ĐI HC QUC GIA TP.HCM TRNG PH THÔNG NĂNG KHI Đ Ngày thi th nht 4/10/2011 Thi gian 180 phút Bài 1 Cho các s dng th a mãn 2 2 2 1 1 1 3 2 3 2 3 2 a bc b ac c ab Bài 2 Có bao nhiêu tp Bài 3 Tam giác ABC n i tip đng tr và luôn qua B, C và l n lt ct các cnh a) Ch ng minh đng tr đng c đnh. b) Cho B, C c đnh v à vuông góc BC ct (O) và (C1) thay đ i sao cho luôn ti p xúc vi mt đng c đnh. Bài 4 Cho p là s nguyên t l v 0 1 1 1 , , 2 n n n p a a a Q a n N a) c chung ln nht ca a b) 0 mod n n Q a p . THÔNG NĂNG KHI U THI CHN ĐI TUYN TOÁN NĂM HC 2011 – 2012 nht 4/10/2011 a mãn . Ch ng minh bt đng thc: 2 2 2 1 1 1 1 3 2 3 2 3 2 a bc b ac c ab tha và . i tip đng tr òn (O) bán kính R, (C 1 ) là đ ng tr n lt ct các cnh AB, AC ti M, N (M, N khác B, C) ng minh đng tr òn ngoi tip tam giác AMN luôn ti p xúc vi mt à BC = 2R và A thay đi trên (O). Đ ng thng qua (O) ln na ti D, ct (C 1 ) ti E, F. Ch ng minh rng nu i sao cho 5 2 EF AD thì đng tròn ngo i tip tam giác AMN p xúc vi mt đng c đnh. l v à đa thc 1 1 p Q x p x x . Dãy s * , , a a a Q a n N . Chng minh rng vi mi nguyên d c chung ln nht ca a n và p bng 1. ng minh bt đng thc: ng tr òn thay đi M, N (M, N khác B, C) . p xúc vi mt ng thng qua A ng minh rng nu A i tip tam giác AMN . Dãy s tha: nguyên d ng ta có: Ngày thi th hai 6/10/2011 Thi gian 180 phút Bài 5 Cho dãy n u tha 1 1 6 u Tìm 2 2 1 1 1 2 2 1 5 2 5 lim 3 4 n n n n n n n n n u u u u u u u u u Bài 6 Cho hàm s :f , f a b a) Có bao nhiêu s t nhiên b) Cho s l vt quá . Ch ng minh rng Bài 7 Cho tam giác ABC n i tip đng tr trên(O). Trung trc d ca BC M, N qua O và K là giao đi m ca a) Chng minh luôn thu b) Kt lun trên còn đúng không n . Bài 8 Vi mi s nguyên d ng vi , , s x y z t xy yz xz p xyz p trong 2011 , ,P s t p 1 6 u và 2 * 1 2 , 3 n n n u u u n N . 1 1 1 n n n n n u u u u u u u u u . tha 0,0 0f tha và 0 mod2 , 2 2 1 , 1 mod2 2 2 a b khi a b f f a b a b f khia b nhiên sao cho . và A là tp hp gm s t nhi ng minh rng 2 , 1 , . 4 a b A p f a b n . i tip đng tr òn (O) vi B, C c đnh c BC ct AB, AC ti M, N. Gi P, Q là các đi m đi xng ca m ca BQ vàCP. luôn thu c mt đng tròn c đnh. đúng không n u thay d b ng đng thng Euler ca ng , đt n n n n S x y z . Ta bi t rng , , s x y z t xy yz xz p xyz . Hãy tính t ng các h s ca các đn thc cha Ht t nhi ên không đnh c òn A thay đi m đi xng ca ng đng thng Euler ca t rng , , n n S P s t p ng các h s ca các đn thc cha . a b) 0 mod n n Q a p . THÔNG NĂNG KHI U THI CHN ĐI TUYN TOÁN NĂM HC 2011 – 2012 nht 4/10 /2011 a mãn . Ch ng minh bt đng thc: 2 2 2 1 1 1 1 3 2 3 2 3 2 a bc b ac. ĐI HC QUC GIA TP.HCM TRNG PH THÔNG NĂNG KHI Đ Ngày thi th nht 4/10 /2011 Thi gian 180 phút Bài 1 Cho các s dng th a mãn 2 2 2 1 1 1 3 2 3 2 3 2 a bc b ac c ab . minh rng nu A i tip tam giác AMN . Dãy s tha: nguyên d ng ta có: Ngày thi th hai 6/10 /2011 Thi gian 180 phút Bài 5 Cho dãy n u tha 1 1 6 u Tìm 2 2 1 1 1 2 2 1 5 2 5 lim 3