Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 20 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
20
Dung lượng
2,82 MB
Nội dung
Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 1 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 2 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 3 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 4 Toàn tập lượng giác Các đặc điểm cần chú ý khi giải phương trình lượng giác Để giải các phương trình lượng giác nên chú ý phân tích bài toán theo các hướng sau: 1. Trong phương trình có bao nhiêu loại góc, các góc có thể chuyển đổi qua lại với nhau được không? (Sử dụng công thức nhân đôi, nhân ba kết hợp với các công thức hạ bậc hai, bậc 3) 2. Trong phương trình có cùng một loại góc, nên phân tích để đặt nhân tử chung (nếu gặp bài toán không theo các dạng cơ bản) 3. Sử dụng tốt các công thức biến đổi tổng thành tích, tích thành tổng 4. Có thể sử dụng cách giải đặc biệt: coi một hàm là tham số, hàm còn lại tạo thành 1 phương trình bậc 2 hoặc bậc 3 (có thể nhẩm nghiệm) 5. Phương trình siêu việt có cách giải đặc biệt Nguyễn Hải Hà 0983325739 Trang 5 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 6 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 7 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 8 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 9 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 10 [...].. .Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 11 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 12 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 13 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 14 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 15 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 16 Toàn tập lượng giác BÀI TẬP TỔNG HỢP TRONG CÁC ĐỀ THI THỬ Bài 1: Giải phương. .. 36: Giải phương trình: π 2 cos2 − 3 x ÷− 4 cos 4 x − 15sin 2 x = 21 4 Bài 37: Giải phương trình: (1 − 4sin2 x )sin 3 x = Bài 38: Giải phương trình: Bài 39: Giải phương trình: Bài 40: Giải phương trình: Bài 41: Giải phương trình: Bài 42: Giải phương trình: Bài 43: Giải phương trình: Bài 44: Giải phương trình: Bài 45: Giải phương trình: Bài 46: Giải phương trình: Bài 47: Giải phương trình: Bài... tập lượng giác 1 8 21π 1 2 2 Bài 27: Giải phương trình : 2 cos x + cos ( x + 3π ) = + sin 2( x − π ) + 3cos x + ÷+ s in x 3 3 2 3 Bài 28: Giải phương trình: Bài 29: Giải phương trình: Bài 30: Giải phương trình: Bài 31: Giải phương trình: Bài 32: Giải phương trình: Bài 33: Giải phương trình: Bài 34: Giải phương trình : Bài 35: Giải phương trình: sin 2 x + sin x − 1 1 − = 2cot 2 x 2sin x sin... Nguyễn Hải Hà 0983325739 Trang 19 Toàn tập lượng giác Bài 75: Giải phương trình (sin x + cos x )2 − 2sin 2 x Bài 76: Giải phương trình: Bài 77: Giải phương trình: 1 + cot 2 x = π 2 sin 2 x + ÷ = 3sin x + cos x + 2 4 cos 2 x tan x + 1 + ÷cot 3 x = 3 1 + cos 2 x Bài 78: Tìm nghiệm x ∈ ( 0; π ) của phương trình : Bài 79: Giải phương trình: Bài 80: Giải phương trình: Nguyễn Hải Hà 0983325739... x − 1) = cos2 x + 7sin 2 x − 7 Bài 57: Giải phương trình: cos2 x π − tan x + 2 sin(2 x − ) = 0 1 + cot x 4 Bài 58: Giải phương trình: sin 2 x cos2 x + = tan x − cot x cos x sin x Bài 59: Giải phương trình: cos2 x.(cos x − 1) = 2(1 + sin x ) sin x + cos x Bài 60: Giải phương trình: Bài 61: Giải phương trình: Bài 62: Giải phương trình: Bài 63: Giải phương trình: 3π π cos2 2 x − 2 cos x + ÷sin... tan x = + sin x − 1 cos x Bài 64: Giải phương trình lượng giác: Bài 65: Giải phương trình: cos2 x + 3 sin 2 x + 6sin x − 5 Bài 66: Giải phương trình: = 2 3 x 2 cos2 − 1 2 Bài 67: Giải phương trình: π 2 cos3 x cos x + 3(1 + sin 2 x ) = 2 3 cos2 2 x + ÷ 4 Bài 68: Giải phương trình: 8sin3 x cos x + sin 4 x = sin 3 x − 2 cos2 x + 1 2 cos x Bài 69: Giải phương trình: sin x + sin2 x + sin3 x + sin... − tan 2 x = cos 2 x Trang 18 Toàn tập lượng giác Bài 52: Giải hệ phương trình: 5π π 5cos 2 x + ÷ = 4sin − x ÷– 9 3 6 sin x + cos x + 2 tan 2 x + cos 2 x = 0 sin x − cos x π 2sin 2 x − ÷ = 2sin 2 x − tan x 4 5π 2 2 cos − x ÷sin x = 1 12 Bài 53: Giải phương trình: Bài 54: Giải phương trình: Bài 55: Giải phương trình: Bài 56: Giải phương trình : ( 1 − tan x ) ( cos 2... Giải phương trình: sin 2 x.cos x Bài 6: Giải phương trình: sin(2x + Bài 7: Giải phương trình: 17π x π ) + 16 = 2 3.s inx cos x + 20sin 2 ( + ) 2 2 12 cos 2 x + 5 = 2(2 − cos x)(sin x − cos x) 1 + log 1 x ≥ 0 Bài 8: Tìm các nghiệm thực của phương trình sau thoả mãn 3 : sin x.tan 2 x + 3(sin x − 3 tan 2 x) = 3 3 Bài 9: Giải phương trình: cos3 x cos3 x − sin 3 x sin 3 x = 2+3 2 8 Bài 10: Giải phương trình: ... cos2x = 8 Bài 11: Tìm nghiệm của phương trình: cos x + cos 2 x + sin 3 x = 2 thoả mãn : x − 1 < 3 Bài 12: Giải phương trình: Bài 13: Giải phương trình: Bài 14: Giải phương trình: (sin 2 x − sin x + 4)cos x − 2 2sin x + 3 sin x − cos x + 4sin 2 x = 1 =0 cos23x.cos2x – cos2x = 0 3sin 2 x − 2sin x =2 Bài 15: Giải phương trình. : sin 2 x.cos x 1 3x 7 Bài 16: Giải phương trình: 4cos4x – cos2x − cos 4 x +... 17: Giải phương trình: = 2 ( 1 + sin x ) sin x + cos x x x 2 x 2 π Bài 18: Giải phương trình: 1 + sin sin x − cos sin x = 2cos − ÷ 2 2 4 2 3 3 sin x.sin 3 x + cos x cos 3 x 1 =− π π 8 Bài 19: Giải phương trình: tan x − ÷tan x + ÷ 6 3 3 sin x.(1 + cot x) + cos 3 x(1 + tan x) = 2sin 2 x Bài 20: Giải phương trình: Bài 21: Bài 22: Giải phương trình: Bài 23: Giải phương trình: Bài . Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 1 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 2 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 3 Toàn tập lượng giác Nguyễn. Trang 10 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 11 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 12 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 13 Toàn tập lượng giác Nguyễn. Trang 6 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 7 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 8 Toàn tập lượng giác Nguyễn Hải Hà 0983325739 Trang 9 Toàn tập lượng giác Nguyễn