Một số phương pháp kết hợp giải bài toán chấp nhận lồi suy rộng Một số phương pháp kết hợp giải bài toán chấp nhận lồi suy rộng Một số phương pháp kết hợp giải bài toán chấp nhận lồi suy rộng luận văn tốt nghiệp,luận văn thạc sĩ, luận văn cao học, luận văn đại học, luận án tiến sĩ, đồ án tốt nghiệp luận văn tốt nghiệp,luận văn thạc sĩ, luận văn cao học, luận văn đại học, luận án tiến sĩ, đồ án tốt nghiệp
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THU THỦY MỘT SỐ PHƯƠNG PHÁP SONG SONG DẠNG RUNGE - KUTTA GIẢI BÀI TỐN KHƠNG CƯƠNG LUẬN ÁN TIẾN SĨ TOÁN HỌC HÀ NỘI - 2014 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THU THỦY MỘT SỐ PHƯƠNG PHÁP SONG SONG DẠNG RUNGE - KUTTA GIẢI BÀI TỐN KHƠNG CƯƠNG Chun ngành: Tốn học tính tốn Mã số: 62 46 30 01 LUẬN ÁN TIẾN SĨ TOÁN HỌC Người hướng dẫn khoa học: GS.TSKH Nguyễn Hữu Công HÀ NỘI - 2014 LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu riêng tơi Các kết nêu luận án trung thực chưa cơng bố cơng trình khác Tác giả Nguyễn Thu Thủy LỜI CẢM ƠN Luận án hoàn thành hướng dẫn GS TSKH Nguyễn Hữu Công Thầy dẫn dắt tác giả làm quen với nghiên cứu khoa học từ tác giả học viên cao học Ngoài dẫn mặt khoa học, động viên lòng tin tưởng thầy dành cho tác giả động lực lớn giúp tác giả tự tin say mê nghiên cứu Qua tác giả xin bày tỏ biết ơn sâu sắc lòng quý mến thầy Tác giả xin bày tỏ lịng biết ơn đến thày bạn đồng nghiệp xemina Bộ mơn Tốn học tính tốn, trường Đại học Khoa học Tự nhiên-Đại học Quốc Gia Hà Nội tạo môi trường học tập nghiên cứu thuận lợi giúp tác giả hoành thành luận án Tại tác giả nhận nhiều dẫn, góp ý mơi trường nghiên cứu sôi thân thiện, điều thiếu q trình nghiên cứu, hồn thành luận án tác giả Tác giả xin gửi lời cám ơn tới thày khoa Tốn-Cơ-Tin học, Phịng Sau đại học, Trường Đại học Khoa học Tự nhiên- Đại học Quốc Gia Hà Nội, nơi tác giả học tập nghiên cứu Tác giả xin bày tỏ lòng biết ơn đến Ban Giám hiệu, Ban chủ nhiệm khoa Toán-Tin Bộ mơn Tốn ứng dụng trường Đại học Sư phạm Hà Nội tạo điều kiện thuận lợi q trình tác giả học tập, cơng tác hồn thành luận án Trong q trình học tập hoàn thành luận án, tác giả nhận quan tâm giúp đỡ góp ý GS.TSKH Phạm Kỳ Anh, PGS.TSKH Vũ Hoàng Linh, Tác giả xin chân thành cảm ơn Giáo sư giúp đỡ quý báu Cuối cùng, tác giả xin bày tỏ lịng biết ơn đến ơng bà, bố mẹ, anh chị em hai bên nội ngoại, chồng bạn bè góp ý động viên tác giả q trình học tập hồn thành luận án Tác giả MỤC LỤC MỤC LỤC DANH MỤC CÁC TỪ VIẾT TẮT MỘT SỐ KÍ HIỆU CHUNG MỞ ĐẦU Chương MỘT SỐ KIẾN THỨC CƠ SỞ 1.1 11 Phương pháp Runge-Kutta 12 1.1.1 Cấp xác phương pháp Runge-Kutta 14 1.1.2 Tính ổn định phương pháp Runge-Kutta 15 1.2 Các phương pháp Runge-Kutta hiển 16 1.3 Các phương pháp Runge-Kutta ẩn 18 1.4 Phương pháp Runge-Kutta lặp song song (PIRK) 21 1.4.1 Nội dung phương pháp PIRK 23 1.4.2 Cấp xác phương pháp PIRK 24 1.5 1.4.3 Sự ổn định phương pháp PIRK 24 1.4.4 Sự hội tụ trình lặp 26 Một số mã tính tốn 26 1.5.1 Phương pháp kẹp thêm có cấp xác - mã DOPRI5 1.5.2 Phương pháp kẹp thêm có cấp xác 8- mã DOPRI853 28 Phương pháp ngoại suy- mã ODEX 31 Ba toán thử 37 1.5.3 1.6 27 Chương PHƯƠNG PHÁP LẶP SONG SONG DẠNG RUNGEKUTTA HAI BƯỚC MỘT DỰA TRÊN CÁC ĐIỂM TRÙNG KHỚP GAUSS-LEGENDRE 2.1 2.2 40 Phương pháp dạng Runge-Kutta hai bước dựa điểm trùng khớp Gauss-Legendre 41 2.1.1 Ổn định tuyến tính 44 2.1.2 Thử nghiệm số 49 Phương pháp lặp song song dạng Runge-Kutta hai bước dựa điểm trùng khớp Gauss-Legendre 50 2.2.1 Điều kiện bậc 52 2.2.2 Sự hội tụ trình lặp 54 2.2.3 Miền ổn định 55 2.2.4 Thử nghiệm số 57 2.2.5 So sánh với phương pháp song song 59 2.2.6 So sánh với mã 62 Chương PHƯƠNG PHÁP LẶP SONG SONG GIẢ RUNGE-KUTTA HAI BƯỚC VỚI CHIẾN LƯỢC ĐIỀU KHIỂN BƯỚC LƯỚI 3.1 3.2 3.3 65 Phương pháp giả Runge-Kutta hai bước kẹp thêm với bước lưới thay đổi 66 3.1.1 Điều kiện bậc 68 3.1.2 Công thức kẹp thêm 72 Phương pháp PIPTRK với chiến lược điều khiển bước lưới 73 3.2.1 Điều kiện bậc cho công thức dự báo 75 3.2.2 Sự hội tụ trình lặp 77 3.2.3 Điều khiển bước lưới 77 Thử nghiệm số 79 3.3.1 Xác lập phương pháp PIPTRKSC 79 3.3.2 So sánh với mã song song 81 3.3.3 So sánh với mã 83 3.3.4 Tính hiệu chiến lược điều khiển bước lưới 85 Chương PHƯƠNG PHÁP GIẢ RUNGE-KUTTA BA BƯỚC 4.1 4.2 89 Phương pháp giả Runge-Kutta ba bước (EPThRK) 90 4.1.1 Điều kiện bậc 92 4.1.2 Tính ổn định 97 Các thử nghiệm số 98 4.2.1 Chọn phương pháp EPThRK 98 4.2.2 So sánh với mã song song 100 4.2.3 So sánh với mã 102 4.2.4 So sánh phương pháp EPThRK với phương pháp TBTPIRKG PIPTRKSC 104 KẾT LUẬN KIẾN NGHỊ MỘT SỐ HƯỚNG NGHIÊN CỨU TIẾP THEO 108 109 DANH MỤC CƠNG TRÌNH KHOA HỌC CỦA TÁC GIẢ LIÊN QUAN ĐẾN LUẬN ÁN 110 TÀI LIỆU THAM KHẢO 111 MỘT SỐ KÍ HIỆU CHUNG Một số kí hiệu thơng thường • Rd − khơng gian véc tơ thực d− chiều • C− tập số phức • C− − tập số phức với phần thực khơng dương • Với số phức z ∈ C, Re(z), Im(z) phần thực phần ảo số phức z • σ(A) phổ ma trận A • ρ(A) bán kính phổ ma trận A Lũy thừa véc tơ Giả sử c = (c1 , c2 , , cs )T , ck = (ck1 , ck2 , , cks )T Toán tử exp( d ) dx d d d2 dn exp( ) = + + + ··· + + dx dx 2!dx n!dxn Kí hiệu véc tơ e Véc tơ e ln hiểu véc tơ có tất thành phần Véc tơ hàm Giả sử f (x, y) hàm thực hai biến x, y Nếu thay x y tương ứng hai véc tơ v = (v1 , v2 , , vs )T w = (w1 , w2 , , ws )T ta véc tơ hàm với s thành phần: f (v, w) = [f (v1 , w1 ), f (v2 , w2 ), , f (vs , ws )]T Nếu x ∈ R, y thay w = (w1 , w2 , , ws )T ta có: f (x, w) = [f (x, w1 ), f (x, w2 ), , f (x, ws )]T DANH MỤC CÁC TỪ VIẾT TẮT EPThRK Explicit pseudo three-step Runge-Kutta method Phương pháp giả Runge-Kutta ba bước ERK Explicit Runge-Kutta Runge-Kutta hiển IRK Implicit Runge-Kutta Rungge-Kutta ẩn PC Predictor-Corrector Dự báo-Hiệu chỉnh PIPTRK parallel-iterated pseudo two-step Runge- Kutta methods Phương pháp lặp song song giả Runge-Kutta hai bước PIPTRKSC Parallel-iterated pseudo two-step Runge-Kutta method with step size control Phương pháp lặp song song giả Runge-Kutta hai bước với chiến lược điều khiển bước lưới PTRK Pseudo two-step RK methods Phương pháp giả Runge-Kutta hai bước TBTIRKG Two-step-by-two-step IRK methods based on Gauss-Legendre collocations points Phương pháp dạng Runge-Kutta ẩn hai bước dựa điểm trùng khớp Gauss-Legendre TBTRKG Two-step-by-two-step Runge-Kutta-type corrector methods based on Gauss-Legendre collocation points Phương pháp hiệu chỉnh dạng Runge-Kutta hai bước dựa điểm trùng khớp Gauss-Legendre TBTPIRKG two-step-by-two-step parallel-iterated Runge-Kutta-type PC methods based on Gauss-Legendre collocation points Phương pháp lặp song song dạng Runge-Kutta hai bước dựa điểm trùng khớp Gauss-Legendre ... phải giải gần nghiệm toán Phương pháp giải gần hiệu phương pháp số Việc nghiên cứu phương pháp số để giải gần phương trình vi phân thường nghiên cứu nhiều năm qua Phương pháp số phổ biến phương pháp. .. dùng để so sánh tính hiệu phương pháp nghiên cứu luận án 1.1 Phương pháp Runge-Kutta Phương pháp số đơn giản để giải số toán (1.1) phương pháp Euler Tuy nhiên, phương pháp Euler có độ xác thấp...hấp phương pháp PIPTRK6 hiệu phương pháp PIPTRKSC6 • Với ε = 0.6, tốn TWOB khó giải số, phương pháp PIPTRKSC6 hiệu phương pháp PIPTRK6 • Với ε = 0.9, tốn TWOB khó giải số nhiều, phương pháp PIPTRKSC6 t