1. Trang chủ
  2. » Giáo Dục - Đào Tạo

chương 3 động học và động lực học chất lỏng

27 383 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 1,78 MB

Nội dung

[...]... Bernoulli PT động lượng PT momen động lượng PHƯƠNG TRÌNH BERNOULLI Dòng nguyên tố chất lỏng lý tưởng chuyển động dừng Dòng NT chất lỏng lý tưởng chuyển động không dừng Dòng NT chất lỏng thực chuyển động dừng Dòng NT chất lỏng thực chuyển động không dừng Toàn dòng chất lỏng thực chuyển động dừng 26 13 2/ 13/ 2014 KHÁI NIỆM CƠ BẢN CÁC PT CB PT BERNOULLI TỔN THẤT NL PT Bernoulli PT động lượng PT momen động lượng... lực z1 - Độ dốc thủy lực trung bình z2 O1 O2 33 KHÁI NIỆM CƠ BẢN CÁC PT CB PT BERNOULLI TỔN THẤT NL PT Bernoulli PT động lượng PT momen động lượng PT Bernoulli cho dòng nguyên tố chất lỏng thực chuyển động không dừng z1  p1 u12 p u2   z2  2  2  ht1 2  hqt  2g  2g p2 , u2 p1 , u1 z1 z2 34 17 2/ 13/ 2014 KHÁI NIỆM CƠ BẢN CÁC PT CB PT BERNOULLI TỔN THẤT NL PT Bernoulli PT động lượng PT momen động. ..  S1 4 - dòng chảy tầng 3   1,01  1,05    Qv2  RV - dòng chảy rối 40 20 2/ 13/ 2014 KHÁI NIỆM CƠ BẢN CÁC PT CB PT BERNOULLI TỔN THẤT NL PT Bernoulli PT động lượng PT momen động lượng PHƯƠNG TRÌNH MOMEN ĐỘNG LƯỢNG  d L   M (F ) dt L - Momen động lượng của khối chất lỏng chuyển động so với một điểm gốc  M F   - Tổng momen của các ngoại lực tác dụng lên khối chất lỏng so với một điểm gốc... PT động lượng PT momen động lượng Ý nghĩa thủy lực của các số hạng trong phương trình z – Độ cao hình học z p  – Độ cao đo áp u2 2g z – Độ cao cột vận tốc - p u2  H  2 p  Ht  – Cột áp tĩnh H d – Cột áp động – Tổng cột áp Dọc theo dòng nguyên tố chất lỏng lý tưởng chuyển động dừng tổng cột áp là một hằng số 30 15 2/ 13/ 2014 KHÁI NIỆM CƠ BẢN CÁC PT CB PT BERNOULLI TỔN THẤT NL PT Bernoulli PT động. .. bình 36 18 2/ 13/ 2014 KHÁI NIỆM CƠ BẢN CÁC PT CB PT BERNOULLI TỔN THẤT NL PT Bernoulli PT động lượng PT momen động lượng PT Bernoulli cho toàn chất lỏng thực chuyển động không dừng z1  l H qt    0  p1 v2 p v2  1 1  z2  2   2 2  hw12  H qt  2g  2g v dl t - Hệ số hiệu chỉnh động lượng 4  3   1,01  1,05 p2 , v2 - Tổng cột áp quán tính p1 , v1 - dòng chảy tầng z1 - dòng chảy rối z2 37 ... PT động lượng PT momen động lượng PT Bernoulli cho dòng nguyên tố chất lỏng lý tưởng chuyển động không dừng p1 u12 p u2   z2  2  2  hqt  2g  2g z1  p2 , u2 l hqt  1 u dl g  t 0 - Cột áp quán tính p1 , u1 z1 z2 31 KHÁI NIỆM CƠ BẢN CÁC PT CB PT BERNOULLI TỔN THẤT NL PT Bernoulli PT động lượng PT momen động lượng PT Bernoulli cho dòng nguyên tố chất lỏng thực chuyển động dừng z1  p1 u12 p... tố chuyển động dừng  RS      RS  RV   dQu1   dQu2  0   dQu1   dQu1     dQu2  RV     dQu2 dS2  RS dS1  RV 39 KHÁI NIỆM CƠ BẢN CÁC PT CB PT BERNOULLI TỔN THẤT NL PT Bernoulli PT động lượng PT momen động lượng PT động lượng cho toàn dòng chất lỏng chuyển động dừng     RS  RV  1 Qv1   2  Qv2  0  RS   Qv1  S2 - Hệ số hiệu chỉnh động lượng... Bernoulli cho toàn chất lỏng thực chuyển động dừng Phạm vi áp dụng:  Dòng chảy chịu tác dụng của lực khối là trọng lực  Dòng chảy đều hoặc biến đổi chậm p2 , u2 p1 , u1 z1 z2 35 KHÁI NIỆM CƠ BẢN CÁC PT CB PT BERNOULLI TỔN THẤT NL PT Bernoulli PT động lượng PT momen động lượng p1 v12 p2 v2 2 z1   1  z2   2  htb12  2g  2g Trong đó: 2  u dQ  S p2 , v2 - hệ số hiệu chỉnh động năng v 2Q ... Bernoulli PT động lượng PT momen động lượng Các lưu ý khi sử dụng PT Bernoulli  Chọn 2 tiết diện trên đó biết nhiều thông số trong phương trình nhất  Chọn mặt chuẩn thích hợp  Đồng nhất loại áp suất ở cả 2 vế của phương trình p2 , v2 p1 , v1 z1 z2 38 19 2/ 13/ 2014 KHÁI NIỆM CƠ BẢN CÁC PT CB PT BERNOULLI TỔN THẤT NL PT Bernoulli PT động lượng PT momen động lượng PHƯƠNG TRÌNH ĐỘNG LƯỢNG PT động lượng... nguyên tố chất lỏng lý tưởng chuyển động dừng  Từ phương trình Euler thủy động:   1 du R  gradp   dt Biến đổi phương trình: d (U  p u2  )0  2 Với U là hàm được định nghĩa như sau: RX  U x RY  U y RZ  U z 27 KHÁI NIỆM CƠ BẢN CÁC PT CB PT BERNOULLI TỔN THẤT NL PT Bernoulli PT động lượng U  PT momen động lượng p u2   const  2 Trong trường hợp lực khối chỉ có trọng lực : RX  . src=" 335 g/6H+oB4sLVW5qPtlrvtDQ02kbpEWqkG/LlO3aJf1st6g3c/R7lRlmaqqGl82svnkkzZu3DyybEVVDRWRctFLRco5RZQRZfyD6+O/XPmj9hEAgFDh2aJJTYp0dF4lN00V/ZnpQ7d96Zadjz/RnZuL1EytWbtq1ZqhVRP7nzx8aPbwgenZw0eml7q9hbld6zbUP/727xkr6/0z9W/97uVFs25sdPXYxMSyZeXk8rHVa58zOTG698E9d15/1+JStxxqrVi18vkvPH/jc49PRZmjiJxSSt+YRykizJkAAAgViMi5qetBbpoyFTsf3XHj9dfPHdg71B7ZvPnUDRObtu95eNvDu67Yuf3gwSO5rlLRiUHVpDwompzbVZpZioVBzDRld6k3dM+9hwaDFVWzN+XdkeqUmjr3U65HR1vrj1u16YRVJ2857jmTEzdedcP+Q58ZGqnOPvec57/g/EHZbpqUUtlqDUWWKgAAQgWVknNd102vd9UXvnj/3feuXrHqtFNOvfvQ4JZb7v3Ef79uoVs1MZSbsohOjqmUy2iqoimLXOeql/NwpIUiFqu608qLVa6LXESkOoYjVxGRmyYi5cjT3frwA0vbH3j0mi88GE1v7Yax08/YfNoLTz6wc//vXPvvhybHf/gNr1+5ck3kJnIZoVUAAIQKz6YqOXpyV5NTpCKayLnuLUz/9ec//fC995x/3sWb1598xRU3/Off+2w9WJZjuMlTdQw1UZSpybkfUafU5NyLFFEutNJcGWUVB9q5V0SuczunpVa5r87jkXq5SDlaObcj2pFTkVMTw3WMDRYHw1Vrx46lHTsf/su/+cqa1UPfe9EFWzed+ce//4dVlV77xjdObdiUiyIV0eR+UUREEVEkN7UDAHjGSk99Tyee9QdHShHRNIOIHJFzLvv9fpXqa6684sarrrzk4u99/OHdf/7Za57YuZDTRM6d3AxFlCmnKOpUDKJZilisWrNDne7K5SOrVk6sWDm0auXw5OjExFgMjR44/9y1KQb9XnnrbTvnlp4zM9efm188ML24/+D8nn0zhw8vNXlZLoYHzVCq26mumlQ0KeVoyui2Y7FqL1z44rMufcU/uuOrN42tGH/T29/e6YxGlEVRRoocufhGh//Xq95kbwLA081PXvLJ+PvuL4pQcXDwHUMlN0dPyJqfO/TR3/qVLSeeMtZe/Yn//vmHdhzJzbKI8aZp5ZxT0U+pW6XZVjm7fu3YCSetOfWU9Zs3L1 831 R4byVXRRKrrwaDIZeR+pLkmLZa5iqZs6hQpUtGO1G6ilcuRJlpHZusdjx/Z9uDO+7c/ef/9++bnok6tXC/P9YoiVRGLqVgsim5Vzb7iB8678KKtl3/hc2/7ics2bz6nLNtRppz6RbSECgAIFYQKx2ao1HU/N3WOvGfn4x/58L9542tee/3Vd3z2f9zcyyuWYqJoOimKInWbmOt0Dq5bN/ziF554wXnHb9owXg3NR7FYxCA1TRVVXQ+aVOc8lCM1OffrslsVvaW6SmWr6LWKhVaOIqdUlEVZRkoppyJHRDvHeLe37Gv377r2tvtuuemR2emJupmoU5GbTkplSt2UDh23vv3uf/KmG2654kUvfvlFF19StMs6+q2yI1QAQKggVDhmQ2Uw6O/du+ff/foH3/6Gt3zs9z591517lmJVPw1HLsrcFGlmaOjgGWdOveLlZ515xsaR4bkyzRSpO0iLOTX9Og8G1eyRemZ2/tCRhSNzxcEjB2bmu4en08zi/NKg12m3lg23Jkdak+NDE8uGJ5cNrZocHh9tjwxVo0OtTpWKVNZ5pI7RVCxfWmhdc9W9f/bZ23fs7kWsbprxJjop91rl7MjQzC+85/UPP/7Ayc879aXf/+qcW+2OU78AQKggVDhGQ6VfdwfdpQ++7z1vfeNrfv8/fPLuO5+sm3W9mBxEv4qFsjh80gnDb3jjeRdcsHG4rOtmuihnmmZucWF+Yal7cGZmZnZ+brFeGpR1tPt5OOdOlE2Tq9wsj6gjRR0LrdRP/SKVkcomcr/Mi52y12ml4U41PlYsHx+tWqOdzvJlQxNV0WryaHfpOX/2uds/9ac3zs6P1fGcHMNl7lZpZmjkyX/2/rfddsd1P/KWd5542jllGUIFAIQKQoVjM1R6zdynPvbxFa3moQf3/skn72mK8aaeiMFYUR2M1syFF65+21tf+twNwxEHinqpznNRdXft2X1kZmly1cTEyhVNDNUxNKhbj+zY3UR13MbVZdGkXKXcfnKmu+eJmfGxct264TKGI+ooi8d27Vvqzh1//HPGh1pDkZs8N3N47/59h1ctX7tu7VQqUo4qxfKoJx56ZPZDv/rf9jy5rKlXpRxF7udieuXqw//2Q7/wp//jcx/6Dx+pWlWKJFQAQKjwTOT2xHwHvaXuLTdd97Nvf8e//+1P5/zcetDOkYqin8pD512w9rJ3vXr1yhSDmUiLdczliDwYGh+d2v/kIw9u37nv0H1PHppf6Lf6ub17z8zQyMqJFWO9wWJOOaeY7+WZg3nlspWtsl9FNGlpEP25+fmhVhpp9dvRnxweWr68Nbm8PbVmZTlc5pQj6lSk3MymMk46afQ3f/1n3v1zvztzuMzNRGraKSYPT89dccWNmzZuuPXmGy686GJPVgEAECocm+798pdPPmnjHbd/dW6hlfNERJlSRF6cmqpe+Yqta1Y30cwW5VLO/a9/IpIGw6PF1jM2Fbkd0ekOiun5wYHDC9OHF+fn88xsb6kfS4P+Um+xX/c2jJdlqqqiGhlOVWtFuz2ybHzZxGhn5Vh7xXgaHe4PddpFipTrosgRKXJKKUc5SDFfxNK6qYl3vuPlv/1blzcxFjHSNGUMVn3plrs/+K8uu+Kaqy+86GK7DwBAqHBs2rXjsROeu+7LNz2cypG6btc5peiXaWnlys4Lzt7SSjN104+cI4pUtCIv5RjMzzbzs53IIzkXTaScO+Np2eSKOq/oRR7JTUS5GGluzeRkUx6uc7V/f9nkkbIocs5RprJIZdPUczE 735 rLZcpNUQ5GRpuxyVZRtCKXKapIRc5RFP0LX7TlP459bnZxUOe6iKJuxvYffCyl+tC+fZEjRy4Kj30EABAqHHOKVNW9GB0Zzk000c+pilRH7keuom7lJkVqcjQ5N7kZpFSn3PnDj33xC1/Y24vlTaSUm5RzpKbIVdTLishRzLeqg+ec2fkX73llpINz3eEPvOfjswubUn8iUmqKJjdVkYsUOac6IkfMTkwevuxnLr3oJadFKnIuIsqIVpFTbqKOuo5+TnUqcm7qnCOnKudol62I7CosAAChwrFpy9az/vyPPrH1xI2puTvFfJnGc05FqmYOpa/e89BZL1iRUkSum7oucpRRFc1wpMle2R8MVuemjChSFNGUOUVEVcSgjoX2YCLyTFOk1AwVzWQ9WNFvNgzympQGRdNPTaeOHKmfI0fkFN2mGUp5LKVOjl6kXkREtIqU66huvvVri71O1EU0dVFGlborlo/OLw3Wrd8QOUdykQoAwDOSs2L4Dk486cQ9+3ed/LyTxpc3ZTFXNKmVx3Mz8sTumb+4/KYD+5tUTxa9kWrQiVTnVDepjrRY5sNlOlgUR1Lq5VzVeaxuluU8nPNQjnbOrZxbkavIrcitaNqROxFHvxyK3I5Ikfq56EY5E8WhQZqri7psiqIpipxSjpSjl9u79uf/9vHrmmZDjmW5bPVjUDQHvueC06+/8dqLf/BVqSyTUAEAeGYyo8J3UqYffN3rrr35xje97VW/95G/aOplkctInTovv+mWve2hL7zlR16ycW1Kea6OQVM0qVg8+5w1Y+PL6hgbNKP7niyuu+6RqNs5hnNTRaQcnSb6TS4iiogiN1XOrcidlMuIInJELiItrJ3qXHDu5tHRxYiFoc7i+tVDKbqpaHJKqWjnPLzj8aUPfvDjBw5ONIPlKSKnbhQza1blF73ozKvuvPW5p55i1wEACBWOXal10cXff9etd5y6Zf0PvfbFn//MrU3d7+fxQSxr6vKqq3fsfGzfm954/jnnrmhXTVN3c3TPv2DzC85rRUSOya/es3jT9bcN0nhuOjmqHIMcKUfklCO+8SunyEefzpgjqkipie7YWPzQq05atya3202TI5f9VETdtKNYtji/7G+uuPPjn7hqdn6iqcdSNGVaTGludHz2Z3/xrX/2 13/ x/l/7jZQauw4AQKhwzMpR5Zx/+ufe++u//C9f9n3fN1RVf/KpG3JTRZ4cDIainHrggbnf+M1rzj571atffs6W09e1h2YjzZRpPkU3Rd2OumoGTVM0UTYpck45IlITkSPVEU2kHCki5a8vjIioi7KfWnW/nM6daKpUNyNN6pQx1O2WN9z4wKc/c/ujjy5FPi7ndoqiSPNlOjI53vzT97ztimv/8id+/heXTT4nRffoxfT2IACAUOFYPESKlFutshx/3y//xm9/+Je3nnL8P//Aj370dz5zZGax7q9M9WhTtGe7nRtuXbjlzqtO3jB04Us2PO/5a49bvXy0qnI5iGK+acZzbke5WNaRIhVNO1WLKbdTXbZTsRhFv4wmcsqRIqUcKYpcF01ElK0il0v9oi4mHvjaYzfc8MQNN37t8MFW3SzPzcpBmaPIRdMri+kzz17xI29+xeVXXfnjl /38 5pNPzqmJaKsUAAChwrEspRRF0R5pvef97//zT/3pjge2/eqvvfevPn/V1V+8YzAYzXk86skmrVxo5h54qPvwI9urP7nupA2t04+fPPGUDb3YGFHlFDlySkspUqR+SoOci0HqtIo6okypSClFFBEposhNk8pONMVjD87df9u99z706B33zB4+2GmaqZRX5UEnohWRqphvYnb5yqG3vu31kY7cdPvt/+JffmBsfDwiikKiAAAIFZ4drZKjKVrtH37DW5/ctfsTH/tPm09efenLf+azn7v2ppu293tjKQ9H0er3l9eDkaoaOmvLKcP1Ew/es/+BnftztCPliPLohSgptSIPDfrlvXfvGSsWZmYPR68TTTtyK6VBRBRFlXO1Y9vOL37myS3HN8ev3Hj7/GOpv3ZQTESTqyoffSz95GS88gcv2bR55a 133 vj9r3j1G97xlpwGKRVxtFLc7wsAQKjw7DhWWrmI6BRTm47757/0/u 333 3v55y4/ccuqH3jtxbd86SvXX3/bE7sXq/aKQT /36 vn77r1n9digH8PtobV1MZ2bHE0ZUUbOTd3k3Hlw2xM3/82Ty6ul7mBkqK66da6jiWhSipxzitRKnbXjKzq9fRNFefrmDbd/+XBdNk0aRNHbctpxL73kZe1O+fCj25py2Qf+9S+1O+NNlEXxjUDJETk78wsAQKjwLFBXKeW66A+KpkjDJ209792nnrlv7xNX/NVfRZr7qZ98fac99pVb77vr7vsff2y6PxjvjK666eZti+WgThMpchlNLuYj6qLIKXrHb1p76prB1Ej/vof3bT1x05e2H8xR5ciRIppWpDwoynt27Bo7bbQ7PTvbm63GZ7eetPGc5z//uE3r7nvgqwdmHjvvwgt/6M2vjaJMKXKKiKaJVER4yiMAgFDh2aSIiFREVaUmpTJyKjvlcZtO/onLNjeD5q477vrKnbcNrWxe9spz16+9NC/MPrj9wbNfvPLRJw7v3Xek3z2ScxVF1eSmLAZFnl62elNnVeuRPQfHptatnh9pPbQ9xyCnVkRuYhBFPTSax6ZWzgyNrd+07gdeuHGu2z/45JF+NdtvdX/y597ZGemkooooUlGkiJxzkYp8NFgimUsBAHimSzlno8C3PzjMTAAA32X+L8pTKQwBAADwdOPUL55S0/yfPdy9iUH++nlXKUWKnFLkSP0cdeQycpGaOpfloMllKlLkXKQUKeUczSCnQUqtbzyfPkUcffZjnYsmp1RH2URRRS7+l2ej/IMyO6X0X678UXsTAOCZxalfAADA045TvwAAAKECAAAgVAAAAKECAAAgVAAAAKECAAAgVAAAAKECAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAABAqAACAUAEAABAqAACAUAEAABAqAACAUAEAABAqAACAUAEAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAAIFQAAAChAgAAIFQAAAChAgAAIFQAAAChAgAAIFQAAACECgAAIFQAAACECgAAIFQAAACECgAAIFQAAACECgAAIFQAAACECgAAgFABAACECgAAgFABAACOEZUh4KmklAwCAPBdlXM2CHxbZlQAAICnHTMqfAc+5wAAvhucu8Hfz4wKAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAABAqAACAUAEAABAqALjrlF0AACAASURBVACAUAEAABAqAACAUAEAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAAIFQAAAChAgD/F3LO//vC5tstfFp5qjXMT/s1B/j/rjIEAMeGxw8tRio2Lu9ExK7p7vrlQ0eX7zzUjYgNK4aeeVs03Y1I39iipaMLh9vlYq8+ujk7p7sbVww/nTdh13QvRT46/t+6I3ZNL+WInGLj8qFdh7vrJ4ccwABCBeBYs 233 4q2PdnPRTrl//+7Zk9cNnb6uddX2Iy88YfjGB5dSivt29/7xuWn77sW3XDj5jNiiux6a+dXf/5uZmblDC/WKkfL0004+5/wzv/rY/N1XXz7fa0bbxdHl5 134 /NdcdNJEJ5+yfvRptf5PHjjys7/y6en5nFPKEYcWmuedvP7iS168e9e+z3z22hUjXz+d4ayLL 936 3LHT1nXWTzqKAYQKwDEnF9XPvOtXFmamj3558dve/eaXn/rA3v5lP/6+xYWFowuvu/Q1 737 z9zxTtuidH/rcnTdd880vr77yxldd9t7J3o6rr7zxb9+U0uve8rqPXrPwS5eOPN3Wf/Wq8atv+trBg9PfXPKVm2P1qc//dx/4cFMPvrnwwQce2ffWn2+Kznxv6bjxfNKUeRWAv+UaFYBjoFTy+ec9LyKO27guIm799H/9wyu2XfXJP1pcWCjKr38g9Y43XlCnwe7p+mm+Kdv2dX/vrx+76+ZrI+LN73j9xJqp559/ZkRc/Qe/86k//ouIeOmP/XSrVUXEu37+Hdc+VLx0y/DJ6552ofL44cG//pVfTClFxLt+4ccn16yNiI9+6ENNPRiZmHzB+WdtfcnLUkpPPL57cnb7lfd3myZmF3oOZAChAnCslcqR6jkRse/J6TWbjl+YX7jm4x+947YvR0rnnnt6REyuWXvlI00TuciDp/mWfPxLR37xn3045/zq177yKw9Pz+zbu/4f/eCKVcvn5xd63cX20PDso/f0+4PjTj3j8Nhp/+Tizo+9aPRpuBVlpHdduv4NP/n2iPijT15+3KnPi4hedzFSetW73nvnHfc+cseNL//p90TE 737 kYy+cmr9tR/9ru2vHMYBQAXi62DXd/Tuvjx3uRcTO6cV/+DdJkX/q9S+KlHrdxd5i99QtJ20+98Xfe8lF3/eKS26/7asR8YKXv+4Vp07mXE6t6HzzB+2cXopvXKR+cK6/8+sL//Z111O8PtX6f+MbdiNi91Ov//653rf8oKN/ZTEiHjuc/+iWg7de/pfdhYUNG9ePnnLR166/MiJu/PhHv/ed7z86i9LrLt56/Y2tVvWiH/qRS7a0zz++FRHb9vYi4onD3W9uzjevvH+KMV/6lm18ync+1SAcmO9/xx20frKMiO9/yRmTa6YO79tzz3VfOLr 83/ zm++76wl829WBhfmH/nV8846KXRs7vf99vRkRddP7g5iPb9yxGxK7pBf80AJI7JPKUB0dK4R6a8F2zfc/iLTvqiHzf7t6Wte0csX1v/9R17bv35q1TxYN75v7xWSNjnWpsuExNXUSeWvmUJzg9sHv+1kd69z2w88O/9pGjl0AUZXX0NymlrRde+p7LXnPK2ua8E9pH3/+71xwYHW7ft3fptKnhbbvqU9eXdz62dO6mzv17elvWtr/1ddvuv7vk/j29n3jx2ObVX/9Wtz+6+MDuetuepRPWD39tX3frVLVtT+/0qeq0qfLc45d927X97JcPf3nH3PFT419+svW8NWn73oUzVseFm0cWmurzNzz6gff+WkS0h4ZbZZqfXzhu47onHt89MrF84cjhyDkitp591gnnvey1F23Ytmfp3/7wqoi4b2/vD285cMrU8L37BlvWjNy9tzhjqti6ujnvhL97Q7DbH128b29 937 ds1La9/R8+e/gF/5O9Ow+Tq64T/f85VdV7SNLZOyvZICshhADpEJBA2NRh1WF02HR0VHR0HO+dcWH8qSPq6J3RcRlnVGQVRRbZIQlhSzoEAoGQnSxk7RCSdKfTe1fV+f3RTRIWt7n3kXufeb0enrKs59Sp7zmV6q53n 230 Gw4OaW7r2tVYXLala/Xut1n88TXlSZK+vKv50umVvcpLqsqTTJoOfbuTqn3z7v39q+PbP7xz43NLu3+WVvbp29Z0II2o7N 239 UBD/wHV+/Y2RMTcd587cPp550wu21DfMmlIZvKQ7Am/Ze2Bbxr89+FgeoB3RhqZH373P1evf6Uil7Tl09Jskk2iPZ+W55L2rigviR8VoiSbTJs+ZeLkY2eedMKUwW0zxlbsaGgZXv3mnZ2OGVrVns8UM6N/etN3P/vZrze+Wn/oiO1Zl17xkQtmZaKQLXZF9NTFKaOqTrv4CxUlSXtXlOeStnyxNJtcX0i7R/Km254hvX578UVnb5t02qFQiUj+5rPXJYX2tnxU5KItn37xS58opjURyVsX+UB7YenGlmde2PyfP7q1rbNYUdLzErPff/XwfmMqSuNrX/5u95Sd7W3dR2y8uqchIg6dJyAiDrQVLz5teCZJL5nRsx42v7LrP//p3w6NcN5Zp+yefH4xLR3Sp2tk/5IjB7Bl6+5PfOb7FbnoHm3lwBFfu/aj6+rzQ6rTEX0PD7hXRcnmTR3XfPLLpZn0TYtfnksKaXTlo7wkri+tmDJ53JnnnD6kZkg203byqOyEoaVHvtx3vv5PbfmoKDn8Paz1QGNElJTk8h3tEdFdKRHx2IOP9Ht62X35mHjs6PGf+atC4vMBIFQA3iFb9+VXr3+l9UBj914+h/b1aTniNiIWLXxy0cInS0pyMy+68iMXHT91cAyvfpu5HTeyYsW2pvnr8017Xzvy8W3PLJx/7PT3HFucMe7w0x54ru3Q67Yc8eq/7fbIIT29avsVf549NKvV9Z2DBg9c99LKQxP/+PoHvnLtx1fv7qgsb5tY85aLnCSZu3/90L69+w+/RJL82Wlj617pnDs+8+Prv/P4S21D+yUvbdx 134 +/010s3c+bed4F40+anRSzkwdn19d3XDyj6sSje2be2NjcfX6t7hH+5s6Hv37yCU+u7n/GmMqIN4TKzx7b1Xqg4dCiteVj/tqOsyfmIooR2SOnLEbxYMP+t74jLW94mxoW1e9atPDJyj59v3DtNWtf6z950IETR/aZ+HqudI/qrXtxdXXlo+sNBwulado98br1aSbtStKsDwiAUAF4Z6RJoSKXtEbccNv3F6xtm1RTMqxvbv7atnkTyxesa503oWLButZThuZvX7B67eOP7NvbUHf7z7atOu5rX/zw5r0H3zfzbfYL6lWa6X9wXbGQv/zq9z+9csff/c0lH7vy73Zs3Xny8PZCktvWkB9Z3fMz/7wTK78c0X9A9bxrvjxvQvmCdW1Thsa6nR3zJlQuWNt55qTy+evaz55QMn9d27wJFQvXtZ09oWLBmo6Ryc5vfPV7I6pL0iO2llxV2/uOUy5Y99LKKaef9bm/vuBvP3Pd7o2rF67pOHNitqXtzQfuN7cWDzS1r1u3KSLe/5mv7l21YNHCp2acNH3B6q6vv6dq7OCSWWNj8uDMvy1qefmJeyLiuz/+5g9+eu+s44bffP3ta55cMGnGKWdOrOqKzPkjy6YNf/OuVuNnzPnCZz9wy/w1j974/a/847/+9D+/sfjl1rGD3zDZzFHl8yM+/+VPb0tH3PrVz0Wk8yaVJml+RN83hMHBtq5IihHRv3/1uZ/4/LyJFQvWts2bVLFwbdtZEyt2HuhcVd85b0LFHYtf6d+289Yb72490Pil/3HdX37o0vzkk5NC/sWNBy87rX/3rCr79P3Rv39twbr2syaWL1jXPm9C+cK1nfMmlD26tnXehLJH1necNbFiwbqWqUOyQ/vmrvyLvy3PJYvWtE6p6eUDAiBUAN4ZI/uXtuXTiFiwtmPPtldu/eqPuh//xeu3peUVT40e+7EP/9nIyZ9vWfXYPXc9vGPNymv/6Sdf+9Jfve0Ms0n84rYHkyTpHHLcxht+fdP9Y8eMH7v55U0/ue2Jz33s3Nb2rkM/ 83/ 5YktE7Nvb8MuvfOaXR8zhloiIKH7pu6OyO6/+i3+NiNuOGFK37fvzR/d7w55JF58+bP7NlevrHn/49PPee/6cm264vXXbC/NjWi6TjhzQOaj34b2hmtrSh+c/E2laWl5x/sz+H/r+0ogYOfuCz55ROXZwz6aPE0eXnTqu5eZ1Gyv79L1j4ZpNzy09+fxvl5Tc1dLSOqn3gcdWl182p2ra8DdsJyn2nBgmv2ht8xlT+2yYOHX72pf+5T/v/9TH3n19XduHag9v1XllX1dELN/aNWhkRERFSbJgbfu5E97mV2ESSUS05dN5Eyqu+1+3bXiu7tYjVlFE3NOneugxE44/+90/veXUf/j89/a8svmWn /36 mk/3mf/acWdPOjy8ilyycE1H/bJ7r/7qU4fWZPesbj7i/iHt+ThjYnUadtkHcNYvgHdIkiYVuSQi5k0s 636 kqqqysk/f/v2rq/r07d+/urOjffvaVV/83HW76+6vmnT29/7965EkO9auqntu01vn9uiqxl2vNTXs2Tlw1OjS+pVpmu5b/fS8954dERvqFqSRaWntOjTx+6dVdL9EVe/u2z59+1VX9unbfWDrvMnZ5Vs7I6K0vKJ/ /35 Vvav79+9X9frAZk2rOTJTdjQUskn7ee8+rasrf3SyrWvIcRGx9Iknz55Ymkamo/MNG1U6C8VHF9VFxHnvPv2W+WuKhXxVnz7vmdlvydbDY1u2uWXx48siTSfXnrF3zdI0TTM7njl62kkR8a8/vP2MSaVb93X9tlV65sTyf/z7b37u05dlsrkXlzy6cWdjRPL8luZDE5x2bFVEnDiqJyTautJ5E8sjYlfDG8Z5VEVJkvZkxoK17cP7ZSOif//q7nenT7/qyj7VrQcaNj679M7rrr3+ruX/fN2nT7v0LyPih//2sznji2kSz77+om35OGti2faGQs/6HNAzk8o+1f379zt027dfz50JE0alSRpCBcAWFYB3yvZ9XYe2qJw4qmRBRO37rvrg2RMfXdN25sSKtfVdE2tKbn1k/conHl604MmquuX5T/3jez72uft//J3bb7hlwODh171/0OFa2Nfe1J678+5HImLKGWfd/8B9EbF+7caZl3yoqqqypaV1/botucLIGWN7pt+wq+1HP/ragjWFuZPKVu3pmjIkHlvVNndS5TWfuLb1QOOCdS1JFCLi7/7nR7dEzbyJFat3FyYPKZm/ruOcCWXr6ruS9HCqZNP0yto+L2w/M+58+Pob7j/n8r8eMmrMq9s2P7S28/zJ2WLyht8yyzc2b9+2MyLKx89ed89NETGttvaRdZ2fedfhPdme3tz261/dF0nyicvnXv3B30TEfQ889ZWvfPLTy+t2b9vy4Mqms6a+/W5RI6pzj65tLxby3/neLz/xySt/8L2ffe+6 733 /R99cW5+vLGueMLRXRNz5XEtELN/a9cFzyro3Zby+ReXNYZCJTER0v0E79hci4tyPf2F4dXZHQ2HSsGxN3+zq+vyrq5bddeeCxb+++eVn6r513WeaWw8+/+A 93/ 7BHV/87J/f9Xzzmt357tRZuLbnnM6f/fuPbi0OO3tCxbr6jkk1JYvWtJ45qXJdfeeEmtJdjfmmtuKxNaWPrG/NRj4jVABsUQF4pxQjU5pNImJSTW7D7nxEHN0/W0jTf3xv79njSv9qTtWIfskHzhn/5x//69Hjx7W0tG6tu3/MqJrR48ce2N/Q2nRgyfrDGwr2NMXaV5MnHq/L5XLHjBnesKc+IiJNmzYuP/HscyLi5pvv23Gg5KYnGrunv3x2/zljszf/VZ854zIfm102Z2zZt9/XN4pdJdkkIibXlPQui4hYtq1zyrDSkX2zH6+t/NApva47/6jTR5f9dW2vQ7tpRURNv1xETB9R0q9m6J6tm3qXFM48+/Q0Tds3LV2+NX+wvdgzwpbCAytb7r3/8YjoX1MzsaZk/bqNSZKcOue044aUDjjixMst+/e3t7WNHj/2xl893n0+4sZX6+u2xphjxkWatm5bUX/gzVtU2ruKEfFac2HS0JKI2L72pQ0NJUOGD2090Pjj6+/d1pAs29yydFNLRBw9oLR7PT+3tTMiskkyuaakmMbQ6jfsS7a3JZ8vJhFRmk36V2WqqzIRMXloSVtn+uX39vnCudWnjyn9xOyqD7/vtC9940vZXO7VrZtuWbj6ogtOy+ZyG1cseW5711GVZYU02506k4blynIRERt2F6YOLR1ZnfzVnKOuqO197Z/1qx1X/qE5vS+v7X3l7N4fmtN79rjyW68ecvqY0hnOTQwgVADeKedOqSymERFNbWlZSSYiWtrTTJKOG1Q2blDpuEGlcydUXVXb+4QRuYuvvjqTzT3z1JJi+8FxU6dFxBOLFs8+9vCGhWKaPv3sykI+P/Wkk1Y9tSQi+g6uSZLkmaeWnjRnTpIkuza/vKeprVhy+HCR0YMrImLcoNLxA0vHDSwd3Kf0qlOre8bTEuW5JCKyabGjufmsCVXjBpVFxJhBpWMGl4wZXPLWZbmits+cee+OiBeWPDF8wrQkSZY98VRVSdyzsmdjwqCqbGNTx/yHH4uI6bUnL3ny2UjTY6ZOmzKi17zxufGDeuZ5y9MNP/7P2yPizIsuXfPs0ogYNHRoRKxZ8vgpZ50TEfPvvX/fwfzyLW+42OKkIaURkcvEgdaeLnr89hs/cM3fJEmyfNFDu15rLuQqM5ns8s3tM0aVRkRLR1SWZiIiSeJAWzHzlnMBD6jK7W9ti4hiMSpKk858GhGNrYUTRpV2D3XMoPIxg8reNaHq8+f1++p1n4+IRTf9dF9j19CjR6VpunfX5qa2JJtkIiKJONBWLMlERJTlkgMthbkTq7pP7jx2UGn3fxExpE/u0P2jh5T6dAAIFYA/qYNt+Yj45VP1y7e03lDX+HaTJP/w65 031 e27ua7hmS1tNy9tmjCkPFNSdtaFF6Vpun5L/aixoyNi1yubbl7SGBHLd+TX1Xes3tW1dP79EXHavHOeefKpiJgx5+QRY8bs3rGr2F44ftbsiHjmsflppnjTkn2/bWwPrzrYM4I0t+9gMSL696rKF/r/Icu1YmPTJfNOSJJk6aMLi5GMGDP2tV27tr12sP5A+sCajoh4aFVT44G29rbWJEmqJ0x+etGiiJh1zrnFJDlpbM+JubY3FvJpyY7NmzPZXJ/q6j27dkXEGVd9MpvLvfzs4qPHjCkpr2xvbW1pbrnjufbV9YePKqnb/PrV5V9Pjs72tsfuu//UCy9O0/Sm7/2vYuRWv1qIiCc2vOE69PliGhFpxIodPeVzoK0rIm5f3NTV/fsxiR0NhZ7fl5lspLFsS8fNS/bd9nTDLXWNz27puLHu4Fkzh44cO6ZYyO/ZvqPvsNERsW39hoievcmymTQibe6IiNi6YcP2TZu+9PMVP7l35bXXP3vld+quvf7Zn9z74rXXP/v9O1649vpnf /34 xtsWv/bixiafFIBwjArAn9JRFblHV7XmM33nXvzFSKK58Q2tctf1P7v/F+XJocsDJsk1X/zHSIv/fGn/LzQNn39nRJIOGDw4IpoaGybUlEXEicNzD63qWvby/r31u3pX903STGd7ayTJtDknjx4z/qf//O2nH180Z968FXWLly1a9OGr 333 M0N963ttzpxzVc2REmnSfgLgr09VS2h5R+XuXa/q43sVMyzFTj1u/8sWdmzeefcklP/3nb62te+K089/77kllEXHelN4nXveriBgxZnShveNgQ0N5RWW/wf2unH344pUj+mZvvuOJNE0nzz6ju2QGDR2ay5Ued9LJK+qWtBxsmjr33c8/+OvH7rn7ois/PLnm8O+v2jFlPZnS3Qa5XLFQWFG3+C8++w99+lYfaGz4lx/fe96F55YV8vFbLoA9fXjPmcH6VJT87IFX/v7L3+/s3rp0xOQ/+upX8mmaS5JMJi2kMWTEyC98/q+vqj3qmS2dJ00evm3T5igmQ44e99ITC/fu3n3kzA/No27BI3ULfuc/j+q+H//SFzJJ17RxPisAtqgA/Gl1RPaF+jjY2HCwoeHQBctfay5ERHtbW1NDw4GGxqbGxqbGxqaGhkIUiknx+iVNaRQiYmCvkjRKKvtUt7e13vXige7nvtrUtXThgog49pQznlj4UESMGDMmmy+ZPW1kLpd79snHK3r3HlQztJDPb1y7ef3OYkRsb3ybE2c9uKq1Z4tEptDvqJKIKCsUcoXM/Wta/5DlmjGmqvacsyNi8cMPdpb2yeZyG55dGlH8eV1TRNz8dPMLzz4TESecOmfL0rqImHPeeaWR/vyIzUr/8Jv9yxc9GhHvOnPOc089FRHTZs0a3jc7+5xzIuLJBQvnnnVqkiQbV7+UpJ03H/HEp19pi4iDHWkkaURUHnXUrHnnRMRDN/zHvKv/JkmSdU8+0nHgQD7JRtLzW29HYyEicpm3uQL83rbGffv2H2xo6G6f4f16iqipsaH1QGNTY0Pj/saDDY27t29P0/SGuuaTRpdu2pvvnviEacdExPat24ppcVV9R0SkkaRJduYpJ0yvrT1mxikn1NZOr62dXjtres+d2um1teNPnHXyabO7W6stW9oZ2Re2dfikANiiAvAnlYnC1JokIqbXzjr70vd3Pzho5Jiv//t3m9q6/4qfRKTz77xjRd2SNJI00g/N7v359d0TJhHJgKEjtx1ouGJq8dAsX3rmmSRJRh9/4p3f/nJEzDn3vCQykcTp55z16AMPtzQfPOuSS37xg+/feusDX/3KMTc93XLFKVVvHdj5U17fcpKmkfR8g0/S5D2TKv/ARfvY+WNv+0HFtk2bugr5cZMmrV+5suVg09W1o26oa961s76Qz0eSHDvt+PtuvTVJkuNmzkrTsqtrD2/h6ZV2NTU2DKoZGhHtba2RJCfMPjUiqo46qryicuUzy8669NLujTYrli699FNnHXriKd2XqM8cPldW7bnnr3p2WeP+hg3PLa2dd/aS+Y/c/N3v9rr22kh+/1J0n9Psg5+4ZvjY8d3lc/all04666Lhr18Usm95fOOLX400XV/f/s2L+0fEmIElK7rfnEjKKypbmw4kSXLopdKIEWPGjhw9ZmdjfljfbJokaZKmkRzaU21nY2FyTW7Zk0sioqSQZtPC8SPLfFIAhArAn86uAx2ZKGbSiIh9r766ffPm15oLJxw3fkhl4fkXtpSVZCKNNEn2NBf3vvpqRESSRJresLSp+2vva82FERGFjpaIWLyjdOK4uHFp02/mP1/I50eMHXtUoak7BiJi+6ZN2zcn+VxVRCx55JFJZ12UzeW2bdr40o7mycMrn9/cfMKYN+8D9sCq149QT2JPc3ro/h9u/a62E+bMqZs/f+tzdWde/L71K1c+++j8GyZdlkZ6089vj4hjp05d/+KLhXx+5NhxSVmmK22P6BUR2xo70kJ6y423RMS02lmP3PdwRPTu27d7/QzslR01ftz6lSvXbNwx7+JL1q98cdnjj9196qkzR1c8/GLTudN6L32lIyKqSqJ72ZOIpFi84tOf+eFX/r+XnlpwzZe/8uyTTzY1Nqx/8cXK3r27h9pdHd3HqCQRL25vmzaiIiJebezMFLMRsXXj+jSTVlb1bisbUJ1tTfe/tn1/dA+msbTY3tZeXl4WaXpD3cGrao/a9Fqhu0h2NBa6ujqz2WySyexsLHTPPJOmixYuXv/0Y5FGJJEvptlMkkREmhbSyCYREff1NFKaS5OMUxMDCBWAP7GhfcpWbe9aXV+MiG2bNv/iB9+PiBP+5V/rd+y48z9++Nbp0yTSiKtn9f7C+sMP7q3flc3lSksrb6xrTiN5fvHiiJhz7nnz77wjIiJNf/HDHxw5k5XPLJt01kVzL7hgwZ13Ln3s0SlXXHjCmIq3vta7p7z+4JFflP+YL82X1/Z9ceucuvnzly1aOPuc80rLK9Yuf2bN7ksnDsluWLcpImafe97CO++MiLMvvTSiZHJNz+mtRvYtu/2F1g0rV0eSnFA759HffC4imhoautfPIcsfuHvKp68ZUDN0b/2ul7cd+MKdmesu6RMRs44u60mq7gu8pJFJ0spevd570bn33vXQ7f/x43Ou+uR9P/72PTffdMEVV77tyLsrJSIG9y2NNBMRi+cvjPkLe1dXv/dTX1zyyCMr6pa86SllFeXHDi3vPphn7IDsCxERkc93FvL5QUOHRpoe2q8vibRxT31T975kv1OaJPkoTf+oOgQQKgD8HzFqQEmayV/8qc9mk+J9P/mP9ra2Q99oZ599zqjx44uRJkkSkRYLxclDckmS3Ph085otjRExsCqb7+zoaGsdVDN07a78xKG5rs6O7Zs2ZXO5EWPHnnPp+1pbWrpn1f 23/ 6qyaOmIiBjeNztk5kkL7rpr2aOLPnrFBTcvbrn81Dfv/XXkFpWBvZKI2NtcqEni/jVt75lU8Qcu3WUnV99UM/S1+l07N28+6bQ5i+fPX71x14aVr6Vpms3l+lZXb9u0sbyisnrQoIlDkqtn9Yxhw67We+95Ik3TwaPGR8RlH//4m2b7WnN+YK+ksqoqIj39zy668z9++NJjvxlz+YduXtx4+al9H36p5VDXdY9/Z0NhWHXmwovPe3zR03vqd2Vb90yvnb2ibsl9t97yhl+BmeStLXbmyaM/8PG/SXPF277/g+5VtyYiIj7wqU9FMY0kqSjLHOyMssqqNMmlxWJErHqlO0LSjp0bImLY0aMjYt7Eslt7NtqkvcqSiLjsE38zYtzYJNI0ikmaHnlkf5+KzIG20MHopQAAG/dJREFUYjEyx9RkxteUv7ijY9pwe38BQgWAP6Gk2PW+E7IrR4wrFrsevqm8J1TSNCJGjht3Vu34KUNLu/8av7a+86pZRy3b0nHn8y3PL1kSEZVVvTatWxsRw0aPmTg0G5HeeNsjEXHy3LkRsXbFitbmnqtANneme0uT0lzPNUBaDx48dtq0QSPH7Nm6afEL2047fsQvnj7wgVP6HDmwI7eoHP6Tfhp/eKVERKSF2rPPuefGny9++IELL//g4vnzVz4xP+loiYjjTjrppeXPRsSc88+LND1UKRFxzNDKh+5fEBEzz31Pvqtj7fPPv2muzZ3p3tKIiBlzTh02Zkw2l9vw0so0kstP7RsR506t+npERFqMni0qEcU0Ta6efdTij3zk+m//8z 033 3TNl7/y4rJlhXz+9y5BZVn87fuOvWNF25seHzbq6Ek1pWt3d33k1F6vNecz2dzq+vyHaytvqGvZuGZNJEnN8OH 333 ZbREw84YS3nXMmE1HIX3xCxfrdHRNqek7KvHZ358Qhpf2qsvtbCmt3d105q2z5poPThrvgI4CzfgH8aR0ztNeJoys+dFJFWZLvPvIkk8n0HFyRyWQyybqdB08aXZFN0qtq+9z0dFNEumJp3fZNm449blpb2YC1K56PiInTj49I1+3uenrRoxExZPKsfa++umT+IyvqlnT/9/LyuhV1S5Y9ubj7//7mphvznZ3vv/qqiLj/V7evqW/uLCZP73jDwN56jMqAXtk/di+kE8f2nnjc1EiSbZs27m9PBtTU7Fj70vZNmyJi9jnnPvXgQ0mS9Dt2RiTJTYsPX9Hluw9s27+3obyicsq4sYvuvffQUrxxcepW1NXde/MtaZqePHdumqYrnl7893cejIiHXuo+L1madh/ekcSw6lySZB5d23ba8SOm19amaXrvzTdd9rE3b6g54hiVw2fZOnZoRWVZTB3Us+Td5wfrfpuSTHzr4urte5pmjanIFjo+dErFz5c0feufvlfI5+ddeHGutGzLhg0RUTN8+KG55TJJRNLc2X2ahDQbxWwSV9T2XfXK3pNGVxQLHVfO6lMsdIwbVHrS6IorZ/X+9dNbThyrUgAibFEBeKcMOKpn355Du36lxWJaTC+fPTAiTjy68pktrRMGl37jxqcfu+eeiJh38aX7i+nWl1/O5nIjRh8dkW7btLGQzw+sqamo6jX/tlsj4oKrrqzs1TtJY1T/7NZ9Xb3KM83t6doVz6+oq1v57DMn1J7Wu2+/3dtfyXe1p5mqU4a/YTxHblE5tE9S8scf2P2Ni6vvuvG4DStfXFX31OSTTnninrsjorS8IiLa21pHjB2Xy5UmaXrFqT2Xkly7u/OWm+6KiBPmzMlkOlc+syyTzV328Y9FT0REmsTR/bNbXys+eMev9+za1dLcfPIZZ9QtWLBs0YJps+bcsKTlvKmV13WvyJ7h96zNMydWPLOl7eyLL1n9/IptmzZGxLHHTVu/8sW3jnnaiDfsZzVpaOX2vdm3TjZhcElEnDGlf0ScOKbX8k3NdQvmr1v7ciTJtFNPy3e2dba3jRg7LltaFmny+o5oR6zBNI20eOLoioj40BkjIuKUcX0P3XZ73ymjfTQAhArAOykp9mzTTpKk+zoqSSaTZDI/r2vs2rvjx79aWl2ZWbV68576XRExvba2qnfZ2rq69rbW0y+8ZHJNWaTJU4/Mj4gTamcNq0i3bdpYWl4xZvqUyQPLpwwu37C768Ih0dwevSqS20YOWlFXt+iee2acfOa7Lrjg3ht//uKzL00eNefmusbLaw9/RX5wVVt3lhSTGHhUEhHZNDIRD6xqO9wwf4BfPrXryr88+4v/88WX6p742LVf7Q6VmaedvuDOOyNi3vve3++o5FuX9OueeFNTfsve4vPProyIk8889dkldYV8fnrtrGGjR00eUhppdsLQ0tWvFiYMyWzY3dnadtZvfn7zgjvu+eBHPjhy7NHbNm5pbW5as7t8/YGWiGjpiGzPBpXulVp4cWfHSaMr1u/suOLTn/3pt77+q//4949d+48bXloZv/M6KhGxq7ErzfSc/XlYn8ya1x+/+4W2u19oqylsX/zU8s178+tffKGlpTWS5D1XXl7MdNzx059ExLuv/MtCmp06uOzKWSVX9Twv06s0ExF7WgrDsyU3Lj24rr5zUk124pDS9bvb19d3HFtTdsrYqhsX7z+2pryYxMTBZevr2ycMKZkxxqYVQKgA8Cd37lu+/f/iB9//xQ/ePFl5RcUHP3XNgMGDX16x5tE77srmclNPmR1R7Oxq377p5UiS42bPXnDHXREx/uTZ2WLhw7N6RcTJYw7/eE+TgXeOG7t946Ztr6w95vgp2VtzTz300PTZp3zr4gFHvtD5h8aTHP7fJI0/qlIi4rI5Q29ZWlFeUdne1rp7146BQ2te21V/yhlnfPfaL5aWV1QPGvzti3ofmnhs79xX7rg/TdMhw4fmSkuWPfZoRMw8. src=" 335 g/6H+oB4sLVW5qPtlrvtDQ02kbpEWqkG/LlO3aJf1st6g3c/R7lRlmaqqGl82svnkkzZu3DyybEVVDRWRctFLRco5RZQRZfyD6+O/XPmj9hEAgFDh2aJJTYp0dF4lN00V/ZnpQ7d96Zadjz/RnZuL1EytWbtq1ZqhVRP7nzx8aPbwgenZw0eml7q9hbld6zbUP/727xkr6/0z9W/97uVFs25sdPXYxMSyZeXk8rHVa58zOTG698E9d15/1+JStxxqrVi18vkvPH/jc49PRZmjiJxSSt+YRykizJkAAAgViMi5qetBbpoyFTsf3XHj9dfPHdg71B7ZvPnUDRObtu95eNvDu67Yuf3gwSO5rlLRiUHVpDwompzbVZpZioVBzDRld6k3dM+9hwaDFVWzN+XdkeqUmjr3U65HR1vrj1u16YRVJ2857jmTEzdedcP+Q58ZGqnOPvec57/g/EHZbpqUUtlqDUWWKgAAQgWVknNd102vd9UXvnj/3feuXrHqtFNOvfvQ4JZb7v3Ef79uoVs1MZSbsohOjqmUy2iqoimLXOeql/NwpIUiFqu608qLVa6LXESkOoYjVxGRmyYi5cjT3frwA0vbH3j0mi88GE1v7Yax08/YfNoLTz6wc//vXPvvhybHf/gNr1+5ck3kJnIZoVUAAIQKz6YqOXpyV5NTpCKayLnuLUz/9ec//fC995x/3sWb1598xRU3/Off+2w9WJZjuMlTdQw1UZSpybkfUafU5NyLFFEutNJcGWUVB9q5V0SuczunpVa5r87jkXq5SDlaObcj2pFTkVMTw3WMDRYHw1Vrx46lHTsf/su/+cqa1UPfe9EFWzed+ce//4dVlV77xjdObdiUiyIV0eR+UUREEVEkN7UDAHjGSk99Tyee9QdHShHRNIOIHJFzLvv9fpXqa6684sarrrzk4u99/OHdf/7Za57YuZDTRM6d3AxFlCmnKOpUDKJZilisWrNDne7K5SOrVk6sWDm0auXw5OjExFgMjR44/9y1KQb9XnnrbTvnlp4zM9efm188ML24/+D8nn0zhw8vNXlZLoYHzVCq26mumlQ0KeVoyui2Y7FqL1z44rMufcU/uuOrN42tGH/T29/e6YxGlEVRRoocufhGh//Xq95kbwLA081PXvLJ+PvuL4pQcXDwHUMlN0dPyJqfO/TR3/qVLSeeMtZe/Yn//vmHdhzJzbKI8aZp5ZxT0U+pW6XZVjm7fu3YCSetOfWU9Zs3L1 831 R4byVXRRKrrwaDIZeR+pLkmLZa5iqZs6hQpUtGO1G6ilcuRJlpHZusdjx/Z9uDO+7c/ef/9++bnok6tXC/P9YoiVRGLqVgsim5Vzb7iB8678KKtl3/hc2/7ics2bz6nLNtRppz6RbSECgAIFYQKx2ao1HU/N3WOvGfn4x/58L9542tee/3Vd3z2f9zcyyuWYqJoOimKInWbmOt0Dq5bN/ziF554wXnHb9owXg3NR7FYxCA1TRVVXQ+aVOc8lCM1OffrslsVvaW6SmWr6LWKhVaOIqdUlEVZRkoppyJHRDvHeLe37Gv377r2tvtuuemR2emJupmoU5GbTkplSt2UDh23vv3uf/KmG2654kUvfvlFF19StMs6+q2yI1QAQKggVDhmQ2Uw6O/du+ff/foH3/6Gt3zs9z591517lmJVPw1HLsrcFGlmaOjgGWdOveLlZ515xsaR4bkyzRSpO0iLOTX9Og8G1eyRemZ2/tCRhSNzxcEjB2bmu4en08zi/NKg12m3lg23Jkdak+NDE8uGJ5cNrZocHh9tjwxVo0OtTpWKVNZ5pI7RVCxfWmhdc9W9f/bZ23fs7kWsbprxJjop91rl7MjQzC+85/UPP/7Ayc879aXf/+qcW+2OU78AQKggVDhGQ6VfdwfdpQ++7z1vfeNrfv8/fPLuO5+sm3W9mBxEv4qFsjh80gnDb3jjeRdcsHG4rOtmuihnmmZucWF+Yal7cGZmZnZ+brFeGpR1tPt5OOdOlE2Tq9wsj6gjRR0LrdRP/SKVkcomcr/Mi52y12ml4U41PlYsHx+tWqOdzvJlQxNV0WryaHfpOX/2uds/9ac3zs6P1fGcHMNl7lZpZmjkyX/2/rfddsd1P/KWd5542jllGUIFAIQKQoVjM1R6zdynPvbxFa3moQf3/skn72mK8aaeiMFYUR2M1syFF65+21tf+twNwxEHinqpznNRdXft2X1kZmly1cTEyhVNDNUxNKhbj+zY3UR13MbVZdGkXKXcfnKmu+eJmfGxct264TKGI+ooi8d27Vvqzh1//HPGh1pDkZs8N3N47/59h1ctX7tu7VQqUo4qxfKoJx56ZPZDv/rf9jy5rKlXpRxF7udieuXqw//2Q7/wp//jcx/6Dx+pWlWKJFQAQKjwTOT2xHwHvaXuLTdd97Nvf8e//+1P5/zcetDOkYqin8pD512w9rJ3vXr1yhSDmUiLdczliDwYGh+d2v/kIw9u37nv0H1PHppf6Lf6ub17z8zQyMqJFWO9wWJOOaeY7+WZg3nlspWtsl9FNGlpEP25+fmhVhpp9dvRnxweWr68Nbm8PbVmZTlc5pQj6lSk3MymMk46afQ3f/1n3v1zvztzuMzNRGraKSYPT89dccWNmzZuuPXmGy686GJPVgEAECocm+798pdPPmnjHbd/dW6hlfNERJlSRF6cmqpe+Yqta1Y30cwW5VLO/a9/IpIGw6PF1jM2Fbkd0ekOiun5wYHDC9OHF+fn88xsb6kfS4P+Um+xX/c2jJdlqqqiGhlOVWtFuz2ybHzZxGhn5Vh7xXgaHe4PddpFipTrosgRKXJKKUc5SDFfxNK6qYl3vuPlv/1blzcxFjHSNGUMVn3plrs/+K8uu+Kaqy+86GK7DwBAqHBs2rXjsROeu+7LNz2cypG6btc5peiXaWnlys4Lzt7SSjN104+cI4pUtCIv5RjMzzbzs53IIzkXTaScO+Np2eSKOq/oRR7JTUS5GGluzeRkUx6uc7V/f9nkkbIocs5RprJIZdPUczE 735 rLZcpNUQ5GRpuxyVZRtCKXKapIRc5RFP0LX7TlP459bnZxUOe6iKJuxvYffCyl+tC+fZEjRy4Kj30EABAqHHOKVNW9GB0Zzk000c+pilRH7keuom7lJkVqcjQ5N7kZpFSn3PnDj33xC1/Y24vlTaSUm5RzpKbIVdTLishRzLeqg+ec2fkX73llpINz3eEPvOfjswubUn8iUmqKJjdVkYsUOac6IkfMTkwevuxnLr3oJadFKnIuIsqIVpFTbqKOuo5+TnUqcm7qnCOnKudol62I7CosAAChwrFpy9az/vyPPrH1xI2puTvFfJnGc05FqmYOpa/e89BZL1iRUkSum7oucpRRFc1wpMle2R8MVuemjChSFNGUOUVEVcSgjoX2YCLyTFOk1AwVzWQ9WNFvNgzympQGRdNPTaeOHKmfI0fkFN2mGUp5LKVOjl6kXkREtIqU66huvvVri71O1EU0dVFGlborlo/OLw3Wrd8QOUdykQoAwDOSs2L4Dk486cQ9+3ed/LyTxpc3ZTFXNKmVx3Mz8sTumb+4/KYD+5tUTxa9kWrQiVTnVDepjrRY5sNlOlgUR1Lq5VzVeaxuluU8nPNQjnbOrZxbkavIrcitaNqROxFHvxyK3I5Ikfq56EY5E8WhQZqri7psiqIpipxSjpSjl9u79uf/9vHrmmZDjmW5bPVjUDQHvueC06+/8dqLf/BVqSyTUAEAeGYyo8J3UqYffN3rrr35xje97VW/95G/aOplkctInTovv+mWve2hL7zlR16ycW1Kea6OQVM0qVg8+5w1Y+PL6hgbNKP7niyuu+6RqNs5hnNTRaQcnSb6TS4iiogiN1XOrcidlMuIInJELiItrJ3qXHDu5tHRxYiFoc7i+tVDKbqpaHJKqWjnPLzj8aUPfvDjBw5ONIPlKSKnbhQza1blF73ozKvuvPW5p55i1wEACBWOXal10cXff9etd5y6Zf0PvfbFn//MrU3d7+fxQSxr6vKqq3fsfGzfm954/jnnrmhXTVN3c3TPv2DzC85rRUSOya/es3jT9bcN0nhuOjmqHIMcKUfklCO+8SunyEefzpgjqkipie7YWPzQq05atya3202TI5f9VETdtKNYtji/7G+uuPPjn7hqdn6iqcdSNGVaTGludHz2Z3/xrX/2 13/ x/l/7jZQauw4AQKhwzMpR5Zx/+ufe++u//C9f9n3fN1RVf/KpG3JTRZ4cDIainHrggbnf+M1rzj571atffs6W09e1h2YjzZRpPkU3Rd2OumoGTVM0UTYpck45IlITkSPVEU2kHCki5a8vjIioi7KfWnW/nM6daKpUNyNN6pQx1O2WN9z4wKc/c/ujjy5FPi7ndoqiSPNlOjI53vzT97ztimv/8id+/heXTT4nRffoxfT2IACAUOFYPESKlFutshx/3y//xm9/+Je3nnL8P//Aj370dz5zZGax7q9M9WhTtGe7nRtuXbjlzqtO3jB04Us2PO/5a49bvXy0qnI5iGK+acZzbke5WNaRIhVNO1WLKbdTXbZTsRhFv4wmcsqRIqUcKYpcF01ElK0il0v9oi4mHvjaYzfc8MQNN37t8MFW3SzPzcpBmaPIRdMri+kzz17xI29+xeVXXfnjl /38 5pNPzqmJaKsUAAChwrEspRRF0R5pvef97//zT/3pjge2/eqvvfevPn/V1V+8YzAYzXk86skmrVxo5h54qPvwI9urP7nupA2t04+fPPGUDb3YGFHlFDlySkspUqR+SoOci0HqtIo6okypSClFFBEposhNk8pONMVjD87df9u99z706B33zB4+2GmaqZRX5UEnohWRqphvYnb5yqG3vu31kY7cdPvt/+JffmBsfDwiikKiAAAIFZ4drZKjKVrtH37DW5/ctfsTH/tPm09efenLf+azn7v2ppu293tjKQ9H0er3l9eDkaoaOmvLKcP1Ew/es/+BnftztCPliPLohSgptSIPDfrlvXfvGSsWZmYPR68TTTtyK6VBRBRFlXO1Y9vOL37myS3HN8ev3Hj7/GOpv3ZQTESTqyoffSz95GS88gcv2bR55a 133 vj9r3j1G97xlpwGKRVxtFLc7wsAQKjw7DhWWrmI6BRTm47757/0/u 333 3v55y4/ccuqH3jtxbd86SvXX3/bE7sXq/aKQT /36 vn77r1n9digH8PtobV1MZ2bHE0ZUUbOTd3k3Hlw2xM3/82Ty6ul7mBkqK66da6jiWhSipxzitRKnbXjKzq9fRNFefrmDbd/+XBdNk0aRNHbctpxL73kZe1O+fCj25py2Qf+9S+1O+NNlEXxjUDJETk78wsAQKjwLFBXKeW66A+KpkjDJ209792nnrlv7xNX/NVfRZr7qZ98fac99pVb77vr7vsff2y6PxjvjK666eZti+WgThMpchlNLuYj6qLIKXrHb1p76prB1Ej/vof3bT1x05e2H8xR5ciRIppWpDwoynt27Bo7bbQ7PTvbm63GZ7eetPGc5z//uE3r7nvgqwdmHjvvwgt/6M2vjaJMKXKKiKaJVER4yiMAgFDh2aSIiFREVaUmpTJyKjvlcZtO/onLNjeD5q477vrKnbcNrWxe9spz16+9NC/MPrj9wbNfvPLRJw7v3Xek3z2ScxVF1eSmLAZFnl62elNnVeuRPQfHptatnh9pPbQ9xyCnVkRuYhBFPTSax6ZWzgyNrd+07gdeuHGu2z/45JF+NdtvdX/y597ZGemkooooUlGkiJxzkYp8NFgimUsBAHimSzlno8C3PzjMTAAA32X+L8pTKQwBAADwdOPUL55S0/yfPdy9iUH++nlXKUWKnFLkSP0cdeQycpGaOpfloMllKlLkXKQUKeUczSCnQUqtbzyfPkUcffZjnYsmp1RH2URRRS7+l2ej/IMyO6X0X678UXsTAOCZxalfAADA045TvwAAAKECAAAgVAAAAKECAAAgVAAAAKECAAAgVAAAAKECAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAABAqAACAUAEAABAqAACAUAEAABAqAACAUAEAABAqAACAUAEAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAAIFQAAAChAgAAIFQAAAChAgAAIFQAAAChAgAAIFQAAACECgAAIFQAAACECgAAIFQAAACECgAAIFQAAACECgAAIFQAAACECgAAgFABAACECgAAgFABAACOEZUh4KmklAwCAPBdlXM2CHxbZlQAAICnHTMqfAc+5wAAvhucu8Hfz4wKAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAABAqAACAUAEAABAqALjrlF0AACAASURBVACAUAEAABAqAACAUAEAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAAIFQAAAChAgD/F3LO//vC5tstfFp5qjXMT/s1B/j/rjIEAMeGxw8tRio2Lu9ExK7p7vrlQ0eX7zzUjYgNK4aeeVs03Y1I39iipaMLh9vlYq8+ujk7p7sbVww/nTdh13QvRT46/t+6I3ZNL+WInGLj8qFdh7vrJ4ccwABCBeBYs 233 4q2PdnPRTrl//+7Zk9cNnb6uddX2Iy88YfjGB5dSivt29/7xuWn77sW3XDj5jNiiux6a+dXf/5uZmblDC/WKkfL0004+5/wzv/rY/N1XXz7fa0bbxdHl5 134 /NdcdNJEJ5+yfvRptf5PHjjys7/y6en5nFPKEYcWmuedvP7iS168e9e+z3z22hUjXz+d4ayLL 936 3LHT1nXWTzqKAYQKwDEnF9XPvOtXFmamj3558dve/eaXn/rA3v5lP/6+xYWFowuvu/Q1 737 z9zxTtuidH/rcnTdd880vr77yxldd9t7J3o6rr7zxb9+U0uve8rqPXrPwS5eOPN3Wf/Wq8atv+trBg9PfXPKVm2P1qc//dx/4cFMPvrnwwQce2ffWn2+Kznxv6bjxfNKUeRWAv+UaFYBjoFTy+ec9LyKO27guIm799H/9wyu2XfXJP1pcWCjKr38g9Y43XlCnwe7p+mm+Kdv2dX/vrx+76+ZrI+LN73j9xJqp559/ZkRc/Qe/86k//ouIeOmP/XSrVUXEu37+Hdc+VLx0y/DJ6552ofL44cG//pVfTClFxLt+4ccn16yNiI9+6ENNPRiZmHzB+WdtfcnLUkpPPL57cnb7lfd3myZmF3oOZAChAnCslcqR6jkRse/J6TWbjl+YX7jm4x+947YvR0rnnnt6REyuWXvlI00TuciDp/mWfPxLR37xn3045/zq177yKw9Pz+zbu/4f/eCKVcvn5xd63cX20PDso/f0+4PjTj3j8Nhp/+Tizo+9aPRpuBVlpHdduv4NP/n2iPijT15+3KnPi4hedzFSetW73nvnHfc+cseNL//p90TE 737 kYy+cmr9tR/9ru2vHMYBQAXi62DXd/Tuvjx3uRcTO6cV/+DdJkX/q9S+KlHrdxd5i99QtJ20+98Xfe8lF3/eKS26/7asR8YKXv+4Vp07mXE6t6HzzB+2cXopvXKR+cK6/8+sL//Z111O8PtX6f+MbdiNi91Ov//653rf8oKN/ZTEiHjuc/+iWg7de/pfdhYUNG9ePnnLR166/MiJu/PhHv/ed7z86i9LrLt56/Y2tVvWiH/qRS7a0zz++FRHb9vYi4onD3W9uzjevvH+KMV/6lm18ync+1SAcmO9/xx20frKMiO9/yRmTa6YO79tzz3VfOLr 83/ zm++76wl829WBhfmH/nV8846KXRs7vf99vRkRddP7g5iPb9yxGxK7pBf80AJI7JPKUB0dK4R6a8F2zfc/iLTvqiHzf7t6Wte0csX1v/9R17bv35q1TxYN75v7xWSNjnWpsuExNXUSeWvmUJzg9sHv+1kd69z2w88O/9pGjl0AUZXX0NymlrRde+p7LXnPK2ua8E9pH3/+71xwYHW7ft3fptKnhbbvqU9eXdz62dO6mzv17elvWtr/1ddvuv7vk/j29n3jx2ObVX/9Wtz+6+MDuetuepRPWD39tX3frVLVtT+/0qeq0qfLc45d927X97JcPf3nH3PFT419+svW8NWn73oUzVseFm0cWmurzNzz6gff+WkS0h4ZbZZqfXzhu47onHt89MrF84cjhyDkitp591gnnvey1F23Ytmfp3/7wqoi4b2/vD285cMrU8L37BlvWjNy9tzhjqti6ujnvhL97Q7DbH128b29 937 ds1La9/R8+e/gF/5O9Ow+Tq64T/f85VdV7SNLZOyvZICshhADpEJBA2NRh1WF02HR0VHR0HO+dcWH8qSPq6J3RcRlnVGQVRRbZIQlhSzoEAoGQnSxk7RCSdKfTe1fV+f3RTRIWt7n3kXufeb0enrKs59Sp7zmV6q53n 230 Gw4OaW7r2tVYXLala/Xut1n88TXlSZK+vKv50umVvcpLqsqTTJoOfbuTqn3z7v39q+PbP7xz43NLu3+WVvbp29Z0II2o7N 239 UBD/wHV+/Y2RMTcd587cPp550wu21DfMmlIZvKQ7Am/Ze2Bbxr89+FgeoB3RhqZH373P1evf6Uil7Tl09Jskk2iPZ+W55L2rigviR8VoiSbTJs+ZeLkY2eedMKUwW0zxlbsaGgZXv3mnZ2OGVrVns8UM6N/etN3P/vZrze+Wn/oiO1Zl17xkQtmZaKQLXZF9NTFKaOqTrv4CxUlSXtXlOeStnyxNJtcX0i7R/Km254hvX578UVnb5t02qFQiUj+5rPXJYX2tnxU5KItn37xS58opjURyVsX+UB7YenGlmde2PyfP7q1rbNYUdLzErPff/XwfmMqSuNrX/5u95Sd7W3dR2y8uqchIg6dJyAiDrQVLz5teCZJL5nRsx42v7LrP//p3w6NcN5Zp+yefH4xLR3Sp2tk/5IjB7Bl6+5PfOb7FbnoHm3lwBFfu/aj6+rzQ6rTEX0PD7hXRcnmTR3XfPLLpZn0TYtfnksKaXTlo7wkri+tmDJ53JnnnD6kZkg203byqOyEoaVHvtx3vv5PbfmoKDn8Paz1QGNElJTk8h3tEdFdKRHx2IOP9Ht62X35mHjs6PGf+atC4vMBIFQA3iFb9+VXr3+l9UBj914+h/b1aTniNiIWLXxy0cInS0pyMy+68iMXHT91cAyvfpu5HTeyYsW2pvnr8017Xzvy8W3PLJx/7PT3HFucMe7w0x54ru3Q67Yc8eq/7fbIIT29avsVf549NKvV9Z2DBg9c99LKQxP/+PoHvnLtx1fv7qgsb5tY85aLnCSZu3/90L69+w+/RJL82Wlj617pnDs+8+Prv/P4S21D+yUvbdx 134 +/010s3c+bed4F40+anRSzkwdn19d3XDyj6sSje2be2NjcfX6t7hH+5s6Hv37yCU+u7n/GmMqIN4TKzx7b1Xqg4dCiteVj/tqOsyfmIooR2SOnLEbxYMP+t74jLW94mxoW1e9atPDJyj59v3DtNWtf6z950IETR/aZ+HqudI/qrXtxdXXlo+sNBwulado98br1aSbtStKsDwiAUAF4Z6RJoSKXtEbccNv3F6xtm1RTMqxvbv7atnkTyxesa503oWLButZThuZvX7B67eOP7NvbUHf7z7atOu5rX/zw5r0H3zfzbfYL6lWa6X9wXbGQv/zq9z+9csff/c0lH7vy73Zs3Xny8PZCktvWkB9Z3fMz/7wTK78c0X9A9bxrvjxvQvmCdW1Thsa6nR3zJlQuWNt55qTy+evaz55QMn9d27wJFQvXtZ09oWLBmo6Ryc5vfPV7I6pL0iO2llxV2/uOUy5Y99LKKaef9bm/vuBvP3Pd7o2rF67pOHNitqXtzQfuN7cWDzS1r1u3KSLe/5mv7l21YNHCp2acNH3B6q6vv6dq7OCSWWNj8uDMvy1qefmJeyLiuz/+5g9+eu+s44bffP3ta55cMGnGKWdOrOqKzPkjy6YNf/OuVuNnzPnCZz9wy/w1j974/a/847/+9D+/sfjl1rGD3zDZzFHl8yM+/+VPb0tH3PrVz0Wk8yaVJml+RN83hMHBtq5IihHRv3/1uZ/4/LyJFQvWts2bVLFwbdtZEyt2HuhcVd85b0LFHYtf6d+289Yb72490Pil/3HdX37o0vzkk5NC/sWNBy87rX/3rCr79P3Rv39twbr2syaWL1jXPm9C+cK1nfMmlD26tnXehLJH1necNbFiwbqWqUOyQ/vmrvyLvy3PJYvWtE6p6eUDAiBUAN4ZI/uXtuXTiFiwtmPPtldu/eqPuh//xeu3peUVT40e+7EP/9nIyZ9vWfXYPXc9vGPNymv/6Sdf+9Jfve0Ms0n84rYHkyTpHHLcxht+fdP9Y8eMH7v55U0/ue2Jz33s3Nb2rkM/ 83/ 5YktE7Nvb8MuvfOaXR8zhloiIKH7pu6OyO6/+i3+NiNuOGFK37fvzR/d7w55JF58+bP7NlevrHn/49PPee/6cm264vXXbC/NjWi6TjhzQOaj34b2hmtrSh+c/E2laWl5x/sz+H/r+0ogYOfuCz55ROXZwz6aPE0eXnTqu5eZ1Gyv79L1j4ZpNzy09+fxvl5Tc1dLSOqn3gcdWl182p2ra8DdsJyn2nBgmv2ht8xlT+2yYOHX72pf+5T/v/9TH3n19XduHag9v1XllX1dELN/aNWhkRERFSbJgbfu5E97mV2ESSUS05dN5Eyqu+1+3bXiu7tYjVlFE3NOneugxE44/+90/veXUf/j89/a8svmWn /36 mk/3mf/acWdPOjy8ilyycE1H/bJ7r/7qU4fWZPesbj7i/iHt+ThjYnUadtkHcNYvgHdIkiYVuSQi5k0s 636 kqqqysk/f/v2rq/r07d+/urOjffvaVV/83HW76+6vmnT29/7965EkO9auqntu01vn9uiqxl2vNTXs2Tlw1OjS+pVpmu5b/fS8954dERvqFqSRaWntOjTx+6dVdL9EVe/u2z59+1VX9unbfWDrvMnZ5Vs7I6K0vKJ/ /35 Vvav79+9X9frAZk2rOTJTdjQUskn7ee8+rasrf3SyrWvIcRGx9Iknz55Ymkamo/MNG1U6C8VHF9VFxHnvPv2W+WuKhXxVnz7vmdlvydbDY1u2uWXx48siTSfXnrF3zdI0TTM7njl62kkR8a8/vP2MSaVb93X9tlV65sTyf/z7b37u05dlsrkXlzy6cWdjRPL8luZDE5x2bFVEnDiqJyTautJ5E8sjYlfDG8Z5VEVJkvZkxoK17cP7ZSOif//q7nenT7/qyj7VrQcaNj679M7rrr3+ruX/fN2nT7v0LyPih//2sznji2kSz77+om35OGti2faGQs/6HNAzk8o+1f379zt027dfz50JE0alSRpCBcAWFYB3yvZ9XYe2qJw4qmRBRO37rvrg2RMfXdN25sSKtfVdE2tKbn1k/conHl604MmquuX5T/3jez72uft//J3bb7hlwODh171/0OFa2Nfe1J678+5HImLKGWfd/8B9EbF+7caZl3yoqqqypaV1/botucLIGWN7pt+wq+1HP/ragjWFuZPKVu3pmjIkHlvVNndS5TWfuLb1QOOCdS1JFCLi7/7nR7dEzbyJFat3FyYPKZm/ruOcCWXr6ruS9HCqZNP0yto+L2w/M+58+Pob7j/n8r8eMmrMq9s2P7S28/zJ2WLyht8yyzc2b9+2MyLKx89ed89NETGttvaRdZ2fedfhPdme3tz261/dF0nyicvnXv3B30TEfQ889ZWvfPLTy+t2b9vy4Mqms6a+/W5RI6pzj65tLxby3/neLz/xySt/8L2ffe+6 733 /R99cW5+vLGueMLRXRNz5XEtELN/a9cFzyro3Zby+ReXNYZCJTER0v0E79hci4tyPf2F4dXZHQ2HSsGxN3+zq+vyrq5bddeeCxb+++eVn6r513WeaWw8+/+A 93/ 7BHV/87J/f9Xzzmt357tRZuLbnnM6f/fuPbi0OO3tCxbr6jkk1JYvWtJ45qXJdfeeEmtJdjfmmtuKxNaWPrG/NRj4jVABsUQF4pxQjU5pNImJSTW7D7nxEHN0/W0jTf3xv79njSv9qTtWIfskHzhn/5x//69Hjx7W0tG6tu3/MqJrR48ce2N/Q2nRgyfrDGwr2NMXaV5MnHq/L5XLHjBnesKc+IiJNmzYuP/HscyLi5pvv23Gg5KYnGrunv3x2/zljszf/VZ854zIfm102Z2zZt9/XN4pdJdkkIibXlPQui4hYtq1zyrDSkX2zH6+t/NApva47/6jTR5f9dW2vQ7tpRURNv1xETB9R0q9m6J6tm3qXFM48+/Q0Tds3LV2+NX+wvdgzwpbCAytb7r3/8YjoX1MzsaZk/bqNSZKcOue044aUDjjixMst+/e3t7WNHj/2xl893n0+4sZX6+u2xphjxkWatm5bUX/gzVtU2ruKEfFac2HS0JKI2L72pQ0NJUOGD2090Pjj6+/d1pAs29yydFNLRBw9oLR7PT+3tTMiskkyuaakmMbQ6jfsS7a3JZ8vJhFRmk36V2WqqzIRMXloSVtn+uX39vnCudWnjyn9xOyqD7/vtC9940vZXO7VrZtuWbj6ogtOy+ZyG1cseW5711GVZYU02506k4blynIRERt2F6YOLR1ZnfzVnKOuqO197Z/1qx1X/qE5vS+v7X3l7N4fmtN79rjyW68ecvqY0hnOTQwgVADeKedOqSymERFNbWlZSSYiWtrTTJKOG1Q2blDpuEGlcydUXVXb+4QRuYuvvjqTzT3z1JJi+8FxU6dFxBOLFs8+9vCGhWKaPv3sykI+P/Wkk1Y9tSQi+g6uSZLkmaeWnjRnTpIkuza/vKeprVhy+HCR0YMrImLcoNLxA0vHDSwd3Kf0qlOre8bTEuW5JCKyabGjufmsCVXjBpVFxJhBpWMGl4wZXPLWZbmits+cee+OiBeWPDF8wrQkSZY98VRVSdyzsmdjwqCqbGNTx/yHH4uI6bUnL3ny2UjTY6ZOmzKi17zxufGDeuZ5y9MNP/7P2yPizIsuXfPs0ogYNHRoRKxZ8vgpZ50TEfPvvX/fwfzyLW+42OKkIaURkcvEgdaeLnr89hs/cM3fJEmyfNFDu15rLuQqM5ns8s3tM0aVRkRLR1SWZiIiSeJAWzHzlnMBD6jK7W9ti4hiMSpKk858GhGNrYUTRpV2D3XMoPIxg8reNaHq8+f1++p1n4+IRTf9dF9j19CjR6VpunfX5qa2JJtkIiKJONBWLMlERJTlkgMthbkTq7pP7jx2UGn3fxExpE/u0P2jh5T6dAAIFYA/qYNt+Yj45VP1y7e03lDX+HaTJP/w65 031 e27ua7hmS1tNy9tmjCkPFNSdtaFF6Vpun5L/aixoyNi1yubbl7SGBHLd+TX1Xes3tW1dP79EXHavHOeefKpiJgx5+QRY8bs3rGr2F44ftbsiHjmsflppnjTkn2/bWwPrzrYM4I0t+9gMSL696rKF/r/Icu1YmPTJfNOSJJk6aMLi5GMGDP2tV27tr12sP5A+sCajoh4aFVT44G29rbWJEmqJ0x+etGiiJh1zrnFJDlpbM+JubY3FvJpyY7NmzPZXJ/q6j27dkXEGVd9MpvLvfzs4qPHjCkpr2xvbW1pbrnjufbV9YePKqnb/PrV5V9Pjs72tsfuu//UCy9O0/Sm7/2vYuRWv1qIiCc2vOE69PliGhFpxIodPeVzoK0rIm5f3NTV/fsxiR0NhZ7fl5lspLFsS8fNS/bd9nTDLXWNz27puLHu4Fkzh44cO6ZYyO/ZvqPvsNERsW39hoievcmymTQibe6IiNi6YcP2TZu+9PMVP7l35bXXP3vld+quvf7Zn9z74rXXP/v9O1649vpnf /34 xtsWv/bixiafFIBwjArAn9JRFblHV7XmM33nXvzFSKK58Q2tctf1P7v/F+XJocsDJsk1X/zHSIv/fGn/LzQNn39nRJIOGDw4IpoaGybUlEXEicNzD63qWvby/r31u3pX903STGd7ayTJtDknjx4z/qf//O2nH180Z968FXWLly1a9OGr 333 M0N963ttzpxzVc2REmnSfgLgr09VS2h5R+XuXa/q43sVMyzFTj1u/8sWdmzeefcklP/3nb62te+K089/77kllEXHelN4nXveriBgxZnShveNgQ0N5RWW/wf2unH344pUj+mZvvuOJNE0nzz6ju2QGDR2ay5Ued9LJK+qWtBxsmjr33c8/+OvH7rn7ois/PLnm8O+v2jFlPZnS3Qa5XLFQWFG3+C8++w99+lYfaGz4lx/fe96F55YV8vFbLoA9fXjPmcH6VJT87IFX/v7L3+/s3rp0xOQ/+upX8mmaS5JMJi2kMWTEyC98/q+vqj3qmS2dJ00evm3T5igmQ44e99ITC/fu3n3kzA/No27BI3ULfuc/j+q+H//SFzJJ17RxPisAtqgA/Gl1RPaF+jjY2HCwoeHQBctfay5ERHtbW1NDw4GGxqbGxqbGxqaGhkIUiknx+iVNaRQiYmCvkjRKKvtUt7e13vXige7nvtrUtXThgog49pQznlj4UESMGDMmmy+ZPW1kLpd79snHK3r3HlQztJDPb1y7ef3OYkRsb3ybE2c9uKq1Z4tEptDvqJKIKCsUcoXM/Wta/5DlmjGmqvacsyNi8cMPdpb2yeZyG55dGlH8eV1TRNz8dPMLzz4TESecOmfL0rqImHPeeaWR/vyIzUr/8Jv9yxc9GhHvOnPOc089FRHTZs0a3jc7+5xzIuLJBQvnnnVqkiQbV7+UpJ03H/HEp19pi4iDHWkkaURUHnXUrHnnRMRDN/zHvKv/JkmSdU8+0nHgQD7JRtLzW29HYyEicpm3uQL83rbGffv2H2xo6G6f4f16iqipsaH1QGNTY0Pj/saDDY27t29P0/SGuuaTRpdu2pvvnviEacdExPat24ppcVV9R0SkkaRJduYpJ0yvrT1mxikn1NZOr62dXjtres+d2um1teNPnHXyabO7W6stW9oZ2Re2dfikANiiAvAnlYnC1JokIqbXzjr70vd3Pzho5Jiv//t3m9q6/4qfRKTz77xjRd2SNJI00g/N7v359d0TJhHJgKEjtx1ouGJq8dAsX3rmmSRJRh9/4p3f/nJEzDn3vCQykcTp55z16AMPtzQfPOuSS37xg+/feusDX/3KMTc93XLFKVVvHdj5U17fcpKmkfR8g0/S5D2TKv/ARfvY+WNv+0HFtk2bugr5cZMmrV+5suVg09W1o26oa961s76Qz0eSHDvt+PtuvTVJkuNmzkrTsqtrD2/h6ZV2NTU2DKoZGhHtba2RJCfMPjUiqo46qryicuUzy8669NLujTYrli699FNnHXriKd2XqM8cPldW7bnnr3p2WeP+hg3PLa2dd/aS+Y/c/N3v9rr22kh+/1J0n9Psg5+4ZvjY8d3lc/all04666Lhr18Usm95fOOLX400XV/f/s2L+0fEmIElK7rfnEjKKypbmw4kSXLopdKIEWPGjhw9ZmdjfljfbJokaZKmkRzaU21nY2FyTW7Zk0sioqSQZtPC8SPLfFIAhArAn86uAx2ZKGbSiIh9r766ffPm15oLJxw3fkhl4fkXtpSVZCKNNEn2NBf3vvpqRESSRJresLSp+2vva82FERGFjpaIWLyjdOK4uHFp02/mP1/I50eMHXtUoak7BiJi+6ZN2zcn+VxVRCx55JFJZ12UzeW2bdr40o7mycMrn9/cfMKYN+8D9sCq149QT2JPc3ro/h9u/a62E+bMqZs/f+tzdWde/L71K1c+++j8GyZdlkZ6089vj4hjp05d/+KLhXx+5NhxSVmmK22P6BUR2xo70kJ6y423RMS02lmP3PdwRPTu27d7/QzslR01ftz6lSvXbNwx7+JL1q98cdnjj9196qkzR1c8/GLTudN6L32lIyKqSqJ72ZOIpFi84tOf+eFX/r+XnlpwzZe/8uyTTzY1Nqx/8cXK3r27h9pdHd3HqCQRL25vmzaiIiJebezMFLMRsXXj+jSTVlb1bisbUJ1tTfe/tn1/dA+msbTY3tZeXl4WaXpD3cGrao/a9Fqhu0h2NBa6ujqz2WySyexsLHTPPJOmixYuXv/0Y5FGJJEvptlMkkREmhbSyCYREff1NFKaS5OMUxMDCBWAP7GhfcpWbe9aXV+MiG2bNv/iB9+PiBP+5V/rd+y48z9++Nbp0yTSiKtn9f7C+sMP7q3flc3lSksrb6xrTiN5fvHiiJhz7nnz77wjIiJNf/HDHxw5k5XPLJt01kVzL7hgwZ13Ln3s0SlXXHjCmIq3vta7p7z+4JFflP+YL82X1/Z9ceucuvnzly1aOPuc80rLK9Yuf2bN7ksnDsluWLcpImafe97CO++MiLMvvTSiZHJNz+mtRvYtu/2F1g0rV0eSnFA759HffC4imhoautfPIcsfuHvKp68ZUDN0b/2ul7cd+MKdmesu6RMRs44u60mq7gu8pJFJ0spevd570bn33vXQ7f/x43Ou+uR9P/72PTffdMEVV77tyLsrJSIG9y2NNBMRi+cvjPkLe1dXv/dTX1zyyCMr6pa86SllFeXHDi3vPphn7IDsCxERkc93FvL5QUOHRpoe2q8vibRxT31T975kv1OaJPkoTf+oOgQQKgD8HzFqQEmayV/8qc9mk+J9P/mP9ra2Q99oZ599zqjx44uRJkkSkRYLxclDckmS3Ph085otjRExsCqb7+zoaGsdVDN07a78xKG5rs6O7Zs2ZXO5EWPHnnPp+1pbWrpn1f 23/ 6qyaOmIiBjeNztk5kkL7rpr2aOLPnrFBTcvbrn81Dfv/XXkFpWBvZKI2NtcqEni/jVt75lU8Qcu3WUnV99UM/S1+l07N28+6bQ5i+fPX71x14aVr6Vpms3l+lZXb9u0sbyisnrQoIlDkqtn9Yxhw67We+95Ik3TwaPGR8RlH//4m2b7WnN+YK+ksqoqIj39zy668z9++NJjvxlz+YduXtx4+al9H36p5VDXdY9/Z0NhWHXmwovPe3zR03vqd2Vb90yvnb2ibsl9t97yhl+BmeStLXbmyaM/8PG/SXPF277/g+5VtyYiIj7wqU9FMY0kqSjLHOyMssqqNMmlxWJErHqlO0LSjp0bImLY0aMjYt7Eslt7NtqkvcqSiLjsE38zYtzYJNI0ikmaHnlkf5+KzIG20MHopQAAG/dJREFUYjEyx9RkxteUv7ijY9pwe38BQgWAP6Gk2PW+E7IrR4wrFrsevqm8J1TSNCJGjht3Vu34KUNLu/8av7a+86pZRy3b0nHn8y3PL1kSEZVVvTatWxsRw0aPmTg0G5HeeNsjEXHy3LkRsXbFitbmnqtANneme0uT0lzPNUBaDx48dtq0QSPH7Nm6afEL2047fsQvnj7wgVP6HDmwI7eoHP6Tfhp/eKVERKSF2rPPuefGny9++IELL//g4vnzVz4xP+loiYjjTjrppeXPRsSc88+LND1UKRFxzNDKh+5fEBEzz31Pvqtj7fPPv2muzZ3p3tKIiBlzTh02Zkw2l9vw0so0kstP7RsR506t+npERFqMni0qEcU0Ta6efdTij3zk+m//8z 033 3TNl7/y4rJlhXz+9y5BZVn87fuOvWNF25seHzbq6Ek1pWt3d33k1F6vNecz2dzq+vyHaytvqGvZuGZNJEnN8OH 333 ZbREw84YS3nXMmE1HIX3xCxfrdHRNqek7KvHZ358Qhpf2qsvtbCmt3d105q2z5poPThrvgI4CzfgH8aR0ztNeJoys+dFJFWZLvPvIkk8n0HFyRyWQyybqdB08aXZFN0qtq+9z0dFNEumJp3fZNm449blpb2YC1K56PiInTj49I1+3uenrRoxExZPKsfa++umT+IyvqlnT/9/LyuhV1S5Y9ubj7//7mphvznZ3vv/qqiLj/V7evqW/uLCZP73jDwN56jMqAXtk/di+kE8f2nnjc1EiSbZs27m9PBtTU7Fj70vZNmyJi9jnnPvXgQ0mS9Dt2RiTJTYsPX9Hluw9s27+3obyicsq4sYvuvffQUrxxcepW1NXde/MtaZqePHdumqYrnl7893cejIiHXuo+L1madh/ekcSw6lySZB5d23ba8SOm19amaXrvzTdd9rE3b6g54hiVw2fZOnZoRWVZTB3Us+Td5wfrfpuSTHzr4urte5pmjanIFjo+dErFz5c0feufvlfI5+ddeHGutGzLhg0RUTN8+KG55TJJRNLc2X2ahDQbxWwSV9T2XfXK3pNGVxQLHVfO6lMsdIwbVHrS6IorZ/X+9dNbThyrUgAibFEBeKcMOKpn355Du36lxWJaTC+fPTAiTjy68pktrRMGl37jxqcfu+eeiJh38aX7i+nWl1/O5nIjRh8dkW7btLGQzw+sqamo6jX/tlsj4oKrrqzs1TtJY1T/7NZ9Xb3KM83t6doVz6+oq1v57DMn1J7Wu2+/3dtfyXe1p5mqU4a/YTxHblE5tE9S8scf2P2Ni6vvuvG4DStfXFX31OSTTnninrsjorS8IiLa21pHjB2Xy5UmaXrFqT2Xkly7u/OWm+6KiBPmzMlkOlc+syyTzV328Y9FT0REmsTR/bNbXys+eMev9+za1dLcfPIZZ9QtWLBs0YJps+bcsKTlvKmV13WvyJ7h96zNMydWPLOl7eyLL1n9/IptmzZGxLHHTVu/8sW3jnnaiDfsZzVpaOX2vdm3TjZhcElEnDGlf0ScOKbX8k3NdQvmr1v7ciTJtFNPy3e2dba3jRg7LltaFmny+o5oR6zBNI20eOLoioj40BkjIuKUcX0P3XZ73ymjfTQAhArAOykp9mzTTpKk+zoqSSaTZDI/r2vs2rvjx79aWl2ZWbV68576XRExvba2qnfZ2rq69rbW0y+8ZHJNWaTJU4/Mj4gTamcNq0i3bdpYWl4xZvqUyQPLpwwu37C768Ih0dwevSqS20YOWlFXt+iee2acfOa7Lrjg3ht//uKzL00eNefmusbLaw9/RX5wVVt3lhSTGHhUEhHZNDIRD6xqO9wwf4BfPrXryr88+4v/88WX6p742LVf7Q6VmaedvuDOOyNi3vve3++o5FuX9OueeFNTfsve4vPProyIk8889dkldYV8fnrtrGGjR00eUhppdsLQ0tWvFiYMyWzY3dnadtZvfn7zgjvu+eBHPjhy7NHbNm5pbW5as7t8/YGWiGjpiGzPBpXulVp4cWfHSaMr1u/suOLTn/3pt77+q//4949d+48bXloZv/M6KhGxq7ErzfSc/XlYn8ya1x+/+4W2u19oqylsX/zU8s178+tffKGlpTWS5D1XXl7MdNzx059ExLuv/MtCmp06uOzKWSVX9Twv06s0ExF7WgrDsyU3Lj24rr5zUk124pDS9bvb19d3HFtTdsrYqhsX7z+2pryYxMTBZevr2ycMKZkxxqYVQKgA8Cd37lu+/f/iB9//xQ/ePFl5RcUHP3XNgMGDX16x5tE77srmclNPmR1R7Oxq377p5UiS42bPXnDHXREx/uTZ2WLhw7N6RcTJYw7/eE+TgXeOG7t946Ztr6w95vgp2VtzTz300PTZp3zr4gFHvtD5h8aTHP7fJI0/qlIi4rI5Q29ZWlFeUdne1rp7146BQ2te21V/yhlnfPfaL5aWV1QPGvzti3ofmnhs79xX7rg/TdMhw4fmSkuWPfZoRMw8. src=" 335 g/6H+oB4sLVW5qPtlrvtDQ02kbpEWqkG/LlO3aJf1st6g3c/R7lRlmaqqGl82svnkkzZu3DyybEVVDRWRctFLRco5RZQRZfyD6+O/XPmj9hEAgFDh2aJJTYp0dF4lN00V/ZnpQ7d96Zadjz/RnZuL1EytWbtq1ZqhVRP7nzx8aPbwgenZw0eml7q9hbld6zbUP/727xkr6/0z9W/97uVFs25sdPXYxMSyZeXk8rHVa58zOTG698E9d15/1+JStxxqrVi18vkvPH/jc49PRZmjiJxSSt+YRykizJkAAAgViMi5qetBbpoyFTsf3XHj9dfPHdg71B7ZvPnUDRObtu95eNvDu67Yuf3gwSO5rlLRiUHVpDwompzbVZpZioVBzDRld6k3dM+9hwaDFVWzN+XdkeqUmjr3U65HR1vrj1u16YRVJ2857jmTEzdedcP+Q58ZGqnOPvec57/g/EHZbpqUUtlqDUWWKgAAQgWVknNd102vd9UXvnj/3feuXrHqtFNOvfvQ4JZb7v3Ef79uoVs1MZSbsohOjqmUy2iqoimLXOeql/NwpIUiFqu608qLVa6LXESkOoYjVxGRmyYi5cjT3frwA0vbH3j0mi88GE1v7Yax08/YfNoLTz6wc//vXPvvhybHf/gNr1+5ck3kJnIZoVUAAIQKz6YqOXpyV5NTpCKayLnuLUz/9ec//fC995x/3sWb1598xRU3/Off+2w9WJZjuMlTdQw1UZSpybkfUafU5NyLFFEutNJcGWUVB9q5V0SuczunpVa5r87jkXq5SDlaObcj2pFTkVMTw3WMDRYHw1Vrx46lHTsf/su/+cqa1UPfe9EFWzed+ce//4dVlV77xjdObdiUiyIV0eR+UUREEVEkN7UDAHjGSk99Tyee9QdHShHRNIOIHJFzLvv9fpXqa6684sarrrzk4u99/OHdf/7Za57YuZDTRM6d3AxFlCmnKOpUDKJZilisWrNDne7K5SOrVk6sWDm0auXw5OjExFgMjR44/9y1KQb9XnnrbTvnlp4zM9efm188ML24/+D8nn0zhw8vNXlZLoYHzVCq26mumlQ0KeVoyui2Y7FqL1z44rMufcU/uuOrN42tGH/T29/e6YxGlEVRRoocufhGh//Xq95kbwLA081PXvLJ+PvuL4pQcXDwHUMlN0dPyJqfO/TR3/qVLSeeMtZe/Yn//vmHdhzJzbKI8aZp5ZxT0U+pW6XZVjm7fu3YCSetOfWU9Zs3L1 831 R4byVXRRKrrwaDIZeR+pLkmLZa5iqZs6hQpUtGO1G6ilcuRJlpHZusdjx/Z9uDO+7c/ef/9++bnok6tXC/P9YoiVRGLqVgsim5Vzb7iB8678KKtl3/hc2/7ics2bz6nLNtRppz6RbSECgAIFYQKx2ao1HU/N3WOvGfn4x/58L9542tee/3Vd3z2f9zcyyuWYqJoOimKInWbmOt0Dq5bN/ziF554wXnHb9owXg3NR7FYxCA1TRVVXQ+aVOc8lCM1OffrslsVvaW6SmWr6LWKhVaOIqdUlEVZRkoppyJHRDvHeLe37Gv377r2tvtuuemR2emJupmoU5GbTkplSt2UDh23vv3uf/KmG2654kUvfvlFF19StMs6+q2yI1QAQKggVDhmQ2Uw6O/du+ff/foH3/6Gt3zs9z591517lmJVPw1HLsrcFGlmaOjgGWdOveLlZ515xsaR4bkyzRSpO0iLOTX9Og8G1eyRemZ2/tCRhSNzxcEjB2bmu4en08zi/NKg12m3lg23Jkdak+NDE8uGJ5cNrZocHh9tjwxVo0OtTpWKVNZ5pI7RVCxfWmhdc9W9f/bZ23fs7kWsbprxJjop91rl7MjQzC+85/UPP/7Ayc879aXf/+qcW+2OU78AQKggVDhGQ6VfdwfdpQ++7z1vfeNrfv8/fPLuO5+sm3W9mBxEv4qFsjh80gnDb3jjeRdcsHG4rOtmuihnmmZucWF+Yal7cGZmZnZ+brFeGpR1tPt5OOdOlE2Tq9wsj6gjRR0LrdRP/SKVkcomcr/Mi52y12ml4U41PlYsHx+tWqOdzvJlQxNV0WryaHfpOX/2uds/9ac3zs6P1fGcHMNl7lZpZmjkyX/2/rfddsd1P/KWd5542jllGUIFAIQKQoVjM1R6zdynPvbxFa3moQf3/skn72mK8aaeiMFYUR2M1syFF65+21tf+twNwxEHinqpznNRdXft2X1kZmly1cTEyhVNDNUxNKhbj+zY3UR13MbVZdGkXKXcfnKmu+eJmfGxct264TKGI+ooi8d27Vvqzh1//HPGh1pDkZs8N3N47/59h1ctX7tu7VQqUo4qxfKoJx56ZPZDv/rf9jy5rKlXpRxF7udieuXqw//2Q7/wp//jcx/6Dx+pWlWKJFQAQKjwTOT2xHwHvaXuLTdd97Nvf8e//+1P5/zcetDOkYqin8pD512w9rJ3vXr1yhSDmUiLdczliDwYGh+d2v/kIw9u37nv0H1PHppf6Lf6ub17z8zQyMqJFWO9wWJOOaeY7+WZg3nlspWtsl9FNGlpEP25+fmhVhpp9dvRnxweWr68Nbm8PbVmZTlc5pQj6lSk3MymMk46afQ3f/1n3v1zvztzuMzNRGraKSYPT89dccWNmzZuuPXmGy686GJPVgEAECocm+798pdPPmnjHbd/dW6hlfNERJlSRF6cmqpe+Yqta1Y30cwW5VLO/a9/IpIGw6PF1jM2Fbkd0ekOiun5wYHDC9OHF+fn88xsb6kfS4P+Um+xX/c2jJdlqqqiGhlOVWtFuz2ybHzZxGhn5Vh7xXgaHe4PddpFipTrosgRKXJKKUc5SDFfxNK6qYl3vuPlv/1blzcxFjHSNGUMVn3plrs/+K8uu+Kaqy+86GK7DwBAqHBs2rXjsROeu+7LNz2cypG6btc5peiXaWnlys4Lzt7SSjN104+cI4pUtCIv5RjMzzbzs53IIzkXTaScO+Np2eSKOq/oRR7JTUS5GGluzeRkUx6uc7V/f9nkkbIocs5RprJIZdPUczE 735 rLZcpNUQ5GRpuxyVZRtCKXKapIRc5RFP0LX7TlP459bnZxUOe6iKJuxvYffCyl+tC+fZEjRy4Kj30EABAqHHOKVNW9GB0Zzk000c+pilRH7keuom7lJkVqcjQ5N7kZpFSn3PnDj33xC1/Y24vlTaSUm5RzpKbIVdTLishRzLeqg+ec2fkX73llpINz3eEPvOfjswubUn8iUmqKJjdVkYsUOac6IkfMTkwevuxnLr3oJadFKnIuIsqIVpFTbqKOuo5+TnUqcm7qnCOnKudol62I7CosAAChwrFpy9az/vyPPrH1xI2puTvFfJnGc05FqmYOpa/e89BZL1iRUkSum7oucpRRFc1wpMle2R8MVuemjChSFNGUOUVEVcSgjoX2YCLyTFOk1AwVzWQ9WNFvNgzympQGRdNPTaeOHKmfI0fkFN2mGUp5LKVOjl6kXkREtIqU66huvvVri71O1EU0dVFGlborlo/OLw3Wrd8QOUdykQoAwDOSs2L4Dk486cQ9+3ed/LyTxpc3ZTFXNKmVx3Mz8sTumb+4/KYD+5tUTxa9kWrQiVTnVDepjrRY5sNlOlgUR1Lq5VzVeaxuluU8nPNQjnbOrZxbkavIrcitaNqROxFHvxyK3I5Ikfq56EY5E8WhQZqri7psiqIpipxSjpSjl9u79uf/9vHrmmZDjmW5bPVjUDQHvueC06+/8dqLf/BVqSyTUAEAeGYyo8J3UqYffN3rrr35xje97VW/95G/aOplkctInTovv+mWve2hL7zlR16ycW1Kea6OQVM0qVg8+5w1Y+PL6hgbNKP7niyuu+6RqNs5hnNTRaQcnSb6TS4iiogiN1XOrcidlMuIInJELiItrJ3qXHDu5tHRxYiFoc7i+tVDKbqpaHJKqWjnPLzj8aUPfvDjBw5ONIPlKSKnbhQza1blF73ozKvuvPW5p55i1wEACBWOXal10cXff9etd5y6Zf0PvfbFn//MrU3d7+fxQSxr6vKqq3fsfGzfm954/jnnrmhXTVN3c3TPv2DzC85rRUSOya/es3jT9bcN0nhuOjmqHIMcKUfklCO+8SunyEefzpgjqkipie7YWPzQq05atya3202TI5f9VETdtKNYtji/7G+uuPPjn7hqdn6iqcdSNGVaTGludHz2Z3/xrX/2 13/ x/l/7jZQauw4AQKhwzMpR5Zx/+ufe++u//C9f9n3fN1RVf/KpG3JTRZ4cDIainHrggbnf+M1rzj571atffs6W09e1h2YjzZRpPkU3Rd2OumoGTVM0UTYpck45IlITkSPVEU2kHCki5a8vjIioi7KfWnW/nM6daKpUNyNN6pQx1O2WN9z4wKc/c/ujjy5FPi7ndoqiSPNlOjI53vzT97ztimv/8id+/heXTT4nRffoxfT2IACAUOFYPESKlFutshx/3y//xm9/+Je3nnL8P//Aj370dz5zZGax7q9M9WhTtGe7nRtuXbjlzqtO3jB04Us2PO/5a49bvXy0qnI5iGK+acZzbke5WNaRIhVNO1WLKbdTXbZTsRhFv4wmcsqRIqUcKYpcF01ElK0il0v9oi4mHvjaYzfc8MQNN37t8MFW3SzPzcpBmaPIRdMri+kzz17xI29+xeVXXfnjl /38 5pNPzqmJaKsUAAChwrEspRRF0R5pvef97//zT/3pjge2/eqvvfevPn/V1V+8YzAYzXk86skmrVxo5h54qPvwI9urP7nupA2t04+fPPGUDb3YGFHlFDlySkspUqR+SoOci0HqtIo6okypSClFFBEposhNk8pONMVjD87df9u99z706B33zB4+2GmaqZRX5UEnohWRqphvYnb5yqG3vu31kY7cdPvt/+JffmBsfDwiikKiAAAIFZ4drZKjKVrtH37DW5/ctfsTH/tPm09efenLf+azn7v2ppu293tjKQ9H0er3l9eDkaoaOmvLKcP1Ew/es/+BnftztCPliPLohSgptSIPDfrlvXfvGSsWZmYPR68TTTtyK6VBRBRFlXO1Y9vOL37myS3HN8ev3Hj7/GOpv3ZQTESTqyoffSz95GS88gcv2bR55a 133 vj9r3j1G97xlpwGKRVxtFLc7wsAQKjw7DhWWrmI6BRTm47757/0/u 333 3v55y4/ccuqH3jtxbd86SvXX3/bE7sXq/aKQT /36 vn77r1n9digH8PtobV1MZ2bHE0ZUUbOTd3k3Hlw2xM3/82Ty6ul7mBkqK66da6jiWhSipxzitRKnbXjKzq9fRNFefrmDbd/+XBdNk0aRNHbctpxL73kZe1O+fCj25py2Qf+9S+1O+NNlEXxjUDJETk78wsAQKjwLFBXKeW66A+KpkjDJ209792nnrlv7xNX/NVfRZr7qZ98fac99pVb77vr7vsff2y6PxjvjK666eZti+WgThMpchlNLuYj6qLIKXrHb1p76prB1Ej/vof3bT1x05e2H8xR5ciRIppWpDwoynt27Bo7bbQ7PTvbm63GZ7eetPGc5z//uE3r7nvgqwdmHjvvwgt/6M2vjaJMKXKKiKaJVER4yiMAgFDh2aSIiFREVaUmpTJyKjvlcZtO/onLNjeD5q477vrKnbcNrWxe9spz16+9NC/MPrj9wbNfvPLRJw7v3Xek3z2ScxVF1eSmLAZFnl62elNnVeuRPQfHptatnh9pPbQ9xyCnVkRuYhBFPTSax6ZWzgyNrd+07gdeuHGu2z/45JF+NdtvdX/y597ZGemkooooUlGkiJxzkYp8NFgimUsBAHimSzlno8C3PzjMTAAA32X+L8pTKQwBAADwdOPUL55S0/yfPdy9iUH++nlXKUWKnFLkSP0cdeQycpGaOpfloMllKlLkXKQUKeUczSCnQUqtbzyfPkUcffZjnYsmp1RH2URRRS7+l2ej/IMyO6X0X678UXsTAOCZxalfAADA045TvwAAAKECAAAgVAAAAKECAAAgVAAAAKECAAAgVAAAAKECAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAABAqAACAUAEAABAqAACAUAEAABAqAACAUAEAABAqAACAUAEAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAAIFQAAAChAgAAIFQAAAChAgAAIFQAAAChAgAAIFQAAACECgAAIFQAAACECgAAIFQAAACECgAAIFQAAACECgAAIFQAAACECgAAgFABAACECgAAgFABAACOEZUh4KmklAwCAPBdlXM2CHxbZlQAAICnHTMqfAc+5wAAvhucu8Hfz4wKAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAAAgVAAAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAAIQKAACAUAEAABAqAACAUAEAABAqALjrlF0AACAASURBVACAUAEAABAqAACAUAEAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAABAqAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAAQgUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAECoAAAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAACBUAAAChAgAAIFQAAAChAgD/F3LO//vC5tstfFp5qjXMT/s1B/j/rjIEAMeGxw8tRio2Lu9ExK7p7vrlQ0eX7zzUjYgNK4aeeVs03Y1I39iipaMLh9vlYq8+ujk7p7sbVww/nTdh13QvRT46/t+6I3ZNL+WInGLj8qFdh7vrJ4ccwABCBeBYs 233 4q2PdnPRTrl//+7Zk9cNnb6uddX2Iy88YfjGB5dSivt29/7xuWn77sW3XDj5jNiiux6a+dXf/5uZmblDC/WKkfL0004+5/wzv/rY/N1XXz7fa0bbxdHl5 134 /NdcdNJEJ5+yfvRptf5PHjjys7/y6en5nFPKEYcWmuedvP7iS168e9e+z3z22hUjXz+d4ayLL 936 3LHT1nXWTzqKAYQKwDEnF9XPvOtXFmamj3558dve/eaXn/rA3v5lP/6+xYWFowuvu/Q1 737 z9zxTtuidH/rcnTdd880vr77yxldd9t7J3o6rr7zxb9+U0uve8rqPXrPwS5eOPN3Wf/Wq8atv+trBg9PfXPKVm2P1qc//dx/4cFMPvrnwwQce2ffWn2+Kznxv6bjxfNKUeRWAv+UaFYBjoFTy+ec9LyKO27guIm799H/9wyu2XfXJP1pcWCjKr38g9Y43XlCnwe7p+mm+Kdv2dX/vrx+76+ZrI+LN73j9xJqp559/ZkRc/Qe/86k//ouIeOmP/XSrVUXEu37+Hdc+VLx0y/DJ6552ofL44cG//pVfTClFxLt+4ccn16yNiI9+6ENNPRiZmHzB+WdtfcnLUkpPPL57cnb7lfd3myZmF3oOZAChAnCslcqR6jkRse/J6TWbjl+YX7jm4x+947YvR0rnnnt6REyuWXvlI00TuciDp/mWfPxLR37xn3045/zq177yKw9Pz+zbu/4f/eCKVcvn5xd63cX20PDso/f0+4PjTj3j8Nhp/+Tizo+9aPRpuBVlpHdduv4NP/n2iPijT15+3KnPi4hedzFSetW73nvnHfc+cseNL//p90TE 737 kYy+cmr9tR/9ru2vHMYBQAXi62DXd/Tuvjx3uRcTO6cV/+DdJkX/q9S+KlHrdxd5i99QtJ20+98Xfe8lF3/eKS26/7asR8YKXv+4Vp07mXE6t6HzzB+2cXopvXKR+cK6/8+sL//Z111O8PtX6f+MbdiNi91Ov//653rf8oKN/ZTEiHjuc/+iWg7de/pfdhYUNG9ePnnLR166/MiJu/PhHv/ed7z86i9LrLt56/Y2tVvWiH/qRS7a0zz++FRHb9vYi4onD3W9uzjevvH+KMV/6lm18ync+1SAcmO9/xx20frKMiO9/yRmTa6YO79tzz3VfOLr 83/ zm++76wl829WBhfmH/nV8846KXRs7vf99vRkRddP7g5iPb9yxGxK7pBf80AJI7JPKUB0dK4R6a8F2zfc/iLTvqiHzf7t6Wte0csX1v/9R17bv35q1TxYN75v7xWSNjnWpsuExNXUSeWvmUJzg9sHv+1kd69z2w88O/9pGjl0AUZXX0NymlrRde+p7LXnPK2ua8E9pH3/+71xwYHW7ft3fptKnhbbvqU9eXdz62dO6mzv17elvWtr/1ddvuv7vk/j29n3jx2ObVX/9Wtz+6+MDuetuepRPWD39tX3frVLVtT+/0qeq0qfLc45d927X97JcPf3nH3PFT419+svW8NWn73oUzVseFm0cWmurzNzz6gff+WkS0h4ZbZZqfXzhu47onHt89MrF84cjhyDkitp591gnnvey1F23Ytmfp3/7wqoi4b2/vD285cMrU8L37BlvWjNy9tzhjqti6ujnvhL97Q7DbH128b29 937 ds1La9/R8+e/gF/5O9Ow+Tq64T/f85VdV7SNLZOyvZICshhADpEJBA2NRh1WF02HR0VHR0HO+dcWH8qSPq6J3RcRlnVGQVRRbZIQlhSzoEAoGQnSxk7RCSdKfTe1fV+f3RTRIWt7n3kXufeb0enrKs59Sp7zmV6q53n 230 Gw4OaW7r2tVYXLala/Xut1n88TXlSZK+vKv50umVvcpLqsqTTJoOfbuTqn3z7v39q+PbP7xz43NLu3+WVvbp29Z0II2o7N 239 UBD/wHV+/Y2RMTcd587cPp550wu21DfMmlIZvKQ7Am/Ze2Bbxr89+FgeoB3RhqZH373P1evf6Uil7Tl09Jskk2iPZ+W55L2rigviR8VoiSbTJs+ZeLkY2eedMKUwW0zxlbsaGgZXv3mnZ2OGVrVns8UM6N/etN3P/vZrze+Wn/oiO1Zl17xkQtmZaKQLXZF9NTFKaOqTrv4CxUlSXtXlOeStnyxNJtcX0i7R/Km254hvX578UVnb5t02qFQiUj+5rPXJYX2tnxU5KItn37xS58opjURyVsX+UB7YenGlmde2PyfP7q1rbNYUdLzErPff/XwfmMqSuNrX/5u95Sd7W3dR2y8uqchIg6dJyAiDrQVLz5teCZJL5nRsx42v7LrP//p3w6NcN5Zp+yefH4xLR3Sp2tk/5IjB7Bl6+5PfOb7FbnoHm3lwBFfu/aj6+rzQ6rTEX0PD7hXRcnmTR3XfPLLpZn0TYtfnksKaXTlo7wkri+tmDJ53JnnnD6kZkg203byqOyEoaVHvtx3vv5PbfmoKDn8Paz1QGNElJTk8h3tEdFdKRHx2IOP9Ht62X35mHjs6PGf+atC4vMBIFQA3iFb9+VXr3+l9UBj914+h/b1aTniNiIWLXxy0cInS0pyMy+68iMXHT91cAyvfpu5HTeyYsW2pvnr8017Xzvy8W3PLJx/7PT3HFucMe7w0x54ru3Q67Yc8eq/7fbIIT29avsVf549NKvV9Z2DBg9c99LKQxP/+PoHvnLtx1fv7qgsb5tY85aLnCSZu3/90L69+w+/RJL82Wlj617pnDs+8+Prv/P4S21D+yUvbdx 134 +/010s3c+bed4F40+anRSzkwdn19d3XDyj6sSje2be2NjcfX6t7hH+5s6Hv37yCU+u7n/GmMqIN4TKzx7b1Xqg4dCiteVj/tqOsyfmIooR2SOnLEbxYMP+t74jLW94mxoW1e9atPDJyj59v3DtNWtf6z950IETR/aZ+HqudI/qrXtxdXXlo+sNBwulado98br1aSbtStKsDwiAUAF4Z6RJoSKXtEbccNv3F6xtm1RTMqxvbv7atnkTyxesa503oWLButZThuZvX7B67eOP7NvbUHf7z7atOu5rX/zw5r0H3zfzbfYL6lWa6X9wXbGQv/zq9z+9csff/c0lH7vy73Zs3Xny8PZCktvWkB9Z3fMz/7wTK78c0X9A9bxrvjxvQvmCdW1Thsa6nR3zJlQuWNt55qTy+evaz55QMn9d27wJFQvXtZ09oWLBmo6Ryc5vfPV7I6pL0iO2llxV2/uOUy5Y99LKKaef9bm/vuBvP3Pd7o2rF67pOHNitqXtzQfuN7cWDzS1r1u3KSLe/5mv7l21YNHCp2acNH3B6q6vv6dq7OCSWWNj8uDMvy1qefmJeyLiuz/+5g9+eu+s44bffP3ta55cMGnGKWdOrOqKzPkjy6YNf/OuVuNnzPnCZz9wy/w1j974/a/847/+9D+/sfjl1rGD3zDZzFHl8yM+/+VPb0tH3PrVz0Wk8yaVJml+RN83hMHBtq5IihHRv3/1uZ/4/LyJFQvWts2bVLFwbdtZEyt2HuhcVd85b0LFHYtf6d+289Yb72490Pil/3HdX37o0vzkk5NC/sWNBy87rX/3rCr79P3Rv39twbr2syaWL1jXPm9C+cK1nfMmlD26tnXehLJH1necNbFiwbqWqUOyQ/vmrvyLvy3PJYvWtE6p6eUDAiBUAN4ZI/uXtuXTiFiwtmPPtldu/eqPuh//xeu3peUVT40e+7EP/9nIyZ9vWfXYPXc9vGPNymv/6Sdf+9Jfve0Ms0n84rYHkyTpHHLcxht+fdP9Y8eMH7v55U0/ue2Jz33s3Nb2rkM/ 83/ 5YktE7Nvb8MuvfOaXR8zhloiIKH7pu6OyO6/+i3+NiNuOGFK37fvzR/d7w55JF58+bP7NlevrHn/49PPee/6cm264vXXbC/NjWi6TjhzQOaj34b2hmtrSh+c/E2laWl5x/sz+H/r+0ogYOfuCz55ROXZwz6aPE0eXnTqu5eZ1Gyv79L1j4ZpNzy09+fxvl5Tc1dLSOqn3gcdWl182p2ra8DdsJyn2nBgmv2ht8xlT+2yYOHX72pf+5T/v/9TH3n19XduHag9v1XllX1dELN/aNWhkRERFSbJgbfu5E97mV2ESSUS05dN5Eyqu+1+3bXiu7tYjVlFE3NOneugxE44/+90/veXUf/j89/a8svmWn /36 mk/3mf/acWdPOjy8ilyycE1H/bJ7r/7qU4fWZPesbj7i/iHt+ThjYnUadtkHcNYvgHdIkiYVuSQi5k0s 636 kqqqysk/f/v2rq/r07d+/urOjffvaVV/83HW76+6vmnT29/7965EkO9auqntu01vn9uiqxl2vNTXs2Tlw1OjS+pVpmu5b/fS8954dERvqFqSRaWntOjTx+6dVdL9EVe/u2z59+1VX9unbfWDrvMnZ5Vs7I6K0vKJ/ /35 Vvav79+9X9frAZk2rOTJTdjQUskn7ee8+rasrf3SyrWvIcRGx9Iknz55Ymkamo/MNG1U6C8VHF9VFxHnvPv2W+WuKhXxVnz7vmdlvydbDY1u2uWXx48siTSfXnrF3zdI0TTM7njl62kkR8a8/vP2MSaVb93X9tlV65sTyf/z7b37u05dlsrkXlzy6cWdjRPL8luZDE5x2bFVEnDiqJyTautJ5E8sjYlfDG8Z5VEVJkvZkxoK17cP7ZSOif//q7nenT7/qyj7VrQcaNj679M7rrr3+ruX/fN2nT7v0LyPih//2sznji2kSz77+om35OGti2faGQs/6HNAzk8o+1f379zt027dfz50JE0alSRpCBcAWFYB3yvZ9XYe2qJw4qmRBRO37rvrg2RMfXdN25sSKtfVdE2tKbn1k/conHl604MmquuX5T/3jez72uft//J3bb7hlwODh171/0OFa2Nfe1J678+5HImLKGWfd/8B9EbF+7caZl3yoqqqypaV1/botucLIGWN7pt+wq+1HP/ragjWFuZPKVu3pmjIkHlvVNndS5TWfuLb1QOOCdS1JFCLi7/7nR7dEzbyJFat3FyYPKZm/ruOcCWXr

Ngày đăng: 15/01/2015, 01:37

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w