhầm do kỹ năng tính toán chưa thuần thục: Những lỗi khó phát hiện mà học sinh thường mắc phải như : - Hàm số không liên tục trên vẫn sử dụng được công thức Newtơn- Leibnitz. 2 - Đổi biến số t = u(x) nhưng u(x) không phải là một hàm số liên tục và đạo hàm liên tục trên [a; b]. - Sử dụng công thức và khái niệm không có trong sách giáo khoa hiện thời. - Chọn cách đổi biến số nhưng gặp khó khăn khi đổi cận (không tìm được giá trị chính xác)… Với mong muốn giúp các em học sinh hiểu được những những kiến thức căn bản, khắc phục được những sai lầm khi giải toán từ đó tự mình làm được những bài tập cơ bản, tiến tới giải quyết được những bài toán nâng cao và thấy yêu thích môn Toán hơn, trên cơ sở tiếp thu một số kết quả của đồng nghiệp đi trước và trong thực tế của quá trình giảng dạy, tôi đã chọn đề tài nghiên cứu cho mình là: “ KHẮC PHỤC SAI LẦM KHI GIẢI CÁC BÀI TOÁN TÍCH PHÂN CHO HỌC SINH ” II. MỤC ĐÍCH NGHIÊN CỨU Đề tài này được nghiên cứu nhằm mục đích cải tiến nội dung và phương pháp giảng dạy các tiết học lí thuyết và bài tập tự chọn về Nguyên hàm và tích phân, từ đó: - Hình thành cho học sinh kiến thức căn bản về Nguyên hàm và tích phân. - Giúp học sinh nhận thấy những sai lầm thường mắc phải khi giải các bài toán và cách khắc phục. - Giúp cho học sinh có khả năng tư duy nhất quán nhưng linh hoạt và sáng tạo. Giúp các em đạt kết quả cao hơn trong học tập môn Toán từ đó mà thấy say mê môn Toán hơn. Đồng thời rèn luyện những đức tính tốt cho học sinh trong học tập và nghiên cứu. - Tích lũy kinh nghiệm giảng dạy cho giáo viên, tạo cảm hứng cho giáo viên sáng tạo hơn nữa trong giảng dạy, thêm yêu ngành yêu nghề. III. PHƯƠNG PHÁP NGHIÊN CỨU 3 - Lựa chọn các ví dụ ,các bài tập cụ thể về tích phân và chỉ ra những sai lầm của học sinh khi vận dụng hoạt động năng lực tư duy và kỹ năng vận dụng kiến thức của học sinh để từ đó đưa ra lời giải đúng của bài toán. - Kiến thức căn bản về Nguyên hàm và tích phân; các dạng bài tập cơ bản về Nguyên hàm và tích phân; - Chỉ ra một số sai lầm của học sinh trong quá trình giải các bài toán tính Tích phân và biện pháp khắc phục bằng một số ví dụ đơn giản; - Mở rộng thêm một số bài toán cho học sinh khá, giỏi. - Đưa ra được đường lối tư duy chung để giải quyết một bài toán tính Tích phân bất kì. - Đưa ra được hệ thống các bài tập áp dụng và củng cố. - Đánh giá được kết quả của việc áp dụng SKKN vào giảng dạy. 4 PHẦN II: NỘI DUNG I. CƠ SỞ KHOA HỌC. Dựa trên nguyên tắc quá trình nhận thức của con người đi từ: “ cái sai đến cái gần đúng rồi mới đến khái niệm đúng”, các nguyên tắc dạy học và đặc điểm quá trình nhận thức của học sinh G.Polya đã viết "Con người phải biết học từ những sai lầm và những thiếu sót của mình". Thông qua những sai lầm, nếu ta biết cách nhìn nhận ra nó, kịp thời uốn nắn và sửa chữa nó thì sẽ giúp ta ghi nhớ lâu hơn tri thức đã được học, đồng thời sẽ giúp ta tránh được những sai lầm tương tự và bồi dưỡng thêm về mặt tư duy cho bản thân mỗi người. Những kiến thức căn bản về nguyên hàm và tích phân là kiến thức hoàn toàn mới mẻ đối với học sinh nhưng sự hình thành ít nhiều liên quan đến kiến thức về đạo hàm, các em có thể dựa vào các công thức đạo hàm để hình thành công thức nguyên hàm, tuy vậy đa phần các em hay nhầm lẫn giữa hai loại công thức này. Các kiến thức căn bản về biến đổi đại số, học sinh cũng đã được học từ bậc THCS những em có lực học trung bình, yếu kém đều bị mất gốc phần kiến thức này do đó dù các em có nắm được kiến thức căn bản của nguyên hàm tích phân thì cũng sẽ bế tắc khi thực hiện lời giải. Còn với đa phần các em có học lực khá, giỏi tâm lí chung khi gặp một bài toán là nóng vội lao vào tìm phương pháp giải, tìm ra phương pháp rồi thì vội vàng trình bày lời giải, tìm ra đáp số, thấy kết quả gọn, đẹp là yên tâm, chắc mẩm đã đúng mà quên mất các thao tác quen thuộc: phân tích đề, kiểm tra các điều kiện, kiểm tra các phép tính… Vì vậy những sai sót xảy ra là điều tất yếu. Kinh nghiệm cũng cho thấy việc phát hiện ra lỗi sai của người khác thì dễ còn việc phát hiện ra lỗi sai của chính mình là rất khó. Trong quá trình dạy về phần kiến thức này, tôi cho các em chủ động tự làm theo lối tư duy logic của riêng mình, để các em theo dõi nhận xét lời giải của nhau từ đó phát hiện những lỗi sai và từ 5 đó phân tích để các em hiểu được bản chất của vấn đề khắc phục sai sót và tổng kết thành kinh nghiệm. Tuy nhiên, nếu cứ lúc nào cũng chỉ ra những sai lầm của học sinh dễ khiến các em thấy nhàm chán, mất đi hứng thú học tập. Vì vậy, tôi vận dụng nó linh hoạt trong các tiết dạy và có những gợi ý cần thiết hỗ trợ cho các em tìm kiếm lời giải. Một khó khăn nữa mà tôi cũng gặp trong quá trình giảng dạy trên đó là việc dạy học phân hóa theo từng đối tượng học sinh. Những lớp tôi nhận nhiệm vụ giảng dạy, học sinh khá, giỏi là đa số, còn lại là một bộ phận học sinh trung bình, yếu, kém nên các giáo án, các ví dụ và bài tập của tôi cũng phải phân hướng vào hai loại đối tượng học sinh, trước tiên là ưu tiên các em diện trung bình và yếu, kém sau đó nâng cao lên những bài toán mở rộng với tính chất hướng dẫn, giới thiệu. II. NỘI DUNG CỤ THỂ. 1-Sai lầm do nhớ nhầm công thức nguyên hàm: Ví dụ 1 : Tính tích phân : I = 4 0 4x dx+ ∫ Cách giải sai của học sinh I = 4 0 4x dx+ ∫ = 4 0 4 ( 4)x d x+ + ∫ = 4 0 1 2 4x + = 1 1 4 4 2 − Cách giải đúng I = 4 0 4x dx+ ∫ = 4 1 2 0 ( 4) ( 4)x d x+ + ∫ = 4 3 2 0 2 ( 4) 3 x + = 4 3 0 2 ( 4) 3 x + = 2 16 (16 2 8) (2 1 1) 3 3 − = − Ví dụ 2 : Tính tích phân : I = 2 5 1 (3x 5) dx − ∫ Cách giải sai của học sinh I = 2 5 1 (3 5)x dx− ∫ = 2 6 1 1 (3 6) 6 x − = 6 1 31 (1 2 ) 6 6 − = − 6 Cách giải đúng I = 2 5 1 (3 5)x dx− ∫ = 2 5 1 1 (3 5) (3 5) 3 x d x− − ∫ = 2 6 1 1 (3 5) 18 x − = 6 1 31 (1 2 ) 18 18 − = − * Nguyên nhân sai lầm : - Sự hình thành nguyên hàm ít nhiều liên quan đến kiến thức về đạo hàm, các em hay nhầm lẫn giữa hai loại công thức này. - Học sinh vận dụng sai công thức nguyên hàm hàm hợp, đã dùng n 1 n x x dx c n 1 + = + + ∫ (với n ≠ –1) thay vì n 1 n (ax b) (ax b) dx c (n 1)a + + + = + + ∫ * Cách khắc phục: - Yêu cầu các em học thuộc bảng nguyên hàm các hàm số cơ bản. Giúp các em tạo thói quen kiểm tra công thức: Lấy đạo hàm của nguyên hàm tìm được xem có bằng hàm số đã cho? - Yêu cầu các em học thuộc bảng nguyên hàm các hàm số cơ bản và nguyên hàm hàm hợp tương ứng, tự lập ra bảng nguyên hàm của hàm hợp ứng với u = ax+b. Giúp các em khắc sâu thói quen kiểm tra công thức: lấy đạo hàm của nguyên hàm tìm được xem có bằng hàm số đã cho? Bài tập vân dụng: Tính các tích phân sau: 2 A x 4dx 2 1 3 B= (2x 1) dx 0 2 dx C= , 2 (2x 1) 1 1 dx D= 2x 1 e 0 = + − + − − ∫ ∫ ∫ ∫ 7 4 dx E = 1 3x 1 /12 F = cos( 4x)dx 6 /6 7 1 G dx x 3 3 − π π − π = − ∫ ∫ ∫ 2. Sai lầm do không vận dụng đúng định nghĩa tích phân: Ví dụ 1 : Tính tích phân : : I = ∫ − + 2 2 2 )1(x dx Cách giải sai của học sinh I = ∫ − + 2 2 2 )1(x dx = ∫ − + + 2 2 2 )1( )1( x xd = - 1 1 + x 2 2− = - 3 1 -1 = - 3 4 Cách giải đúng Hàm số y = 2 )1( 1 + x không xác định tại x = -1 [ ] 2;2 −∈ suy ra hàm số không liên tục trên [ ] 2;2 − do đó tích phân trên không tồn tại. Ví dụ 2 :Tính tích phân: I = ∫ + π 0 sin1 x dx Cách giải sai của học sinh Đặt t = tg 2 x thì dx = 2 1 2 t dt + ; xsin1 1 + = 2 2 )1( 1 t t + + ⇒ ∫ + x dx sin1 = ∫ + 2 )1( 2 t dt = ∫ − + 2 )1(2 t d(t+1) = 1 2 +t + c ⇒ I = ∫ + π 0 sin1 x dx = 1 2 2 + − x tg π 0 = 1 2 2 + − π tg - 10 2 +tg do tg 2 π không xác định nên tích phân trên không tồn tại Cách giải đúng I= ∫ + π 0 sin1 x dx = ∫∫ −= − − = −+ π π π π π π π 0 0 2 0 42 42 cos 42 2 cos1 x tg x x d x dx = tg 2 44 = − − ππ tg . 8 * Nguyên nhân sai lầm : Hàm số y = 2 )1( 1 +x không xác định tại x= -1 [ ] 2;2−∈ suy ra hàm số không liên tục trên [ ] 2;2− nên không sử dụng được công thức Newtơn – leibnitz như cách giải trên. Đối với phương pháp đổi biến số khi đặt t = u(x) thì u(x) phải là một hàm số liên tục và có đạo hàm liên tục trên [ ] ba; . * Cách khắc phục: Yêu cầu các em học thuộc định nghĩa tích phân. Giúp các em tạo thói quen: Khi tính dxxf b a )( ∫ cần chú ý xem hàm số y=f(x) có liên tục trên [ ] ba; không? Nếu có thì áp dụng phương pháp đã học để tính tích phân đã cho còn nếu không thì kết luận ngay tích phân này không tồn tại. Bài tập vận dụng: Tính các tích phân sau A= ∫ − 5 0 4 )4(x dx . B= dxxx 2 1 3 2 2 )1( − ∫ − . C= dx x ∫ 2 0 4 cos 1 π D= dx x xex x ∫ − +− 1 1 3 23 . 3. Sai lầm do nhớ nhầm tính chất tích phân: Ví dụ 1 : Tính tích phân : I = 1 x xe dx 0 − ∫ Cách giải sai của học sinh I = 1 x xe dx 0 − ∫ = 1 xdx 0 ÷ ÷ ∫ . 1 x e dx 0 − ÷ ÷ ∫ = 1 1 2 0 0 . 2 x x e − ÷ ÷ − ÷ ÷ = 1 1 1 ( 1) 2 2 e e e − − + = Cách giải đúng 9 Đặt: u x du dx x x dv e dx v e = = ⇒ − − = = − . Ta có: I 1 1 x x xe e dx 0 0 − − = − + ∫ 1 1 x e e 0 2 e 2 1 . e 2 − = − − − = − + = * Nguyên nhân sai lầm : - Học sinh tự “sáng tạo” ra qui tắc nguyên hàm của một tích, nên đã dùng b u(x).v(x).dx a ∫ = b u(x)dx 0 ÷ ÷ ∫ . b v(x)dx a ÷ ÷ ∫ thay vì dùng công thức tích phân từng phần: ( ) '( ) ( ) ( ) | '( ) ( ) b b b a a a u x v x dx u x v x u x v x dx = − ∫ ∫ .* Cách khắc phục: - Yêu cầu các em học thuộc các tính chất của nguyên hàm và tích phân. Giúp các em tổng quát hóa các dạng toán sử dụng phương pháp tích phân từng phần: Bài tập vận dụng: Tính các tích phân sau 1 x 1 A x.2 dx , 0 0 B= x ln(x 2)dx , 1 2 C= x log xdx 2 1 + = + − ∫ ∫ ∫ 10 cos x D (x e )sin xdx , 0 /2 2 E = (x x)cos xdx , 0 x F = sin x.e dx 0 π = + π − π − ∫ ∫ ∫ [...]... Ban đầu học sinh gặp khó khăn nhất định trong việc giải những dạng tích phân như đã nêu.Tuy nhiên giáo viên cần hướng dẫn học sinh tỉ mỉ cách phân tích một bài toán tích phân từ hàm số dưới dấu tích phân, cận của tích phân để lựa chọn phương pháp phù hợp trên cơ sở giáo viên đưa ra những sai lầm mà học sinh thường mắc phải trong quá trình suy luận,trong các bước tính tích phân này rồi từ đó hướng các em... giải đúng Sau khi hướng dẫn học sinh như trên và yêu cầu học sinh giải một số bài tập tích phân trong sách giáo khoa Giải Tích Lớp 12 và một số bài trong các đề thi tuyển sinh vào đại học, cao đẳng và trung học chuyên nghiệp của các năm trước thì các em đã thận trọng trong khi tìm và trình bày lời giải và đã giải được một lượng lớn bài tập đó 2.Kết quả thực nghiệm: Sáng kiến được áp dụng trong năm học. .. HCM - 2002) 2 Phương pháp giải toán Tích phân và Giải tích tổ hợp ( Nguyễn Cam – NXB Trẻ ) 3 Phương pháp giải toán Tích phân (Trần Đức Huyên – Trần Chí Trung – NXB Giáo Dục) 4 Sách giáo khoa Giải tích 12 (Ngô Thúc Lanh Chủ biên – NXB GD – 2000) 5 Phương pháp giải toán Tích phân ( Lê Hồng Đức – Lê Bích Ngọc – NXB Hà Nội – 2005) 6 Sai lầm thường gặp và các sáng tạo khi giải toán ( Trần Phương và Nguyễn... được áp dụng trong năm học 2012-2013 Bài kiểm tra trên hai đối tượng lớp 12C1(34 học sinh) áp dụng sáng kiến và 12C5(42 học sinh) không áp dụng sáng kiến như sau: Xếp loại Giỏi Khá Đối tượng 15 TB Yếu 12C1 45% 45% 10% 0% 12C5 0% 3% 47% 50% Sau khi thực hiện sáng kiến học sinh học tập rất tích cực và hứng thú đặc biệt là khi giải bài toán tích phân các em tính tích phân rất thận trọng và hiểu bản chất... huy ở học sinh tư duy độc lập, năng lực suy nghĩ tích cực chủ động củng cố trau rồi thêm kiến thức về tính tích phân từ đó làm chủ được kiến thức, đạt được kết quả cao trong quá trình học tập và các kỳ thi tuyển sinh vào các trường đại học, cao đẳng , THCN II KIẾN NGHỊ: Hiện nay nhà trường đã có một số sách tham khảo tuy nhiên chưa có một sách tham khảo nào viết về sai lầm của học sinh khi giải toán. .. bản chất của vấn đề chứ không tính rập khuôn một cách máy móc như trước, đó là việc thể hiện việc phát huy tính tích cực, chủ động, sáng tạo của học sinh 16 PHẦN III:KẾT LUẬN – KIẾN NGHỊ I KẾT LUẬN: Nghiên cứu, phân tích một số sai lầm của học sinh khi tính tích phân có ý nghĩa rất lớn trong quá trình dạy học vì khi áp dụng sáng kiến này sẽ giúp học sinh nhìn thấy được những điểm yếu và những hiểu... * Nguyên nhân sai lầm : - Học sinh đã sử dụng công thức SGK hiện hành không có: 1 ∫ 1+ x 2 dx = arctan x + c ( thường có trong các sách tham khảo) * Cách khắc phục: - Giúp các em nhớ công thức và cách chứng minh một số công thức nguyên hàm mở rộng Yêu cầu các em lưu ý khi gặp tích phân dạng này thì không được áp dụng thẳng mà phải chứng minh trước rồi mới sử b 1 dx , thì ta tính tích phân bằng 2 a... biến số học sinh đã quên không đổi cận - Khi thực hiện đổi biến số học sinh đã quên không tính vi phân dt * Cách khắc phục: yêu cầu các em học thuộc các bước thực hiện phương pháp đổi biến số Giúp các em tạo thói quen kiểm tra lại bài làm, kiểm tra kết quả bằng phép tính gần đúng trên máy tính bỏ túi Bài tập vận dụng: Tính các tích phân sau 2 A=∫ 0 π /2 4 − x 2 dx, ∫ E= sin x.ecos x dx, ∫ cos xdx ,... Tính tích phân : dx (2 x + 1)5 0 I =∫ Cách giải sai của học sinh Đặt t = 2x + 1 3 dt t −4 3 20 x = 1 ⇒ t = 3 ⇒ I = 5 =− = t 4 1 81 x = 0 ⇒ t = 1 1 ∫ Cách giải đúng Đặt t= 2x+1 suy ra dt= 2dx x = 1 ⇒ t = 3 ⇒ x = 0 ⇒ t = 1 11 1 2 0 = 1 + sin1 4 dt t −4 3 1 1 10 I=∫ 5 =− = − 4 − 1÷ = 2t 8 1 8 3 81 1 3 * Nguyên nhân sai lầm : - Khi thực hiện đổi biến số học sinh đã quên không đổi cận - Khi. .. dụ: khi gặp tích phân dạng I = ∫ 2 cách đặt x = ctant (hoặc x = c.cott) Chú ý công thức 1 + tan 2 t = 1 1 ; 1 + cot 2 t = 2 2 cos t sin t Bài tập vận dụng: Tính các tích phân sau 1 A= ∫0 C= ∫ 2 1 dx 4 − x2 dx x2 + 2 2 B= ∫1 x2 − 1.dx D= ∫0 13 2 2 + x 2 dx 2 1 1 dx E= ∫0 2 ÷ x +2 1 dx ÷ 4x 2 − 5 F= ∫0 5 Sai lầm do hiểu sai bản chất công thức: 2 I = ∫ xe x dx * Ví dụ 1 : Tính tích phân . bài toán. - Kiến thức căn bản về Nguyên hàm và tích phân; các dạng bài tập cơ bản về Nguyên hàm và tích phân; - Chỉ ra một số sai lầm của học sinh trong quá trình giải các bài toán tính Tích. cứu cho mình là: “ KHẮC PHỤC SAI LẦM KHI GIẢI CÁC BÀI TOÁN TÍCH PHÂN CHO HỌC SINH ” II. MỤC ĐÍCH NGHIÊN CỨU Đề tài này được nghiên cứu nhằm mục đích cải tiến nội dung và phương pháp giảng dạy các. NGHIỆM TÊN ĐỀ TÀI “ KHẮC PHỤC SAI LẦM KHI GIẢI CÁC BÀI TOÁN TÍCH PHÂN CHO HỌC SINH ” Người thực hiện: Nguyễn Ngọc Hồng Chức vụ: Phó Hiệu trưởng SKKN thuộc lĩnh mực (môn): Toán THANH HOÁ NĂM 2013 PHẦN