1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Các chuyên đề Toán 12

14 257 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 521 KB

Nội dung

CÁC CHUYÊN ĐỀ HÌNH HỌC GIẢI TÍCH 12 …… …… Vấn đề1. HỆ TỌA ĐỘ TRONG KHÔNG GIAN-TỌA ĐỘ CỦAVECTO, TỌA ĐỘ CỦA ĐIỂM 1.Trong hệ tọa độ Oxy cho (1; 2;1)a = − r , ( 2;1;1)b = − r , 3 2c i j k= + − r r r r .Tìm tọa độ các véctơ a) 3 2u a b= − r r r b) 3v c b= − − r r r c) w 2a b c= − + uur r r r d) 3 2 2 x a b c= − + r r r r 2.Trong hệ tọa độ Oxy cho (1; 1;0)a = − r , ( 1;1;2)b = − r , 2c i j k= − − r r r r , d i= r r a)xác định k để véctơ (2;2 1;0)u k= − r cùng phương với a r b)xác định các số thực m,n,p để d ma nb pc= − + r r r r c)Tính , , 2a b a b+ r r r r 3.Cho A(2;5;3) , B(3;7;4) , C(x;y;6) a)Tìm x,y để ba điểm A,B ,C thẳng hàng b)Tìm giao điểm của đường thẳng AB với mặt phẳng yOz.Tính độ dài đoạn AB c)Xác định tọa độ điểm M trên mp Oxy sao cho MA+MB nhỏ nhất 4.Trong hệ tọa độ Oxy cho 1 (1; 2; ) 4 a = − r , ( 2;1;1)b = − r , 3 2 4c i j k= + + r r r r a) Tính các tích vô hướng .a b r r , .c b r r .Trong ba véctơ trên có các cặp véctơ nào vuông góc b)Tính os(a,b)C r r , os(a,i)C r r 5.Cho A(1;-1;1) ,B(2;-3;2), C(4;-2;2),D(3;0;1),E(1;2;3) a)Chứng tỏ rằng ABCD là hình chữ nhật.Tính diện tích của nó. b)Tính cos các góc của tam giác ABC c)Tìm trên đường thẳng Oy điểm cách đều hai điểm AB d)Tìm tọa độ điểm M thỏa 2 0MA MB MC+ − = uuur uuur uuuur r 6.Cho A(1;-1;1) ,B(2;-3;2), C(4;-2;2). a)Tìm tọa độ trung điểm của đoạn AB b)Tìm tọa độ trong tâm tam giác ABC Vấn đề 2:TÍCH CÓ HƯỚNG HAI VÉCTƠ VÀ CÁC ỨNG DỤNG 1.Tính tích có hướng ,u v     r r biết rằng a) (1; 2;1)u = − r , ( 2;1;1)v = − r b) ( 1;3;1)u = − r , (0;1;1)v = r c) 4u i j= + r r r , 2v i j k= − − r r r r 2.Tính tích , .wu v     r r uur biết rằng a) (1; 2;1)u = − r , (0;1;0)v = r , w (1;2; 1)= − uur b) ( 1; 1;1)u = − − r , (0;0;2)v = r , w (1; 2; 1)= − − uur c) 4u i j= + r r r , 2v i j k= − − r r r r , w (5;1; 1)= − uur 3.Cho A(1;-1;1) ,B(2;-3;2), C(4;-2;2), D(1;2;3) a)Chứng tỏ rằng A,B,C không thẳng hàng b)Chứng tỏ rằng bốn điểm A,B,C,D không đồng phẳng c)Tính diện tích tam giác ABC d)Tính thể tích tứ diện ABCD.Biết rằng 4.Cho hình chóp S.ABCD có A(2;-1;1) ,B(2;-3;2), C(4;-2;2), D(1;2;-1), S(0;0;7) a)Tính diện tích tam giác SAB b)Tính diện tích tứ giác ABCD c)Tính thể tích hình chóp S.ABCD.Từ đó suy ra khoảng cách từ S đến mp(ABCD) d)Tính khoảng cách từ A đến mp(SCD) 5.Cho hình hộp ABCD.A’B’C’D’ . Biết rằng A(1;2;-1), B(-1;1;3), C(-1;-1;2) và D’(2;-2;-3) a)Tìm tọa độ các đỉnh còn lại b)Tính thể tích hình hộp c)Tính thể tích tứ diện A.A’BC. Tính tỉ số . ' ' ' ' . ' ' ' ABCD A B C D A A B C V V d)Tính thể tích khối đa diện ABCDD’ Vấn đề 3 : PHƯƠNG TRÌNH CỦA MẶT CẦU 1.Tìm tâm và bán kính mặt cầu a) 2 2 2 ( 2) ( 1) ( 2) 9x y z− + + + − = b) 2 2 2 25 4 5 3 0 4 x y z x y z+ + − + + + = 2.Cho A(1;3;-7), B(5;-1;1) . a)Lập phương trình mặt cầu tâm A bán kính AB b)Lập phương trình mặt cầu đường kính AB c)Lập phương trình mặt cầu tâm B tiếp xúc với mặt phẳng Oxy 3.Cho A(1;1;1) ,B(1;2;1) ,C(1;1;2) , D(2;2;1) a)Viết phương trình mặt cầu đi qua bốn điểm A,B,C,D b)Tìm hình chiếu của tâm mặt cầu ở câu a) lên các mp Oxy, Oyz 4.Lập phương trình mặt cầu đi qua 3 điểm A(1;2;-4), B(1;-3;1) , C(2;2;3) và có tâm nằm trên mp Oxy 5.Cho A(2;-1;6), B(-3;-1;-4), C(5;-1;0), D(1;2;1) a)Chứng tỏ rằng ABCD là một tứ diện b)Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD c)Viết phương trình mặt cầu cắt mp(ABC) theo thiết diện là một đường tròn có bán kính lớn nhất. 6.Chứng tỏ rằng phương trình 2 2 2 2 4 2 4 4 0x y z mx my z m m+ + + − + + + = luôn là phương trình của một mặt cầu. Tìm m để bán kính mặt cầu là nhỏ nhất. 7.Chứng tỏ rằng phương trình 2 2 2 2 2 os . 2sin . 4 4 4sin 0x y z c x y z α α α + + + − + − − = luôn là phương trình của một mặt cầu. Tìm m để bán kính mặt cầu là lớn nhất. Vấn đề 4: PHƯƠNG TRÌNH MẶT PHẲNG 1.Cho A(-1;2;3), B(2;-4;3), C(4;5;6) a)Viết phương trình mp đi qua A và nhận vectơ (1; 1;5)n − r làm vectơ pháp tuyến b)Viết phương trình mp đi qua A biết rằng hai véctơ có giá song song hoặt nằm trong mp đó là (1;2; 1), (2; 1;3)a b− − r r c)Viết phương trình mp qua C và vuông góc với đường thẳng AB d)Viết phương trình mp trung trực của đoạn AC e)Viết phương trình mp (ABC) 2.Cho A(-1;2;1), B(1;-4;3), C(-4;-1;-2) a)Viết phương trình mp đi qua I(2;1;1) và song song với mp (ABC) b)Viết phương trình mp qua A và song song với mp (P):2x- y- 3z- 2 = 0 c)Viết phương trình mp qua hai điểm A , B và vuông góc với mp (Q):2x- y+2z- 2 = 0 d)Viết phương trình mp qua A, song song với Oy và vuông góc với mp (R):3x – y-3z-1=0 e)Viết phương trình mp qua C song song với mp Oyz 3.Viết phương trình mp đi qua M(2;1;4) và cắt các trục Ox, Oy, Oz tại các điểm A,B, C sao cho OA = OB = OC 4.Viết phương trình mp đi qua M(2;2;2) cắt các tia Ox, Oy,Oz tại các điểm A,B,C sao cho thể tích tứ diện OABC nhỏ nhất . 5.Viết phương trình mp đi qua M(1;1;1) cắt các tia Ox, Oy,Oz lần lược tại các điểm A,B,C sao cho tam giác ABC cân tại A, đồng thời M là trọng tâm tam giác ABC. 6.Cho tứ diện ABCD ,biết rằng A(2;-1;6), B(-3;-1;-4), C(5;-1;0), D(1;2;1). a)Viết phương trình mp chứa A và song song với mp (ABC) b)Viết phương trình mp cách đều bốn đỉnh của tứ diện đó. 7.Cho mp(P):2x- y+2z- 2 = 0 và hai điểm A(2;-1;6), B(-3;-1;-4). a)Tính khoảng cách từ A đến mp (P) b)viết phương trình mp chứa hai điểm A,B và tạo với mp (P ) một góc có số đo lớn nhất. c)Viết phương trình mặt cầu tâm B tiếp xúc với mp (P) 8.Cho ba mặt phẳng ( ) ( ) ( ) : 2 2 1 0 : 2 1 0 : 2 2 3 0 x y z x y z x y z α β γ − − − = − + − = − + + − = a)Trong ba mặt phẳng đó mp nào song song với mp nào? b)Tìm quỹ tích các điểm cách đều ( ) α và ( ) γ c)Tính khoảng cách giữa hai mp ( ) α và ( ) γ d)Tìm quỹ tích các điểm cách ( ) β một khoảng bằng 1 e)Viết phương trình mặt cầu có tâm thuộc trục Ox và tiếp xúc với hai mp ( ) α và ( ) γ 9.Cho hai mặt phẳng ( ) ( ) : 2 2 1 0 : 2 1 0 x y z x y z α β − − − = − + − = a)Tính cosin góc giữa hai mp đó b)Viết phương trình mặt cầu có tâm thuộc Oy tiếp xúc với cả hai mp đó. c)Viết phương trình mp đi qua giao tuyến của hai mp đó và song song với trục Ox 10.Cho mặt phẳng (P):2x- y+2z- 3 = 0 và mặt cầu (C ): 2 2 2 ( 1) ( 1) ( 2) 25x y z− + + + − = a)Chứng tỏ rằng mặt phẳng (P) và mặt cầu (C ) cắt nhau. Tìm bán kính của đường tròn giao tuyến b)Lập phương trình các tiếp diện của mặt cầu song song với mặt phẳng (P) 12. Cho hai mặt phẳng ( ) : 2 2 5 0x y z α − + − = và mặt cầu (C) 2 2 2 ( 1) ( 1) ( 2) 25x y z− + + + − = a)Lập phương trình tiếp diện của mặt cầu song song với Ox và vuông góc với ( ) α b)Tính góc giưa mp ( ) α với Ox c)Lập phương trình mp đi qua hai A(1;0;1) điểm B(1;-2;2) và hợp với ( ) α một góc 60 0 13.Cho bốn điểm A(1;1;2), B(1;2;1), C(2;1;1), D(1;1;-1) a)Viết phương trình mp ABC. b)Tính góc cosin giữa hai mặt phẳng (ABC) và (ABD) 14.Viết phương trình mp đi qua điểm M(2;1;-1) và qua giao tuyến của hai mặt phẳng x- y+ z -4= 0 và 3x- y + z -1= 0 15. Viết phương trình mp đi qua giao tuyến của hai mặt phẳng x+2 z -4= 0 và x+ y - z + 3= 0 đồng thời song song với mặt phẳng x+ y+ z = 0 16. Viết phương trình mp đi qua giao tuyến của hai mặt phẳng3 x-y+ z -2= 0 và x+4 y -5= 0 đồng thời vuông góc với mặt phẳng 2x- y+ 7 = 0 17.Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2.Gọi I,J ,K lần lược là trung điểm các cạnh BB’ , C’D’ và D’A’. a) Chứng tỏ rằng mặt phẳng (IJK) vuông góc với mặt phẳng (CC’K) b)Tính góc giữa hai mặt phẳng (JAC) và (IAC’) c)Tính khoảng cách từ I đến mp(AJK) 18.Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB= SA= 2a. AD= a.Đặt hệ trục Oxyz sao cho các tia Ox, Oy ,Oz lần lược trùng với các tia AB,AD,AS. a)Từ điểm C vẽ tia CE cùng hướng với tia AS. Tìm tọa độ của E. b)Tính khoảng cách từ C đến mặt phẳng (SBD). c)Chứng tỏ rằng mặt phẳng (SAB) vuông góc với mặt phẳng (SBC) d)Tính cosin góc giữa hai mặt phẳng (SBC) và (SDC) e)Tính thể tích hình chóp S.ABCD 19.Cho tam giác đều ABC cạnh a, I là trung điểm của BC.D là điểm đối xứng với A qua I.Dựng đoạn SD = 6 2 a vuông góc với mp (ABC).Chứng minh rằng a) ( ) ( )mp SAB mp SAC⊥ b) ( ) ( )mp SBC mp SAD⊥ c)Tính thể tích hình chóp S.ABC 20.Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P): 2x+2y+z−m 2 −3m=0 (m là tham số) và mặt cầu (S) :( x−1) 2 +( y+1) 2 +( z−1) 2 =9. Tìm m để mặt phẳng (P) tiếpxúc với mặt cầu (S ) .Với m vừa tìm được hãy xác định tọa độ tiếp điểm của (Pvà(S ) . Vn 5 V TR TNG I GIA MT CU V MT PHNG 1.Trong khụng gian vi h to cho mt phng ,Oxyz cho mặt phẳng (P) 2x-2y-z-4=0 v mt cu (S) x 2 +y 2 +z 2 -2x-4y-6z-11=0 Chng minh rng mt phng (P) ct mt cu (S) theo mt ng trũn. Xỏc nh to tõm v tớnh bỏn kớnh ca ng trũn ú. 2.( kt 45 2009-2010 S GD&T Dak Lak) Cho Mt Cu (S):x 2 +y 2 +z 2 +2x-6y-15=0 v mt phng (P):x+2y+2z+4=0 a)Xỏc nh tõm I v bỏn kớnh R ca mt cu (S) b) Chng t rng mp(P) ct mt cu (S) theo mt ng trũn v tớnh bỏn kớnh r ca ng trũn ú c) vit phng trỡnh mt phng (Q) song song vi trc Oy, Vuụng gúc vi mt phng(P) v tip xỳc vi mt cu (S) 3. Trong khụng gian vi h ta Oxyz, cho bn im A(3;3;0),B(3;0;3),C(0;3;3),D(3;3;3). a) Vit phng trỡnh mt cu i qua bn im A, B, C, D. b) Tỡm ta tõm ng trũn ngoi tip tam giỏc ABC. 4.Trong không gian Oxyz cho các điểm A(2;0;0),M(0; 3;6). a) Chứng minh rằng mặt phẳng (P): x + 2y 9 = 0 tiếp xúc với mặt cầu tâm M bán kính MO. Tìm toạ độ tiếp điểm? c) Viết phơng trình mặt phẳng (Q) chứa A, M và cắt các trục Oy, Oz tại các điểm tơng ứng B, C sao cho V OABC = 3 5. Trong khụng gian vi h ta Oxyz, cho mt cu (S): x 2 +y 2 +z-2x+4y+2z3=0 v mt phng (P):2x-y+2z14=0. a) Vit phng trỡnh mt phng (Q) cha trc Ox v ct (S) theo mt ng trũn cú bỏn kớnh bng 3. b) Tỡm ta im M thuc mt cu (S) sao cho khong cỏch t M n mt phng (P) ln nht. Vn 6: PHNG TRèNH NG THNG 1.Vit phng trỡnh tham s ca ng thng a)i qua A(1;2;-1) v cú vect ch phng l (1; 2;1)a = r b) i qua hai im I(-1;2;1), J(1;-4;3). c)i qua A v song song vi ng thng 1 2 1 2 1 3 x y z + = = d)i qua M(1;2;4) v vuụng gúc vi mt phng 3x- y + z -1= 0 2.Tỡm phng trỡnh chớnh tc ca ng thng a)Qua A(3;-1;2) v song song vi ng thng 1 2 3 x t y t z t = = + = b)Qua A v song song vi hai mt phng x+2 z -4= 0 ; x+ y - z + 3= 0 c)Qua M(1;1;4) v vuụng gúc vi hai ng thng (d 1 ): 1 2 3 x t y t z t = = + = v (d 2 ): 1 2 1 2 1 3 x y z + = = 3.Cho t din ABCD ,bit rng A(2;-1;6), B(-3;-1;-4), C(5;-1;0), D(1;2;1) a)Vit phng trỡnh ng thng qua A v vuụng gúc vi mt phng (BCD). b)Vit phng trỡnh ng thng qua I(1;5;-2) v vuụng gúc vi c hai ng thng AB,CD. 4.Vit phng trỡnh hỡnh chiu vuụng gúc ca ng thng (d): 1 2 1 2 1 3 x y z + = = lờn cỏc mt phng ta 5.Vit phng trỡnh hỡnh chiu ca ng thng (d) 1 2 3 x t y t z t = = + = lờn mt phng (P):x+ y - z + 3= 0 6.Vit phng trỡnh giao tuyn ca hai mt phng 7.Trong không gian với hệ toạ độ Đêcac vuông góc Oxyz cho hai đờng thẳng: v .cú phng trỡnh 2 1 ' 2 3 ; 2 ' 4 1 2 ' x t x t y t y t z t z t = = + = + = + = = + a) Viết phơng trình mặt phẳng (P) chứa đờng thẳng và song song với đờng thẳng . b) Cho điểm M(2;1;4) . Tìm toạ độ điểm H thuộc đờng thẳng sao cho đoạn thẳng MHcó độ dài nhỏ nhất. 8.Trong khụng gian vi h ta Oxyz cho hai ng thng 6 3 ' , 1 ; ' 1 2 ' ' x a at x t d y t d y a at z t z t = = = + = + = = a) Tỡm a hai ng thng 1 d v 2 d chộo nhau. b) Vi a = 2 , vit phng trỡnh mt phng (P) cha d v song song vi d Tớnh khong cách gia d v d khi a = 2. 9.Trong không gian với hệ tọa độ Đêcac vuông góc Oxyz cho hai điểm A(2; 0; 0), B(0; 0; 8) và AC uuur (0;6;0) . I là trung điêmt BC Tính khoảng cách từ I tới OA Bai5/ Trong khụng gian vi h ta Oxyz cho hai ng thng ' , 1 2 ; ' 1 2 ' 1 3 ' x t x t d y t d y t z t z t = = = + = + = = + a) Chng minh rng chộo nhau v vuụng gúc vi nhau.d và d b) Vit phng trỡnh tng quát ca ng thng d ct c hai ng thng v song songvi ng thng 4 2 3 1 4 2 x y z = = 10. Trong khụng gian vi h ta Oxyz cho hai im A(2;1;1),B(0; 1;3) v ng thng 9 2 , 8 3 x t d y t z t = −   = −   =  a) Viết phương trình mặt phẳng (P) đi qua trung điểm I của đoạn AB và vuông góc với AB . Gọi K là giao điểm của đường thẳng d và mặt phẳng (P) . Chứng minh rằng d vu«ng goc víi IK b) Viết phương trình tổng quát của hình chiếu vuông góc của đường thẳng d trên mặt phẳng có phương trình x+y−z+1=0. 11. Trong kh«ng gian víi hÖ täa ®é Oxyz cho ®iÓm A (−4; −2; 4) vµ ®êng th¼ng d: 3 2 , 1 1 4 x t d y t z t = − +   = −   = − +  ViÕt phơng tr×nh ®êng th¼ng d’®i qua ®iÓm A, c¾t vµ vu«ng gãc víi ®êng th¼ng d. 12.Trong không gian với hệ tọa độ Oxyz cho A(4; 2; 2),B(0;0;7) và đường thẳng 3 6 1 2 2 1 x y z− − − = = − Chứng minh rằng hai đường thẳng d và AB thuộc cùng một mặt phẳng. Tìm điểm C trên đường thẳng d sao cho tam giác ABC cân tại đỉnh A . 13. Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : 1 3 3 1 2 1 x y z− + − = = − và mặt phẳng (P) : 2x + y − 2z +9 = 0. a) Tìm tọa độ điểm I thuộc d sao cho khoảng cách từ I đến mặt phẳng (P) bằng 2. b) Tìm tọa độ giao điểm A của đường thẳng d và mặt phẳng Viết phương trình tham số của đường thẳng Δ nằm trong mặt phẳng (P) biết Δ đi qua A và vuông góc với d 14. Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d : 1 1 2 x y z = = vµ d’ : 1 2 , 1 x t y t z t = − −   =   = +  (t là tham số). a) Xét vị trí tương đối của và d vµ d’ b) Tìm tọa độ các điểm M thuộc d và N thuộc d’ sao cho đường thẳng MN song song với mặt (P) : x − y + z = 0 và độ dài đoạn MN bằng 2 . 15. Trong không gian với hệ tọa độ Oxyz, cho điểm A(0; 1; 2) và hai đường thẳng: d : 1 1 2 1 1 x y z− + = = − vµ d’ : 1 1 2 2 x t y t z t = +   = − −   = +  (t là tham số). 1. Viết phương trình mặt phẳng (P) qua A, đồng thời song song với d và d’. 2. Tìm tọa độ các điểm M thuộc d, N thuộc d’ sao cho ba điểm A, M, N thẳng hàng 16. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2;3) và hai đường thẳng: d: 2 2 3 2 1 1 x y z− + − = = − d’ 1 1 1 1 2 1 x y z− − + = = − 1. Tìm tọa độ điểm A' đối xứng với điểm A qua đường thẳng d. 2. Viết phương trình đường thẳng Δ đi qua A, vuông góc với d và cắt d’. 17.Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: . d: 1 1 2 x t y t z = +   = − −   =  d’: 3 1 1 2 1 x y z− − = = − 1. Viết phương trình mặt phẳng chứa đường thẳng d và song song với đường thẳng d’. 2. Xác định điểm A trên d và điểm B trên d sao cho đoạn AB có độ dài nhỏ nhất. 18.Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 4x−3y+11z−26=0 và hai đường thẳng d: 3 1 1 2 3 x y z− + = = − d’ 4 1 1 1 2 x y z− − = = 1. Chứng minh rằng d và d’ chéo nhau. 2. Viết phương trình đường thẳng Δ nằm trên (P), đồng thời Δ cắt cả d và d’ Vấn đề 7: VỊ TRÍ TƯƠNG ĐỐI CỦA CÁC ĐƯỜNG THẲNG VÀ CÁC MẶT PHẲNG -GÓC VÀ KHOẢNG CÁCH 1.Xét vị trí tương đối giữa hai đường thẳng a) (d) 1 7 3 2 1 4 x y z− − − = = và (d’) 6 1 2 3 2 1 x y z− + + = = − b) (d) 1 2 2 2 1 x y z− − = = − và (d’) 8 4 2 3 1 x y z+ − = = − c) (d) 2 1 4 6 8 x y z− + = = − − và (d’) 7 2 6 9 12 x y z− − = = d) (d) 1 2 3 x t y t z t = −   = +   = −  và (d’) là giao tuyến của hai mặt phẳng ( ) ( ) : 2 3 3 9 0, : 2 3 0x y z x y z α β − − − = − + + = 2.Xét vị trí tương đối của đường thẳng và mặt phẳng.Tìm tọa độ giao điểm của chúng nếu có. a)(d) 12 9 1 4 3 1 x y z− − − = = và ( ) :3 5 2 0x y z α + − − = b)(d) 1 3 2 4 3 x y z+ − = = và ( ) :3 3 2 5 0x y z α − + − = c)(d) 9 1 3 8 2 3 x y z− − − = = và ( ) : 2 4 1 0x y z α + − + = 3.Tính góc giữa các cặp đường thẳng ở bài 7. 4.Tính khoảng cách giữa các cặp đường thẳng ở bài 7(nếu chúng chéo nhau hoặt song song nhau) 5.Tính góc giữa cặp đường thẳng và mặt phẳng ở bài 8. 6.Tính khoảng cách từ điểm M(-1;2;3) đến các đường thẳng a)(d 1 ): 12 9 1 4 3 1 x y z− − − = = b) (d 2 ): 1 2 3 x t y t z t = −   = +   = −  c)(d 3 ) là giao tuyến của hai mặt phẳng ( ) ( ) : 2 3 3 9 0, : 2 3 0x y z x y z α β − − − = − + + = 7.Cho đường thẳng (d) 1 1 3 1 2 1 x y z− − − = = và ( ) : 2 4 1 0x y z α + − + = . a)Tìm giao điểm giữa (d) và ( ) α b)Viết phương trình mp chứa (d) và hợp với ( ) α một góc có số đo lớn nhất c)Viết phương trình mp chứa (d) và hợp với ( ) α một góc có số đo nhỏ nhất 8.Trong không gian cho bốn đường thẳng (d 1 ): 1 2 1 2 2 x y z− − = = − , (d 2 ): 2 2 2 4 4 x y z− − = = − (d 3 ): 1 2 1 1 x y z − = = , (d 4 ) : 2 1 2 2 1 x y z− − = = − a)Chứng tỏ rằng (d 1 ) và (d 2 ) cùng nằm trên một mặt phẳng.Viết phương trình tổng quát của mặt phẳng đó b)Chứng tỏ rằng tồn tại một đường thẳng (d) cắt cả bốn đường thẳng đã cho. c)Tính côsin góc giữa (d 1 ) và (d 3 ) 9.Cho ba điểm A(1;1;1), B(-1;2;0) C(2;-3;2) và mp ( ) : 2 0x y z α + + − = a)Tính cosin góc giữa hai đường thẳng AB và BC b)Tìm trên mp ( ) α điểm cách đều 3 điểm A,B,C c)Tìm phương trình hình chiếu của đường thẳng AB lên mp ( ) α 10.Cho tứ diện ABCD.Biết rằng A(1;1;2), B(1;2;1), C(2;1;1), D(1;1;-1) a)Tính góc giữa hai đường thẳng AC và BD b)Tính khoảng cách giữa hai đường thẳng AB và CD c)Tìm tọa độ hình chiếu H của A lên mp (BDC) d) Tính khoảng cách từ A đến đường thẳng DB e)Tính khoảng cách từ gốc tọa độ đến mp (BCD) 11.Tìm điểm M’ đối xứng với điểm M(2;-1;1) qua mp ( ) : 2 0x y z α + + − = 12.Tìm điểm A’ đối xứng với điểm A(2;-1;5) quađường thẳng 1 2 3 1 2 3 x y z− − − = = 13.Cho A(3;1;0) , B(1;-2;5) và mp ( ) : 2 0x y z α + + − = Tìm điểm M trên mp ( ) α sao cho MA+MB nhỏ nhất 14.Cho A(2;1;1) , B(1;2;-1) và mp ( ) : 2 4 0x y z α + + + = .Tìm điểm M trên mp ( ) α sao cho MA MB− lớn nhất 15.Cho A(2;1;1) , B(1;2;-1) và mp ( ) : 2 4 0x y z α + + + = .Tìm điểm M trên mp ( ) α sao cho MA MB+ uuur uuur nhỏ nhất . 16.Cho A(3;1;0) , B(1;-2;5) và mp ( ) : 2 0x y z α + + − = Tìm điểm M trên mp ( ) α sao cho MA 2 +MB 2 nhỏ nhất 17.Cho A(3;1;0) , B(1;-2;5),C(-1;-2;-3) và mp ( ) : 2 0x y z α + + − = Tìm điểm M trên mp ( ) α sao cho MA 2 +MB 2 +MC 2 nhỏ nhất 18.Cho A(3;1;0) , B(1;-2;5),C(-1;-2;-3), D(1;5;1) và mp ( ) : 1 0x y z α + + + = Tìm điểm M trên mp ( ) α sao cho MA 2 +MB 2 +MC 2 +MD 2 nhỏ nhất 19.Cho ba đường thẳng (d 1 ): 1 2 2 1 4 3 x y z− + − = = ,(d 2 ): 3 1 5 x t y t z t =   = −   = +  Và (d 3 ) là giao tuyến của hai mặt phẳng ( ) ( ) : 2 4 3 0, : 2 1 0x y z x y z α β − + − = − − + = Viết phương trình song song với (d 1 ) cắt cả hai đường thẳng (d 2 ) và (d 3 ) 20.Cho hai đường thẳng (d 1 ): 1 2 3 x t y t z t = +   =   = −  Và (d 2 ) là giao tuyến của hai mặt phẳng ( ) ( ) : 2 1 0, : 2 3 0x y z x z α β + + − = + − = Viết phương trình đường thẳng đi qua A(1;-1;1) cắt cả hai đường thẳng (d 1 ) và (d 2 ) 21.Viết phương trình của đường thẳng nằm trong mp :y+2z = 0 và cắt cả hai đường thẳng. (d 1 ): 1 4 x t y t z t = −   =   =  (d 2 ): 2 4 2 1 x t y t z = −   = +   =  22.Cho hai đường thẳng (d): 1 1 2 2 3 1 x y z+ − − = = và (d’): 2 2 1 5 2 x y z− + = = − . a)Chứng tỏ rằng (d) và (d’ ) chéo nhau.Tính khoảng cách giữa chúng b)Viết phương trình đường vuông góc chung của chúng c)Tính góc giữa (d 1 ) và (d 2 ) 23.Cho hai đường thẳng (d): 1 2 3 1 2 3 x y z− − − = = và (d’): 2 1 x t y t z t = −   = − +   =  . a)Chứng tỏ rằng (d) và (d’ ) chéo nhau.Tính khoảng cách giữa chúng b)Viết phương trình đường vuông góc chung của chúng c)Tính góc giữa (d 1 ) và (d 2 ) 24.Cho hai đường thẳng (d 1 ): 1 3 2 x t y t z t = +   = − +   =  Và (d 2 ) là giao tuyến của hai mặt phẳng ( ) ( ) : 2 0, : 1 0x y z x α β + − + = + = Viết phương trình đường thẳng đi qua A(0;1;1) vuông góc với đường thẳng (d 1 ) và cắt (d 2 ) 25.Cho đường thẳng (d) là giao tuyến của hai mặt phẳng ( ) ( ) : 4 1 0, : 0x y x z α β + − = + = .Viết phương trình đường thẳng đi qua điểm M(0;1;-1) vuông góc và cắt đường thẳng (d) 26.Cho hai điểm A(1;1;-5), B(0;1;-7) và đường thẳng (d) là giao tuyến của hai mặt phẳng ( ) ( ) : 1, : 1y x z α β = + = − Tìm điểm M thuộc đường thẳng (d) sao cho chu vi tam giác AMB nhỏ nhất. [...]... và khoảng cách từ M đến ∆ bằng 11) (Đề dự bị 2 khối D năm 2007).Cho mặt phẳng (P): x – 2y + 2z – 1 = 0 và các đường thẳng d2 : x−5 y z+5 = = 6 4 −5 d1 : x −1 y − 3 z = = và 2 −3 2 1 Viết phương trình mặt phẳng (Q) chứa d1 và (Q) ⊥ (P) 2 Tìm các điểm M ∈ d1, N ∈ d2 sao cho MN // (P) và cách (P) một khoảng bằng 2 12( Đề dự bị 2 khối D năm 2007) Cho lăng trụ đứng ABCA1B1C1 có tất cả các cạnh đều bằng a... minh MB⊥MA1 và tính khoảng cách d từ điểm A tới mặt phẳng (A1BM) 7) (Đề dự bị 2 khối B năm 2007) Trong khơng gian Oxyz cho các điểm A(2,0,0); M(0,–3,6) 1 Chứng minh rằng mặt phẳng (P): x + 2y – 9 = 0 tiếp xúc với mặt cầu tâm M, bán kính MO Tìm tọa độ tiếp điểm 2 Viết phương trình mặt phẳng (Q) chứa A, M và cắt các trục Oy, Oz tại các điểm tương ứng B, C sao cho V OABC = 3 8) (Đề dự bị 1 khối B năm 2007)... (Đề dự bị 2 khối A năm 2007)Trong khơng gian Oxyz cho các điểm A(2,0,0); B(0,4,0); C(2,4,6) và đường thẳng (d) là giao tuyến của hai mặt phẳng (α) : 6x − 3y + 2z = 0,(β) : 6x + 3y + 2z − 24 = 0 1 Chứng minh các đường thẳng AB và OC chéo nhau 2 Viết phương trình đường thẳng ∆ // (d) và cắt các đường AB, OC 4) (Đề dự bị 2 khối A năm 2007) Cho hình chóp SABC có góc ∧ ( SBC, ABC) = 60o , ABC và SBC là các. .. diện ABCD và tính khoảng cách từ A đến mặt phẳng (BCD) theo a 10 Trong khơng gian với hệ toạ độ Đ các Oxyz cho hình chóp S.ABCD có đáy ABCD là hình thoi, AC cắt BD tại gốc toạ độ O Biết A(2; 0; 0) B(0; 1; 0) S(0; 0; 2 2 ) Gọi M là trung điểm của cạnh SC a) Tính góc và khoảng cách giữa hai đường thẳng SA và BM b) Giả sử mặt phẳng (ABM) cắt SD tại N Tính thể tích hình chóp S.ABMN 12 Trong kh«ng gian víi... giác đều cạnh a Tính theo a khoảng cách từ đỉnh B đến mp(SAC) 5) (Đề dự bị 1 khối A năm 2007)Trong khơng gian Oxyz cho hai điểm A (-1;3;-2), B (-3,7,-18) và mặt phẳng (P): 2x - y + z + 1 =0 1 Viết phương trình mặt phẳng chứa AB và vng góc với mp (P) 2 Tìm tọa độ điểm M ∈ (P) sao cho MA + MB nhỏ nhất 6) (Đề dự bị 1 khối A năm 2007) Cho lăng trụ đứng ABCA1B1C1 có AB = a, AC = 2a, AA1 ∧ = 2a 5 và BAC = 120 ... rằng tam giác SCD vng và tính theo a khoảng cách từ H đến mặt phẳng (SCD) 15 (Đề chính thức khối B năm 2007) Cho hình chóp tứ giác đều SABCD có đáy là hình vng cạnh a, Gọi E là điểm đối xứng của D qua trung điểm của SA,M là trung điểm của AE, N là trung điểm của BC.Chứng minh rằng MN vng góc với BD và tính theo a khoảng cách giữa hai đường thẳng MN và AC (Đề chính thức khối A năm 2007) 16.Cho hình chóp... c)Tính độ dài đoạn vng góc chung của hai đường thẳng SA và BD d)Tính tỉ số VI SAB VS ABCD 7.Cho hình chóp S.ABC có đáy là tam giác đều cạnh a; các cạnh bên đều bằng a 6 Gọi ( α ) là mp song song với BC và 2 vng góc với mp(SBC), gọi I là trung điểm của BC a)Tính khoảng cách từ I đến mp b)Tính góc giữa AB và (α) (α) 8.Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là một hình thoi cạnh a, góc = 600...Vấn đề 8: GIẢI BÀI TỐN BẰNG PHƯƠNG PHÁP TỌA ĐỘ Giải các bài tốn sau bằng phương pháp tọa độ1 1 Trong khơng gian với hệ toạ độ Đ các Oxyz cho hình hộp chữ nhật ABCD.A'B'C'D' có A trùng với gốc của hệ toạ độ, B(a; 0; 0), D(0; a; 0), A'(0; 0; b) (a > 0, b > 0) Gọi M là... diện tích thiết diện của hình chóp với mặt phẳng S.ABCD vµ (P) *Một số đề thi đại học trong thời gian gần đây 1) (Đề dự bị 1 khối B năm 2007)Trong khơng gian Oxyz cho các điểm A(–3,5,–5); B(5,–3,7); và mặt phẳng (P): x + y + z = 0 1 Tìm giao điểm I của đường thẳng AB với mặt phẳng (P) 2 Tìm điểm M ∈ (P) sao cho MA2 + MB2 nhỏ nhất 2) (Đề dự bị 1 khối B năm 2007) Cho hình chóp SABCD có đáy ABCD là hình... đường cao SA = a a) Tính khoảng cách từ O đến mp (SBC) b) Tính khoảng cách giữa hai đường thẳng AD và SB c)Góc giữa đường thẳng SA và mp (SCD) e)Gọi M, N lần lược là trung điểm của SA,SB.TÍnh tỉ số 2) VS MNAB VS ABCD 6.Cho hình vng ABCD và tam giác đều SAD cạnh a nằm trong hai mặt phẳng vng góc với nhau.Gọi I là trung điểm của AB a)Chứng minh rằng CI ⊥ SB b)Tính khoảng cách giữa hai đường thẳng AD và . mp nào song song với mp nào? b)Tìm quỹ tích các điểm cách đều ( ) α và ( ) γ c)Tính khoảng cách giữa hai mp ( ) α và ( ) γ d)Tìm quỹ tích các điểm cách ( ) β một khoảng bằng 1 e)Viết phương. ⊥ (P). 2. Tìm các điểm M ∈ d 1 , N ∈ d 2 sao cho MN // (P) và cách (P) một khoảng bằng 2. 12( Đề dự bị 2 khối D năm 2007). Cho lăng trụ đứng ABCA 1 B 1 C 1 có tất cả các cạnh đều bằng a. M là. CÁC CHUYÊN ĐỀ HÌNH HỌC GIẢI TÍCH 12 …… …… Vấn đề1 . HỆ TỌA ĐỘ TRONG KHÔNG GIAN-TỌA ĐỘ CỦAVECTO, TỌA ĐỘ CỦA ĐIỂM 1.Trong

Ngày đăng: 30/12/2014, 19:49

TỪ KHÓA LIÊN QUAN

w