Ap dung cho phirong trinh vi phan thuong 17 CHUDNG II BAI TOAN TUYEN TINH KHONG CHINH TREN COMPACT YEU §1 Ma dau 23 §2.. 6 n g da d~e xuat khai niem bai toan dat khong chinh cho Icfp
Trang 1&
NGUYEN VAN HUNG
M O T S O P H U O N G P H A P H I E U CHJNR GIAI BAI TO AN DAT KHONG CIliMH
Chuy^n nganh : Toan hoc linh (can
Ma so : 1.01.07
^ ^\
LUAN AN PHO TIEN SI KHOA HOC TOAN - LY
NGUdl HUdNG DAN KHOA HOC: TIEN SI - PIIAM KY AN13
Trang 2L51 noi dau 1
CHUONG I
PHUONG PHAP COMPACT THU HEP CAI BIEN
§1 Ma dau 5
§2 Cac gia thi^'t cua bai toan 5
§3 Thuat toan compact thu hep dang Robust 7
§4 Tnrcmg hgp kh6ng duy nhat nghiem 12
§5 Tnrcmg hgp ve phai va toan tir kh6ng biet chinh xac 15
§6 Ap dung cho phirong trinh vi phan thuong 17
CHUDNG II
BAI TOAN TUYEN TINH KHONG CHINH TREN COMPACT YEU
§1 Ma dau 23
§2 H6i tu y^'u trong kh6ng gian Hilbert 25
§3 Danh gia tinh 6n dinh cua nghiem trSn compact y6u 27
§4 Phuang phap khai tridn ky di chat cut 29
§5 Phuang trinh tich phan dang tich chAp 31
§6 Danh gia diam Vs trong phaang phap compact thu hep cua Gaponenko 36
CHUONG III
M O T S O PHUONG PHAP LAP - HIEU CHINH
§1 Phirang phap Gauss - Newton hi6u chinh (RGN) 40
§2 Ki^m tra di^u kien B] cua Bakushinski 41
§3 Phuang phap hieu chinh Gasse - Newton g'an dung 46
§4 Phirang phap Seidel - Newton hieu chinh va bai toan phi tuyS'n cong huang 52
I - Phuomg phap Seidel - Newton (SN) vd phuomg phap
Seidel - Newton hieu chinh ( RSN) 52
II - Syc hdi tu dia phuomg cua phuomg phap RSN 54
III - Bdi todn Men tudn hodn cho phuomg trinh Duffing - Van derpol 57
nil - Bdi todn bien tudn hodn doi v&iphuomg trinh Van derpol 65
Phan ket luan 66
Phu luc 67 1- Bai toan - Lcfi giai 67
2- Thuat giai va chuong trinh 72
Tai lieu tham khao gg
Trang 3# Ngay nay, ciing v6i vice sur dung ph6 biC'n may tinh, loan hoc ngay cang
dirge ung dung rong rai trong cac linh virc khoa hoc va ihurc ti6n Vice ap dung loan
hoc mot each s^u sac da thiic day manh me sir phat trien cac phirang phap tinh toan
Trong thirc te ta thirofng gap nhiJng bai toan ma dfr ki6n ban dau chi dugc biet gan
dung, nhCmg thay ddi nho cua du* kien ban d'au c6 thd dSn dfi'n thay do! liiy y cua
nghiem, do do vi^c tun nghidm cua bai toan gap nhicu kho khan NhCmg bai toan
khong on dinh nhu vay la m6t vi du ve bai toan dat khong chinh
Khai niem bai toan dat khong chinh da dirge nha toan hoc Phap Hadamard J
dira ra rfau tien cho Idrp phirang trinh vi phan [63,64] Thoat dau nguai ta cho rang
bai toan nay kh6ng c6 y nghia toan hoc va thirc tiSn, n6n ft chu y de'n no Nhimg den
cuo'i nhung nam 50 nguofi ta phat hien ra rang, nhicu bai toan ly thuyet va hau het
Ccic bai toan trong ki thuat va ihirc 16' deu dan de'n bai loan dat khong chinh
Tikhonov A N la ngirai c6 c6ng dau trong nghi^n cuti vah de nay[49,50]
6 n g da d~e xuat khai niem bai toan dat khong chinh cho Icfp phirang trinh toan tu
trong kh5ng gian T6p6 va cho ra dofi mot loat cong trinh xung quanh v^n dc nay I<c
tCr do de'n nay, cac nha toan hoc tr6n the' gidi da tap tiling nghien cuu bai loan dat
khong chinh va da dat dirge nhung thanh tiru dang ki - Trong so do phai ke den
cac nha toan hoc Morozov B.A , Laverientiev M.M ,Vasin J.M, Ivanov V.K,
Bakushinski A.B, Gaponenko Yu L, Bertero M.P, Nashed M.Z, Groetsch C M ,
Khai niem dat chinh theo Hadamard la:
Xet phirang trinh
Ax = y (0,1) Trong do A la toan tu dua khong gian T5p6 X vao khong gian Topo Y
1 - Vai m6i y e Ytbn tai x e X
2 - Nghiem x la duy nhat
3 - Nghiem phu thu5c lien liic vao cac du kien cua bai loan
Trang 4• M6t VI du didn hinh khi A la toan tu* tuye'n Ifnh hoan toan lien tuc, con X, Y
la cac khdng gian Banach v6 ban chieu, khi do:
00
i-ImA ^ YvalmA = u {Ax:||x||< n)latap pham tru thirnha't.(dieu nay CO nghia
n = l
la bai toan (0,1) giai dugc khOng phai vdi moi y e Y)
ii - Ne'u A ' : Y-> X c6 ton tai thi cung khong lien tuc Di^eu nay chung to nghiem cua bai toan (0,1) khong phu thuoc lien tuc cac du" kien ban dau
Tu* dinh nghia v'e tinh chinh thay rang: Tinh chinh cua bai toan phu thu6c bo ba {A,X,Y) Ngucri ta thucmg khac phuc tinh khong chinh bang mot trong cac phuang phap sau day
1 - Xet nghiem suy rong, do la phuang phap tira nghiem Ivanov va e - tua nghiem cua Liscovets
Tua nghiem cua (0,1) la tap M cac phan tir c6 do lech nho nha't so vai nghiem chinh
xac Phuang phap tua nghiem la di tim cue iiin phie'm ham khong khap tren lap
chap nhan dugc nghiem [41]
2 - Thu hep mfen xac dinh cua so lieu ban d'au
3 - Thay ddi kh6ng gian va t6p5 cua chung
Hai phuang phap 2 va 3 ft dugc six dung vi kh5ng dap img dugc yeu cau cua thirc te
4 - Phuang phap hieu chinh : La phuang phap thay bai toan dat kh5ng chinh bang m6t ho bai toan dat chinh phu thu5c tham s6' ma nghiem cua bai toan dat chinh sc d'an de'n nghiem bai toan dat kh6ng chinh khi tham so d'an tai khOng Phuang phap Laverenliev, phuang phap Tikhonov [54], phuang phap tua nghich dao Lattes -Lions, phuang phap lap, su dung khai tridn ky di va khai tri^n ky di chat cut la nhung phuang phap hieu chinh quen biet
Phuang phap hieu chinh ciia Tikhonov dua tren b6 de sau:
Trang 5• A^ : A ( M ) ^ M lien tuc
Vao cu6'i nhung nam 50, Tikhonov[54] da de xua't khai niem phiem ham on dinh nhu sau
i, Q : X -> R ^ a phie'm ham lien tuc va khong am
ii, Xd e Xo = dom Q , Xo = X , (trong do Xd la nghiem cua bai loan (0,1))
iii, Vdfi m6i r > 0, tap K(r) = (x e Xo : fi[x] < r} la tap compact tuang doi trong X
Phuang phap hieu chinh Tikhonov la lay nghiem g^an dung cua (0,1) la didm cue tieu cii phie'm ham tran:
M "^ [x,y5 ] = p^ (Ax,y5 ) + a 0[x ] -> min
x e Xo Vai in6t s6' gia thie't nhat dinh c6 th^ chiing minh dugc rang
i/ 3 ! Xa= ArgminM''[ x,y5]
X e Xo ii/ Tham s6' hieu chinh a = a (8) chon tu cac nguyen ly khong khc5rp, nguyen
ly tua tO'i iru,v.v
iii/Xa(6)^Xd ( 6 - > 0 )
5 - Ma r6ng nglu nhien bai toan la't dinh dat kh6ng chinh
Ban luan an nay nghien citu mot so phuang phap hieu chinh giai bai toan dat khong chin Nhitng v^in d'e dugc quan tam trong luan an la:
1- Giai bai toan dat kh6ng chinh tren tap compact
2- Danh gia tfnh 6n dinh ye'u cua bai loan dat khOng chinh tren compact va compact yeu
3 - Cac phuang phap lap hieu chinh giai bai toan dat kh6ng chinh
Trang 6Chuang nay trinh bay phuang phap compact thu hep cai bien va danh gia dugc toe do h6i tu cua phuang phap
Chuang II: Bdi todn tuyen tinh khong chinh tren compact yeu
Trong bai toan (0,1) xet truong hgp X,Y la cac khOng gian Hilbert, A la toan tur tuye'n tinh lien tuc vai khai tridn ki di da cho tru6c Trong chuang nay chung t6i trinh bay m6t thuat toan dang khai tri^n ki di chat cut giai phuang trinh (0,1) va danh gia tfnh on dinh ye'u cua nghiem
Chuang I I I : Mot so phuomg phap lap hieu chinh
Chuang nay trinh bay phuang phap lap hieu chinh Gauss-Newton gan dung va phuang phap Seidel - Newton hieu chinh
Phan phu luc ; Trinh bay mot vi du so giai bdi todn Cauchy bang phuang
phdp khai trien ky di chat cut
Noi dung chfnh cua luan an da dugc cong bo trong 6 bai bao dang tren cac tap chf cap truong, B5, qu6'c gia, qu6'c te' va dugc bao cao tai Xeminar toan hoe tfnh toan cua Dai Hoc Tong Hgp Ha Noi (Tien sy Pham Ky Anh chu tri) Hoi nghi khoa hoe 35 nam thanh lap khoa Toan - Co - Tin DHTHHN hoc nam 1991, Hoi nghi khoa hoc khoa toan DHSPHN 2 1992, H5i nghi khoa hoc khoa Toan - Co - Tin hoc DHTHHN 1994,
Hoi nghi quoc te' vt bai toan ngugc 1995 ( Tai thanh pho Ho Chf Minh)
Trang 7$1 - Ma dau:
Xet phuang trinh
Ax = y • (LI)
6 day A la toan tir phi tuye'n, X,, Y la cac khong gian vector t6p6 Gaponenko
Yu.L [24,25] nam 1982 da de xua't phuang phap c6 ten la "compact thu hep" Ong da
xay dung dugc cac tap Vg gbm huu han phan tir sao cho:
V xg e Vg => II X5 - Xd II < diam V5 + 5 -> 0 ( 5 -> 0) Arsenin V.Ia , ([5], nam 1989 ), xet bai toan (1.1), trong do A : H ^ C[a,b], H la
kh6ng gian Hilbert Thay vi biet ys e C[a,b] chi bie't m thi hien {y'sl "'1, trong do han
mOt nua y'5 thoa man dieu kien
II / 5 - y d ||c<5 ( l < j i < m ; i = l - r ,r>m/2) (1.2) Bang each sir dung ham Robust, Arsenin da dua ra mot phuang phap hieu chinh
V6i ham M" [ x,y^5 ,.•• ,y'"8 ] = ^^ (Ax) + aC)(x),
Arsenin V la da churng minh dugc cac ke't qua sau
l/3!Xa-ArgminM"[x,y^8 y"\]
2/ 3 a = a(5) : Xa(6) -> x* (5 -> 0 )
Cung nhu phuang phap Tikhonov AN, phuang phap Robust kh6ng cho phep danh gia
sai s6' cua nghiem g'an dung
Y tuang cua Gaponenko va ky thuat cua Arsenin da dugc chung toi sir dung de xay
dung thuat toan giai bai toan (LI) va da danh gia dugc tO'c dO hoi tu cua nghiem g^an
dung
52 - Cac gia thiet cua bai toan
Xet phuang trinh (1.1), trong do A : X -> C[a,b], A la toan tir lien tuc, X la
khdng gian Banach Goi Xi la mfen xac dinh cua phie'm ham on dinh D.[x]
Trang 8OO
Xi c: X va ta c6
Xi ==uK(n) (2.1)
trong do K(n) = (v e X] ,D.{v) <n )
Chung ta da bie't m6i tap K(n) la tap compact trong X
Gia suf phuang trinh (L1) vdfi ve'phai dung yd c6 nghiem duy nhat Xd
A x d - yd
Trong thue te'ta kh6ng bie't yd(t), ma chi bie't cac ihi hien cua no y'5(t) , ,y'"8 (t) va ,
y'6(t) e C[a,b] , (i = 1-^ m) sao cho:
bie'n, vai 0 < t,r < +00, 4^(t,r) -> 0 khi t ^ 0
Goi S(n,h) e K(n) (Vn > 1) la (p(h) luai huu ban cua tap compact K(n), c6
nghia la:
Vxe K(n), 3 Xh e S (n,h) : ||xh - x|| < (p(h)
Trong do 0 < (p(h), la ham dan dieu tang tren ( 0,1 ] va lim (p(h) - 0
h - > 0
Xet phie'm ham Ibi b m b
(l)6(y) = J Z P6 [ y's (t) - y(t)]dt 4 Rg (t,y(t)) dt
Trang 9Ham (jjg (y) c6 tinh cha't sau (xem [5])
i/ T6n tai ygCt) e C[a,b] : (t)s(y5) = Inf {(^sCy) : y e C[a,b] )
T =To I < 1 khi to < yd (t) - Q5
< m , V T , t e [a,b], 5 > 0
S3 - Thuat toan Compact thu hep dang Robust
Gia sir ta c6 he thiic
b m
(t)6(yd) = J Z P5(y'5(t)-yd(t))dt<©(8)
a i ^ l
(3.1)
a day a)(5) la ham lien tuc, khong am hoi tu de'n 0 khi 5 - ^ 0
Nhan xet 3.1: Dfeu kien (3.1) hiin nhien duac thue hien trong tru&ng hap (1.2) thoa
man vai moi i ( i = l,m) Trong truong hap c6 cac ^§(1) khong thoa man (1.2) nhung
thoa man danh gia:
11^5-yd II < 5 , (3.2)
LPJ
Of day Pj > 1 , ^
Khi do di'eu kien (3.1) van dugc thue hien Vay (3.1) dugc thue hien ngay ca trong
truong hgp c6 nhung tG[a,b] sao cho I y'5(t) -yd(i) I c6 the Ian tuy y
De dang chiing minh dugc cac danh gia sau:
(l)5(yd)<I||y'8-yd||
i = 1 Li
Trang 10||y'5-y|| < ( b - a ) | | y ^ 8 - y | | , | | y s - y | | < (b-a)^^^M|y5-y||
Li C Ll L p
d dayqj> 1 : l/qj+ 1/pj = 1, Tir he thue (2.2 ) va (3.2) suy ra he thii-c (3.1)
Gia su 5 > 0 la m6t sC c6 dinh tuy y ta chon day hn > 0 va so N = N (5) sao cho
(p(hN-0 >5>(p(hN)
So db tinh toan theo phuang phap Compact thu hep cai bien dang Robust gbm cac
buac sau day:
Budfc 1, Chon ri = 1 va dat
V, {VE S(r,,hi) : (|)5(Av) < GT((p(h,),ri) + co(5)l
Ne'u V] = (j) la'y r2 = ri +1
Ne'u Vi 9^ ([) la'y T2 = ri sau do ihirc hien cac buac tie'p theo
Birdc n < N, Vdi r„ dugc xac dinh tu budre truac
Vn = i ve S (rn, hn) : ^^ (Av) < GT((p (hn), rn) + CO (5)}
Ne'u Vn = (t) lay rn+i = rn +1
N e ' u V n ^ ^ l a ' y Tn^-i = r n
Birdfc N, VN = V5 :=: {ve S(rN, hn) : ^^(Aw) < GT((p(hN),rN) + co(5))
Ta chutig minh su hoi tu cua phuang phap nay theo luge do sau:
Bo de 3.1 Gia sir vai v e H c6 dinh thoa man he thu"e
(j)5(Av) ^ 0 (5 -> 0 )
thi I (t)8(Av) - Uyd 1 ^ 0 (5 -> 0 )
v a V = Xd
Chung minh day dii bd de nay xem trong [5 ]
Bo de 3,2: T6n tai s6' No = No (Xd) sao cho
V N > N o = > Q[Xd] <rN
Chvcng minh: Ta chung minh bang phan chung
Gia sir ngugc lai: V n 3 N > n : r N < ^[Xd]
Trang 11Ta dat ni = [Q[Xd] ] + 1, khi do tlm dugc Ni va mi < Ni sao cho Vmi ^ ^
That vay, ne'u kh6ng, theo each xay dung tren ta c6 V^ = Ni > ni > n[Xd] mau thuan
vdi gia thie't
Tuang tu, vdi ni = Ni + 1, tbn tai s6' N2 sao cho v6i mi < m2 < N2, Vm2 ^ (j) v.v
Tie'p tuc tie'n hanh nhu tren ta dugc day tap hgp {Vmk )"° khac r6ng Chon day {Vn )
Ta CO (Vn ) d D := { V e Xi : Q[v] < rd) Do D la tap hgp compact trong X, nen
tbn tai day {Vk } c (Vn} sao cho Vk —> VQ Khong ma't tinh tong quat ta c6 the coi
Theo bd rfe (3.1) Vo = Xd e Xmau thuan vai (3.3)
Bd d'e dugc chung minh []
Bd de 3.3: Vdfi moi sd tu nhien N > No tap VN khong rdng va chira trong tap
compact K
Chirng minh:
Tur bd d'e (3.2) suy ra vbi moi N > No, fi[Xd] < TN va do do Xd e K{T^)
gia surxh e S(rn,hn) sao cho ||xh - Xd|| < (p(hn)
Theo tinh cha't ciia ham (t)8 va toan tii: A, ta c6 danh gia:
0 < (|)5(Axh) < I (t)5(Axh) - (1)5 (AXd) I + (|)6(Axd) < G ^ (II Xh-Xd || ,rN ) + co(5)
Trang 12< G ^ ( ( p ( h N ) , r N ) + 0D(5)
Suyra: Xh e V N = V 5
Bd d'e dugc chi^ng minh []
Nhan xet 3,2: VN ^ i?, doi vdi moi N > No ta luOn c6 rw < rNo ^ No va
VN <= K (No) == K (K - Tap compact)
Bd de 3.4: Day tap compact {V5) co Ve didm Xd khi 5 -> 0
Chvcng minh: Gia sir ngugc lai di^eu do kh6ng xay ra, khi do tbn tai hai day{Vk")va
so 8 >0 dd:
| | v k " - V k - | | > s > 0 (3.4) Vai Vk* e VNk c: Ko, k = 1,2 Do Ko la tap Compact nen khCng giam tdng quat
chung ta c6 the coi rang Vk" -^ v" khi k -> o)
Khi do ta cung c6 Avk" -^ Av"*" Mat khac
(|)5 (Avk") < GT((p(hNk ),rNk) + co(5)
Tir do suy ra
0 < (1)5 (Av*) < co(5) -> 0 ( 5 -> 0)
Theo bd de (3.1) ta c6: v* = Xd e X Dieu nay mau thuan vox (3.4 )
Nhu vay ta c6 diam V5 -> 0 ( 5 -> 0)
Bd de dugc chung minh []
Ne'u ta lay x^ e V5 = VN ( N > No) tiiy y, do V5 ehira Xh:
II Xh - Xd II < (p(hN) nen la thu dugc
||x5-Xd|| < ||x6-Xh|| + ||xh-Xd|| < diam V5+ cp ( hw)
D o d o ||xs-Xd|| <diam V5 + 5 (3.5) Nhu vay ta da chung minh dugc dinh ly sau:
Djnh !y 3.1: Phuang phap compact thu ht^p dang Robuts h(3i tu va ta c6 danh gia
IIX5 - Xd 11 < diam Va + 5
Nhan xet 3.3:
Ne'u phie'm ham dn djnh Q[x] thoa man di'eu kien Q[x] > C ' | | x | Vx e X
(C-const > 0 ), thi (2.3) c6 ihi thay bang di^eu kien
Trang 13V Xi,X2 e X : || Ax, -Axsjl < T ( | | x i - X2II, r) ( 3.6)
6 day r - max (|| Xi ||,1| X2II) Khi do tat ca chung minh tren van dung, ne'u ta la'y tap
hap Vn nhu sau:
Vn = ( V e S (rn,hn) : ^^ (Av) < G ^ (cp (hn),C.r ) + co(5) )
D^ y rang phuang phap compact thu hep [24] la truong hgp rieng cua phircng
phap nay khi n = 1, Q[x ]= ||x|| 1 va ||y5 - yd|| < 5, a day || || 1 la chu^n nao do irong
kh6ng gian con Xo, trii mat va compact trong X
Nhan xet 3.4: Ne'u thay ddi each xay dung tap Vn mot chut thi thuat loan cua ta khong
nhat thie't phai thue hien dung N but^c nhu da trinh bay a tren
BireJc 1: Lay r, = 1 va thanh lap tap hgp:
V i - { v : v e S ( h n , r i ) : ( | ) 8 ( A v ) < G^F(5,ri ) + co(5))
Ne'u Vi ^ (|), ta la'y tuy y xs e Vi
Khi do: || X5 - Xd || < diam Vi + cp ( hN) ^ diam Vi + 8
Thuat loan dimg a day
Ne'u Vi ^ (|), ta la'y r2 = ri + 1 va thue hien buac 2
Budc ( n < N) dugc thirc hien ne'u Vi, V„-1 = ([>
Khi do rn = n, ta thanh lap tap Vn
Vn-{v:veS(hn,rn):(l)6(Av) < GT(5,rn ) + co(5)) Ne'u Vn ^ (t>, ta la'y xs e V, tuy y, thi
II xg - Xd II < diam Vn + 5 va thuat toan dung lai
Ngugc lai Vn = (j), dat rn = n +1 va quay lai h\x6c n cho de'n khi n < N thi dung
Nhan xet 3.5: Ne'u rn > n[Xd ], thi V„ ?^ cj) khi do thuat toan a nhan xet (3.4) dimg lai
Dfeu nay chung to: Ne'u Qxd la mot so nguyen thi so bubc cua thuat loan la fifxd ] Ne'u il[Xd ] khong phai la so nguyen thi so' bu6e cua thuat toan la [Q[Xd ]]+ 1 Vay so bu(5fc ciia thuat toan khOng phu thu()c vao 5 khi 5 du be
Nhan xet 3.6: Ne'u tien nghiem bie't rang Q[Xd] < R thi ta thanh lap tap
V5={v:veS(hN,R):(|)5(Av) < G4^(6,R)+co(5)}
va thuat toan chi c6 mot bu6e
Trang 14Nhdn xet 3.7: Ta c6 thd thay gia thie't (3.1) bang gia thie't i^^{y^) < (3(5), trong do
P(5) > 0 la ham lien tuc, p(8) ^ 0 khi 5 ^ 0 Khi do c6 ihi la'y tap V„ nhu sau:
• Vn = ( V e S(rn,hn) : U^v) < GT((p(hn),rn ) + Vs + co(5))
Cac ke't qua trinh bay b tren van con dung trong truong hgp nay
§4 - Truotig h(ifp khong duy nhat nghiem:
Trong muc nay, ta't ca cac gia thie't cua muc 52 trtr gia thie't (1.1) c6 nghiem duy nhat dugc giu" nguyen
Goi U = {x e Xi : Ax = Axd = yd) la tap hgp nghiem cua (1.1) Gia su trong Utbn tai duy nhat x* sao cho
Q[x*] = minf^[x]
x e U TrU(Je he't ta xet thuat toan cai bien sau:
Vain > l,dat:
V„ = {v:v e S(hN ,rn),: (f)8(Av) < G^(5,r„) + co(5)}
Ne'u Vn = ([), ta la'y rn +1 = rn +1 va thue hien buac tie'p theo
Ne'u nN < N, Vn 5^ (j) va Vn = (|), v(jfi n = 1,2 nN - 1, thi bube tie'p theo dugc lien
hanh nhu sau:
va tie'p tuc thue hien h\x6c n + 2
Tom lai thue hien thuat toan de'n buac nN+ m ta eo:
Trang 15V<5i each xay dung thuat toan nhu tren ta c6 ke't qua sau
Djnh ly 4 1 : Phlln tir V5 dugc chon a tren c6 tinh cha't
a) | | v s - x * | | - ^ 0 khi 8 ^ 0 b) IIV5 - X* II < T(8) trong do T(8) ^ 0 khi 8 -> 0
Dd chung minh dinh ly ta can ba bd de sau:
Sao cho llvk"*"-Vk'll > e > 0 vai k =: 1,2,
Vi Vn e K (nk) - la compact, k - 1,2, nen khong giam tdng quat ta gia sir rang:
Trang 16Theo each xay dung thuat toan ta nhan dugc u6c lugng
nN - = r < Q[x*] < r = nN + —•
• N " N ^ " ' " N * " " ' N N
Do nhan xet (3.5 ) thi nN = ^ [ x * ] ne'u n[x*] la sd nguyen hoae nN = n[x*] + 1
trong tnrbng hcDfp ngugc lai
a - Truong hcrp Cllx*] la sb nguyen thi m = 0 va
Trang 17n[vo^ ] - [n[x']] - 1 - a Tijr (4.2 ) suy ra
a[vo* ] = a [ X* ] (4.3)
Til (4.1) (4.3) va tinh duy nha't cua x* nen Vo" = x* Difeu nay mau thuan vai gia
thie't phan chung
Bd de dugc chung minh []
Djnh ly 4.1: Dugc suy ra true tie'p tu: bd de nay
§5 - Truomg hgp ve phai va toan tur khong biet chinh xac
Trong muc nay chung ta gia thie't rang: Trong phuang trinh (1.1) ta khong bie't A ma
chi bie't A ^
A^ : X -> C[a,b] La toan tur lien tuc thoa man
a - II A^v - Av|| < u(|a,Q[v]) V v e Xi, u(ja,s) la ham lien luc khOng am, kh5ng
giam theo JJ, va s, vbi mdi s cb dinh u(]a,s) —> 0 khi p ^ 0 va u(o,s) = OV s > 0
b - V v i , V 2 E X i : llA^Vi A^V2|| < T ( | | v i - V 2 | | , r ) ;
Trong do r = max(n[vi ],Q[v2]), ham T(t,r) thoa man gia thie't trong S2
c - Ta van gia thie't (|)5( yj) = (t)5(AxT) < co(8)
Cac gia thie't khac giiJ nguyen nhu trong 52
Chon day (hn) kh6ng tang; 0 < h„ < 1, hn —> 0 khi n —> oo, 8 va p ed dinh,
N = N(8,ii) chon tijr he thitc (p(hN 0 > ji + 8 x p (hN )
Budc 1 : Dat ri = 1 va xay dung tap hgp
V, = (v: V G S(h,,ri) : U^^'v) < G[T((p (hi),ri) + u(vi,ri) ]+ co(8))
Ne'u W\^^ia la'y r2 = ri
Trang 18Bd de nay dugc chung minh tuang tu bd de (3.2)
Bd de 5.2 : Vbi moi sb tu nhien N > No tap VN khong rdng va chu-a trong tap compact Ko nao do
Chtrng minh: Tur bd d& 5.1 suy ra v6i N > No; ^[Xd] < rN; Xd e K(rN) va do do tim
dugc Xh e S(hN,rN) sao cho
||xh -XTII < ( p ( h ) < 8
T a c o :
(t)5(A^Xh) < I (t)6(A^Xh) - ^5(A^Xd) I + I (t)5(A^Xd) - (t»6(AXd) I + (t)5(AXd) •
< GlJA'^Xh - A^Xdll+Gu(vi,rN)+ oj(S)
< G^(cp(hN),r) + Gu(p,rN) + 0(8)
< G T ((p(hN),rN) + Gu(p,rN) + co(8) Trong do r = max(n[Xh],n[Xd]) < rN
Dieu nay chihig to xi, e VN hay VN ^ (j)
Bd dfe dugc chung minh.[]
Trang 19Bd de 5.3 : Day tap compact (Vg^} co ve didm Xdkhi p, 8 -> 0
Chicng minh: Gia sir 6\tw do kh6ng xay ra, khi do tbn tai hai day{ Vk" 1 <= Vn va
Dfeu nay mau thuSn vcfi (5.1) Nhu vay ta cb diam Vg -> 0 ( 8,|i -> 0 )
Bd de dugc chiing minh []
Do Vg chiia Xh : ||xh - Xd||< q)(hN) nen ta co
||x^5 - Xdll < 11x^^8 - Xh|| + II Xh - Xdll < diam V^g + cp(hN) Hay ||x^g - Xdll < T(8,p) = diam V^g + 8 + u (5.2)
Ta phat bidu ke't qua vua nhan dugc dudi dang dinh ly sau:
Dinh ly 5.1: Phuang phap compact thu hep dang robust v6i ve' phai la toan tir A bie't
g"an dung hOi tu va co danh gia (5.2)
Nhdn xet 5.1: Ne'u chi bie't g"an dung A' va phuang trinh khong cb nghiem duy nhat,
ta cb thd ke't hgp cac phuang phap nghien cun trinh bay trong §4, §5
§6- Ap dung cho phuang trinhvi phan thuong
@ - Xet bai toan Cauchy dbi vai phuang trinh vi phan tuye'n tinh bac 2
0^! HC:C QUDC GIA HA NOI
KT T'J
^MJ^ liJiBlA^niHiiSTi?i.!r^V;
Trang 20Gia sit bai toan (6.1) eo nghiem duy nha't Trong thue tb ta chi bie't cac thd hien cua
ve' phai y'(x)v , y"'(x) va ditu kien bien (pi^ ,(p2^ thoa man
a-||y^^J-f|| < 6 :V6i 1< Kj < m, m / 2 < j < m
b - I (p^-(pi I < 6 : Vbi i ^ 1,2
Ta cung gia thie't rang ( xem (3.1))
(t»8(Du) - <|)g (/) < co(6)
6 day co(6) -> khi 6 -> 0 Dual day ta se sur dung cac chudn || || 2, || J ^^1 dugc xac
dinh nhu sau 2
Vbix e C'iOA]: \\ x||2 = max { || x||^|| x||^|| x||^ },aday 1| ||^aehuSn Qo.i]
v b i x e | | x | L i : | | x | L 1 =||xl| +11x11
"^2 "^2 L2[0.1] L2[0,l
@ - Tuong tu rai rac va cac tinh chat
Gia sir u(x) e W2^[0,l] la mCt ham cb dinh thoa man |lu||2 ^ S, 0 < p - const
Cho hai sb h, x e > 0 cb dinh, ta cb luoi:
(Xi,yk) : Xi = ih, i = 0,1,2 , N ; sao cho Nh=: 1
S = S (h,x,p)
yk = kT ,k = 0 , ± l , ± 2 , , ± p x - ' Goi M = M (h,x,p) la tap ta't ca cac ham luoi tren S, tiJc la cac ham lien luc tren
[0,1], tuye'n tfnh tren m6i khoang (xi 1, Xi) i = 1,2, , N, con tai cac didm
Xi (i = 0,1 ,N) chung chi nhan cac gia tri trong tap {0, ± x ,± 2x , ± px''}
Trang 21Goi u"h t la ham lirori trfin S thoa man dieu kiSn
dugc goi la tuang tu rbi rac cua ham u (x) e W [0,1]
Bd de 6.1 [20]: Ne'u u(x) e W ^ [0,1], eon Uhx(x) la tuang tu rai rac ctia u(x), thi tbn tai hang sb ho = ho(u) > 0 d^ ta co danh gia
Trang 22Bu6cn: ( n < N )
Vn = (v : r*(v) e Kn(rn) : ^^{Dw) < G\\f {^TK-^-ZU + 26,r„ + I (piM + ICP2H ) + co (6))
Ne'u Vn = (j), ta la'y r„ ^.i = rn + 1
Ne'u Vn ^ ^, ta la'y rn -n = rn va thue hien buac n + 1 < N
Birdc N:
Vn = V5 = { V : r Vv) e Kn (rn + Co) ; (t)6 (Dv) < GvK (36,rN + i cpi^ I + i ipi"" I) + co (6))
La'y u^ (x) e V^ tiiy y ta cb cac ke't qua sau
Bo de 6.1 : T6n tai sb No(Ud) sao cho:
Dieu nay mau thuin vai gia thie't
Tuang tu vbi n2 - Ni +1, tbn tai sb N2 sao cho vai V2 ^ N2, Vm2=?^ (j),
Tie'p tuc tie'n hanh nhu tren la dugc day tap hgp {Vmn p khac rbng Chon day
Vi hinh cau dong trong W2'[ 0,1] la tap hgp compact trong C[0,1] nen tir day
{v"n} = (an) CZ C[0,1], tbn tai day {ak } e {an)sao cho
n
ak -> ao khi n -> 00 trong C[ 0,1]
n
Kh6ng ma't tinh tdng quat la cb the' coi
an -> tto trong C[ 0,1] khi n ^ 00 suy ra Vn -^ Vo trong C^[0,I] khi n -^ 00,
Trang 23Trong db
X t
Vn = J J an(Tl)dTldt + ( p , \ + (p2^
' 0 0
Vi Vne VtTin nen (t)6(DVn) < G\jy(V hn + Xn + 25, Vn + I (pi^ I + I (P2^ I) + co(6)
Tu* tinh lien tuc cua ^^ va D suy ra
(t)6(Dvo) < Gy (36,rN + I (piM + I ^Pi" I) + co (5)
Theo b6 de (3.1) thi Vo = u Nhung vi
llctnll , ^rd<||u"|| ,
nen llaoll^i = | | u " | | ^ , = II v 1 | < r.< ||u"|| ^
2 2 2
Bat dang thiJe cubi cung mau thuan vai gia thie't phan chung
Bo de dugc chiing minh.[]
Bo de 6.2: Vbi sb tu nhien N > No tap VN khong rOng va chiia trong tap compact Ko nao db
Chieng minh: Tu bd de (6.1) suy ra:
l|u"L ^ II"11 1 ^rN va||u",,|l < rN Lfo.i] "w Lro.i]
2 2 2
Theo each xay dung, tren mOi doan [Xi,Xi +1] u"ht(x)
CO dang ajX + bi, tiif da'y suy ra
Trang 24^8(Du\,) < Gvj; (35, rN + I cpi^ I + I (P2M + 25 ) + co(5)
Suy ra u\ ^ eVn , hay VN ^ ^
Bd de dugc chung minh.[]
Bd de 6.3 Day tap compact {V5) co ve didm u khi 5 -> 0
ChAng minh:
Gia sur ngugc lai dieu db khong xay ra Khi do ton tai hay day {a~n 1 c: V5 va s > 0
sao cho ||a'*'n - a'n||c > £ (6.5) Vi V5 c Ko = KN (rN + Co) la tap compact, nen
khOng giam tdng quat, la cb ihi coi rang a'^n -> a*o trong C[ 0,1] khi n -> 00
Trang 25(t)6(Dv*„) < Gv|;(35,rN + I (pi^ I + ICP2'' I) + co (5)
Tu bd rfe (3.1) suy ra v*n = Vo mau thuSn vdfi (6.5) Mau ihuan nay suy ra bd de
dugc chung minh.[]
Tijr cac bd de tren suy ra dinh ly sau:
Djnh ly 6.1: Vai moi 5 > 0 tbn lai sb N(5) sao choVN = V^ chiia Uhx ,vai moi u^ e V^
ta cb danh gia:
||u^ - uh^llu"^ - u \ x II2 + II u \ , - u II2 < diam V^ + 35
Nhdn x^t 6.1: Thuat loan vijra trinh bay de dang ma rOng cho truong hgp phuang
trinh vi phan bac n
D(u(x)) = /(x)
0 < X < 1 LiU - u'(0) - cpi
Trong db D : d"^[ 0,1] -> Qo ,1] la loan tur vi phan phi tuye'n bac n
Nhdn xet 6.2: Ta cung cb ihi xay dung thuat loan vdri s6' budfc khCng qua n
( n < N ), hoae bie't ||u" | 1 < R ta cung eo thd xay dung thuat loan mot budfc nhu
^2 nhung nhan xet a cac muc tru6c
CHUONG II BAI TOAN TUYfiN TINH KHONG CHINH TREN COMPACT YEU
|1 - Mo dau
Gaponenko Yu.L (1989[27]) d"e xua't phuang phap xa'p xi tuofng thich giai bai toan (0,1) trong truong hgp X = Y = L2[ 0,1] vdfi gia thie't lien nghiem | Xd(l) I ^ R V
t e [0,1]
Pham Ky Anh [71] St xua't y tuang mdfi: Six dung co sdf Fourier thay cho
Splines cb thd nhan dugc cac ke't qua tuang tu nhu [27] cho khong gian Hilbert bat
ky, han nUa khi irb lai trubng hgp L2[0,l], la giam nhe dugc dibu kien | Xd(l) | < R
Sur dung y tuang cua Pham Ky Anh [71], chung la xet tnrong hgp bie't khai
tri^n ky di cua loan tu tuye'n tfnh hoan toan lien luc, ta cb Ihd danh gia m6t sb ir6c
lugng dn dinh ye'u va de xua't mCt thuat loan kidu khai tridn ky di chat cut dd giai
Trang 26bai toan dat kh6ng chinh Can noi them rang mOl sb ke't qua cua chucmg nay cung co
Ih^ nhan dugc bang ky thuat thang cac kh6ng gian Hilbert (Hilbert scales technique)
• Xet bai loan
Ax = y (1.1)
O day A la anh xa tuye'n tinh hoan loan lien tuc trong khong gian Hilbert thue
H Dd viec trinh bay dugc dan gian ta gia thie't rang (1.1) giai dugc duy nha'l Tix linh
giai dugc duy nha't cua (1.1) suy ra KerA = {0}
Trong trubng hgp Ker A^ (0) la gia thiet tbn lai loan tu ngugc suy rong A"*"
Gia sir trong phuang trinh (1.1), thue te' ta chi bie't y5 e H sao cho
||y^-y|| < 5 vdfi5>0
Ta phai tim x^ sao cho
||x5-x*|| - > 0 k h i 5 - ^ 0
a day X* la nghiem duy nha't cua (1.1)
Til gia thie't A la loan tur hoan loan lien luc nen ta cb A*A va AA* la cac loan tu
d6'i xung hoan loan lien tuc cb cung cac gia tri rieng
Gia sur ak la gia tri rieng cua A A va day gia tri rieng dugc sip nhu sau:
CTl ^ 02 ^ an ^ > 0
Goi Uk la vecta rieng cua A*A thoa man:
A*AUk = ak^Uk
< Uk, Ui> - 5ki
Trong do < , > la tich v6 hudfng cua H
Trang 27(1.2) dugc goi la Ichai tridn ki di cua loan tir A( SVD cua A)
Theo dinh ly Picard: Dieu kien c'an va du dd (1.1) giai dugc la:
y e (ferA*)^
S a k'^ I < y , Vk > r < +00
k = l
§2 - Hoi tu yeu trong khong gian Hilbert
Xet mot cap khong gian (Xo,H), trong do ( Xo,|| ||o) la khong gian Banach thue lach
dugc, H la khOng gian Hilbert thue vdfi chu^n || || cam sinh bai tich vO hircfng < ,.>
Gia su Xo nhung irii mat, lien tuc trong H
Tu gia thie't ve Xo va H suy ra:
h i / V x e X o = > x e H , ||x||<Co||x||o,Co>0
Ngoai ra trong muc nay ta se gia thie't rang
h2/Xo v a H cb chung cosogbm cac vector rieng {Ui} cua A*A Hon nua gia tri
rieng On thoa man dfeu kien an ^ 0n^ > 0 ( n = 1,2, ),
trong do 0„ -> 0 ( n ^ oo) va p > 1 cb dinh ( eon goi la trubng hgp giai fan rong)
Ta xay dung khbng gian Xi nhu sau:
Trang 28Ngoai ra theo dinh nghia || x || o ^ || x || i , dieu nay chung to Xi trii mat trong Y^
Bo de 2.2: Moi tap hi chan trong Xi la tap compact tuang doi trong H
Ch(mgminh:YAhitnM^{x^Xx:\\x\\x < K, K>01
Do 0i-> 0 khi i -> 00 nen vbi moi E > 0 tbn tai sb No > 0 vai moi N > No thi ON ^ e Vdi moi x e M c: H ta cb b^t dang thu*c sau:
||PNoX-xf = Z |<X,Ui>P<(E0rM<X,Ui>h)^^^(Z 0,'p |<x,u,>|-p)^^p
i=No+1 i = No+1 i =No+1
< K s ( E | < x , U i > | ' P ) " ' P < K s ( 2 | < x , u , > r - | < x , u , > p P - ' ) ' / ^ ' '
i=No+l i=No+l
Trang 29•
< KE (CoK)*^(CoK)^P"'^^^ = COK'E
TIT day suy ra tap: No
MNO = {XNO = S < x,Ui> Ui, X e M )
i = 1
la CoK^E luai compact cua M va cQng suy ra M la tap compact tuang dbi trong H
Ta dinh nghia chudn bie'n phan nhu sau:
||x||v = Supl I <x,v> I ,v e Xi, IIVII1 < 11 V X e H
Dinh Iy2.1 [71] cho day {Xn} c H, x„ ^ x (n -^ oo ) khi va chi khi thoa man hai
dfeu kien sau:
X* e M ( R ) = { X G H : ||X|| < R ) , R > 0 Con ve'phai cua (1.1) thoa man ||y||^ 5, 6 > 0
Nhiing di'eu kien nay co nghia la:
II x * f = Z |<x*,Ui>P < R'
1 = 1
Trang 3000
vk II Ax* f = Z Oi^ I <x*,Ui> P < 5^
*Kyhieu: cow(5,R) = S u p { | | x | | v : || Ax|| < 5 , | | x | | < R }
co(5,R,N)- Sup (IIPNXIIO: | | A X | | < 5 , ||X|| < R |
Moi u6c lugng tren cua cOw (5,R) va a)(5,R,N) dugc goi la danh gia dn dinh nghiem Djnh ly 3.1: Gia sir toan tur tuye'n tfnh hoan toan lien tuc Aco khai tridn ki di thoa
man dfeu kien cua §1 Khi do ta cd danh gia dn dinh ye'u nhu sau:
Trang 31Nhdn x^t 3.1: Trubng hgp KerA^ (0) ta xet H^ la khOng gian Hilbert eon sinh bai
cac vecta rieng juili'^ ung vdfi cac gia tri rieng ai^> 0, i = 1,2
Xet trubng hgp giai fan rOng Goi x"*" la nghiem chuan cua (1.1) ta cd danh gia
||xlv<R'^ a / 5 ' ^
§4 - Phuang phap khai trien ky dj chat cut
Trong muc nay ta gia thie't ring cac gia tri Ok trong khai tridn ky di cua loan tur A va cac vector ky di Uk, Vk tuang ung da bie't
Gia sir (1.1) cb nghiem duy nha't x* va ta chi bie'l Yb'^y sao cho
l | y 5 - y M 6 Nghiem chinh xac x* trong trudfng hgp nay cb dang
X* = Z Qui , a day Q = cj;^ < y,vi> , i= 1,2
Trang 32Tiir db suy ra ||XN^-X* || < ||XN^-XN* i| +1|XN*-X* || < (a+5)aN"'N^^+1| X*N- X* || (4.2)
Vdi mbi 5 > 0 du nho va cb dinh, ta chon N = N (5) tijr dieu kien
Trong trubng hgp ne'u gia thie't tien nghiem rang x* e Xo, thi ta co danh gia
IIXN''- X*|| < (N(5)-' +||x*N(6) - x*||o ^ 0 ( khi 5 ^ 0)
a day N (5) chon tir dieu kien
Trang 33Nhu vay ta da chung minh dugc dinh ly sau
Djnh ly 4.1 Gia sur X'^N la nghiem xa'p xi hun ban chieu vdfi he sb Q"^ xay dung theo
(4.1) Ne'u a = a (5) -> 0 (5 ^ 0) va N = N(5) thoa man (4.3) thi
ix%6) - x* II < N(5)-'^ +||x*N(6) - x*|| ^ 0 ( 5 - ^ 0) Ngoai ra ne'u bie't x e Xo va N dugc xac dinh tir (4.4) thi ta cb danh gia
IIXN''- X*|| < N(5)'* +||X*N(6) - x*||^-> 0 ( 5 ^ 0 )
§5- Phuang trinh tfch phan dang tfch chap
Trong muc nay ta ap dung phuang phap khai tridn ki di chat cut danh gia dn
dinh ye'u cua nghiem cho phuang trinh tich phan eo dang sau:
Trang 34vay he Un(s) = cos(7tns), Un(s) = sin(7ms) Uo(s) = 1 (n < 1) la he vecta rieng day du
ciia A*A tuang ung vdi cac gia tri rieng
cJ^ = k^n + k^n,n> l,a^o==k\
Aun(s) Aeos(7ms) kneos(7i:ns) +k„sin(7ms)
Dat Vn(s) = = =
^n Gn CTn
Trang 35Aun(s) Asin(7ins) knSin(7ins) + kn cos(7ins) V"n(s) = = ' =
On On On
Au^o ko
Con Vo' = = = 1
ko ko Theo each dat tren ta cb
A*Auk = a \ Uk , A^AiTk = a\"iik , (k > 1) , A*Aiio = a^ouo ,
Auk ^ k Alio
Vk = ' , Vk = (k > 1) Vo =
Ok Ok Ok
Gia sur bai toan (5.1) co nghiem duy nha't x* va thay vi bie't ve' phai dung y, ta chi
bie't y6 sao cho II y - y6 || - 5
Trang 36Ne'u ta chon a = a(5) = a va N(5) -> oo ( a -> 0) thoa man he thiic (4.3) co nghia la
I , , 26 < n = l , N
ll\= {x(t)tuyetdO'i lien tuc tren [-1,1], x(-l) = x(l) vax(t) e L2[-l,ll}
Chudn trong Xo duac dinh nghia bang c6ng thirc
||x||o :=max{||x||c,||i|| }
U
6 day II || II || thu-tu la c h u ^ trong khOng gian C[-1.1] va L2[-l,l]
2 " Vdi e h u ^ nay cap kh6ng gian {Xo ,H } thoa man hai dieu kien hi ,h2 ciia
54, CO nghia la Xo va H co chung ca so {1, cosTint, siuTint } , n ^ 1
Trang 37V X e Xo , Ti: Z n (x „ + X n), II X II < +GO, nen co the dal
n = 1 L
2
X , - X o V a | | X 111-II X ||o
O day chudn bie'n phan duac djnh nghia nhu sau
II X ||v = sup {<x,v>: V G Xo, II V ||o ^ 1}
Ta se danh gia modul lien tuc ye'u sau
03w(6) = sup { II X ||v : II Ax II < 6 } C0w( 6,N) = sup { ||PNX||O : || AX || < 6 }
Gia sijr V e Xo, || v L ^ 1, vai V x e H, ta co
Trang 38Tir dinh nghia phep chie'u
Mat khac I Xn I == I <x,Un> \ =nn\ <x, || Un || o'^ Un > I < 7tn || x || v
Tuangtu \x^A ^ 7in|| x||v, Ixol ^ || x||v
Tir do ta co ba't ding lhu*c
1 N 1 ^
II PNXIIO^ ( + 27c'Zn')|| X ||v - ( — + N(N+ 1)(2N+1) )|| x||v)
2 "=^ 2 3 B^'t horp lai ta nhan duac udc luang
Tt'
CD(6,N) < (n^ + A5"ko)'^ (1 +2N(N + 1)(2N+1) — ) 6
3
56 - Danh gia Diam V5 trong phuang phap compact thu hep cua Gaponenco
Trong phuang phap compact thu hep Gaponenko chi chung minh dugc diam
V5 ^ 0, khi 6 ^ 0, ma ehua chi ra each danh gia duong kinh tap V5.Trong muc
nay trinh b"ay each danh gia diam V5 cho mOt Idfp bai toan co dang dae biet
Xet phuang trinh
Ax = y (6.1)
Gia six trong (6.1) ta kh6ng bie't chinh xac y ma chi bie't y^
II y ' - y | l ^ 5
A: R" ^ R"" la toan tu: tuye'n tinh lien tuc, co rank A = p , p < n < m
Khi do A se co khai tri^n sau
Trang 39p
Ax = Zai<x,Ui>Vi
i = i
d day ai >a2 > ^Op > 0; uj e R", Aui
<x,Ui> = x \ i , <Ui,Uj> = 6ij, i,j = 1 - n , Vi =
a
-B 6 xung them cac vec ta true chudn de he {Vk} i'" la he ca so true chuan trong R'
Vi\j = 6ij i,j = 1 - m
Goi A"*" la nghich dao suy rOng cua A
Tijf Ax == y => x"^ = A"^ y Nen ta eo danh gia
| | x 1 | ^ a p - ' ( | | y 5 | | + 6 ) < R (const > 0) Dat S = { x e R " : ||x|| < R }
Goi S5 la tap luai cua S dugc xac dinh nhu sau :
N
R'
n
N '
Trang 40Vay b6 de dugc chiing minh[]