Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 193 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
193
Dung lượng
4,79 MB
Nội dung
www.VIETMATHS.com Phòng GD-ĐT Hải Hậu Trờng THCS B Hải Minh Đề thi thử vào lớp10 thpt đề dùng cho hs thi vào trờng chuyên (Thời gian làm bài 150 ) Bài 1(1đ): Cho biểu thức x x x x xx xx P + + + = 3 3 1 )3(2 32 3 Rút gọn P. Bài 2(1đ): Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh rằng phơng trình: x 2 + (a + b + c)x + ab + bc + ca = 0 vô nghiệm. Bài 3(1đ): Giải phơng trình sau: 2572654 +=++ xxx Bài 4(1đ): Giải hệ phơng trình sau: =+++ =+++ 04 0252 22 22 yxyx xyxyyx Bài 5(1đ): Chứng minh rằng: 6 8 33 3223223 > ++ Bài 6(1đ): Cho x, y, z> 0 thoả mãn: 3 111 =++ zyx Tìm giá trị nhỏ nhất của biểu thức: zx xz yz zy xy yx P 22 2222 2 22 + + + + + = Bài 7(1đ): Trong mặt phẳng 0xy cho đờng thẳng (d) có phơng trình 2kx + (k - 1)y = 2 (k là tham số) a) Tìm k để đờng thẳng (d) song song đờng thẳng y = x 3 . Khi đó tính góc tạo bởi đờng thẳng (d) với 0x. b) Tìm k để khoảng cách từ gốc toạ độ đến đờng thẳng (d) lớn nhất. Bài 8(1đ): Cho góc vuông x0y và 2 điểm A, B trên Ox (OB > OA >0), điểm M bất kỳ trên cạnh Oy(M O). Đờng tròn (T) đờng kính AB cắt tia MA,MB lần lợt tại điểm thứ hai: C , E . Tia OE cắt đờng tròn (T) tại điểm thứ hai F. 1. Chứng minh 4 điểm: O, A, E, M nằm trên 1 đờng tròn. 2. Tứ giác OCFM là hình gì? Tại sao? Bài 9(1đ): Cho tam giác ABC nhọn có 3 đờng cao: AA 1 , BB 1 , CC 1 đồng quy tại H. Chứng minh rằng: 6 111 ++ HC HC HB HB HA HA .Dấu "=" xảy ra khi nào? Bài 10(1đ): Cho 3 tia Ox, Oy, Oz không đồng phẳng, đôi một vuông góc với nhau. Lấy điểm A, B, C bất kỳ trên Ox, Oy và Oz. a) Gọi H là trực tâm của tam giác ABC. Chứng minh rằng: OH vuông góc với mặt phẳng ABC b) Chứng minh rằng: OACOBCOABABC SSSS 2222 ++= . Đáp án: 1 www.VIETMATHS.com Bµi Bµi gi¶i §iÓm Bµi 1 (1 ®iÓm) §iÒu kiÖn: 90 03 032 0 ≠≤⇔ ≠− ≠−− ≥ x x xx x * Rót gän: 1 8 )3)(1( 2483 )3)(1( )1)(3()3(23 2 + + = −+ −+− = −+ ++−−−− = x x xx xxxx xx xxxxx P 0.25 0.25 0.25 0.25 Bµi 2 (1 ®iÓm) Ta cã: ∆ =(a + b + c) 2 - 4(ab + bc + ca) = a 2 +b 2 +c 2 -2ab-2bc-2ca * V× a, b, c lµ 3 c¹nh ∆ ⇒ a 2 < (b + c)a b 2 < (a + c)b c 2 < (a + b)c ⇒ a 2 + b 2 + c 2 < 2ab + 2ac + 2bc ⇒ ∆ < 0 ⇒ ph¬ng tr×nh v« nghiÖm. 0.25 0.25 0.25 0.25 Bµi 3 (1 ®iÓm) Bµi 4 (1 ®iÓm) * §iÒu kiÖn: 52/7 072 05 ≤≤−⇔ ≥+ ≥− x x x * Ph¬ng tr×nh ( ) ( ) 1 025 0372 025372 0)4545()972672( 22 =⇔ =−− =−+ ⇔ =−−+−+⇔ =+−−−+++−+⇔ x x x xx xxxx Gi¶i hÖ: =−+++ =−+−−+ )2(04 )1(0252 22 22 yxyx yxyxyx Tõ (1) ⇔ 2x 2 + (y - 5)x - y 2 + y + 2 = 0 + = −+− = −= −−− = ⇒ −=++−−−=∆ 2 1 4 )1(35 2 4 )1(35 )1(9)2(8)5( 222 yyy x y yy x yyyy x 0.25 0.25 0.25 0.25 0.25 2 www.VIETMATHS.com * Với: x = 2 - y, ta có hệ: 1 012 2 04 2 2 22 == =+ = =+++ = yx yy yx yxyx yx *Với 2 1 + = y x , ta có hệ: = = == = = =+++ + = 5 13 5 4 1 045 12 04 2 1 2 22 y x yx xx xy yxyx y x Vậy hệ có 2 nghiệm: (1;1) và 5 13 ; 5 4 0.25 0.25 0.25 Bài 5 (1 điểm) Đặt a = x + y, với: 33 223;223 =+= yx Ta phải chứng minh: a 8 > 3 6 Ta có: 3 cos 3333 33 .1.13.3)11(3 36)(3)( 1. 6 aa ayxxyyxyxa yx yx y >++= +=+++=+= = =+ (vì: x > 1; y > 0 a > 1) a 9 > 9 3 .a a 8 > 3 6 (đpcm). 0.25 0.25 0.25 0.25 Bài 6 (1 điểm) * áp dụng bất đẳng thức Bunhiacopsky cho: 1, 2 và yx 2 , 1 )1( 21 3 112 2 2121 )21( 22 22 2 22 2 2 ++= + + ++ yxxyxy yx yxyx Dấu "=" xảy ra khi và chỉ khi x = y Tơng tự: 0.25 0.25 3 www.VIETMATHS.com )3( 21 3 12 )2( 21 3 1 2 22 22 + + + + xzzx xz zyyz zy Từ (1), (2), (3) 3 333 3 1 = ++ zyx P Suy ra: P min = 3 khi: x = y = z = 3 . 0.25 0.25 Bài 7 (1 điểm) 1).* Với k = 1 suy ra phơng trình (d): x = 1 không song song: y = x3 * Với k 1: (d) có dạng: 1 2 . 1 2 + = k x k k y để: (d) // y = x3 3 1 2 = k k )32(3 = k Khi đó (d) tạo Ox một góc nhọn với: tg = 3 = 60 0 . 2)* Với k = 1 thì khoảng cách từ O đến (d): x = 1 là 1. * k = 0 suy ra (d) có dạng: y = -2, khi đó khoảng cách từ O đến (d) là 2. * Với k 0 và k 1. Gọi A = d Ox, suy ra A(1/k; 0) B = d Oy, suy ra B(0; 2/k-1) Suy ra: OA = 1 2 ; 1 = k OB k Xét tam giác vuông AOB, ta có : 5 5 2 2 5 4 5 1 5 2 125 2 111 22 222 = + = + = += k kk OH OBOAOH Suy ra (OH) max = 5 khi: k = 1/5. Vậy k = 1/5 thì khoảng cách từ O đến (d) lớn nhất. 0.25 0.25 0.25 0.25 Bài 8 (1điểm) y M a) Xét tứ giác OAEM có: F vEO 2=+ E (Vì: vE 1 = góc nội tiếp ) Suy ra: O, A, E, M B cùng thuộc đờng tròn. O A x C b) Tứ giác OAEM nội tiếp, suy ra: = 11 EM 0.25 0.25 0.25 4 1 1 1 www.VIETMATHS.com *Mặt khác: A, C, E, F cùng thuộc đờng tròn (T) suy ra: = 11 CE Do đó: = FCOMCM // 11 Tứ giác OCFM là hình thang. 0.25 Bài 9 (1điểm) b)* Do tam giác ABC nhọn, nên H nằm trong tam giác. * Đặt S = S ABC ; S 1 = S HBC ; S 2 = S HAC ; S 3 = S HAB . A Ta có: C 1 B 1 11 1 1 1 1 1 2 1 2 1 HA HA HA AA BCHA BCAA S S +=== H Tơng tự: 12 1 HB HB S S += B A 1 C 13 1 HC HC S S += Suy ra: 3 111 )( 3 111 321 321 321111 ++++= ++=++ SSS SSS SSS S HC HC HB HB HA HA Theo bất đẳng thức Côsy: 639 9 111 )( 111 321 321 =++ ++++= HC HC HB HB HA HA SSS SSS Dấu "=" xảy ra khi tam giác ABC đều 0.25 0.25 0.25 0.25 Bài 10 (1điểm) a) Gọi AM, CN là đờng cao của tam giác ABC. Ta có: AB CN AB OC (vì: OC mặt phẳng (ABO) Suy ra: AB mp(ONC) AB OH (1). Tơng tự: BC AM; BC OA, suy ra: BC mp (OAM) OH BC (2). Từ (1) và (2) suy ra: OH mp(ABC) b) Đặt OA = a; OB = b; OC = c. Ta có: )).(( 4 1 . 4 1 . 2 1 222222 2 OBOAONOCABCNSABCNS ABCABC ++=== Mặt khác: Do tam giác OAB vuông, suy ra: 0.25 0.25 0.25 0.25 5 www.VIETMATHS.com 222 22222222 22 22 2 2 22 22 2 22222 4 1 4 1 4 1 )( 4 1 11111 OACOABOBC ABC SSS cabcbaba ba ba cS ba ba ON baOBOAON ++= =++=+ + += + =+=+= Đề 3 Bài 1: Cho biểu thức: ( ) ( )( ) yx xy xyx y yyx x P + ++ + = 111))1)(( a). Tìm điều kiện của x và y để P xác định . Rút gọn P. b). Tìm x,y nguyên thỏa mãn phơng trình P = 2. Bài 2: Cho parabol (P) : y = -x 2 và đờng thẳng (d) có hệ số góc m đi qua điểm M(- 1 ; -2) . a). Chứng minh rằng với mọi giá trị của m (d) luôn cắt (P) tại hai điểm A , B phân biệt b). Xác định m để A,B nằm về hai phía của trục tung. Bài 3: Giải hệ phơng trình : =++ =++ =++ 27 1 111 9 zxyzxy zyx zyx Bài 4: Cho đờng tròn (O) đờng kính AB = 2R và C là một điểm thuộc đờng tròn );( BCAC . Trên nửa mặt phẳng bờ AB có chứa điểm C , kẻ tia Ax tiếp xúc với đờng tròn (O), gọi M là điểm chính giữa của cung nhỏ AC . Tia BC cắt Ax tại Q , tia AM cắt BC tại N. a). Chứng minh các tam giác BAN và MCN cân . b). Khi MB = MQ , tính BC theo R. Bài 5: Cho Rzyx ,, thỏa mãn : zyxzyx ++ =++ 1111 Hãy tính giá trị của biểu thức : M = 4 3 + (x 8 y 8 )(y 9 + z 9 )(z 10 x 10 ) . Đáp án Bài 1: a). Điều kiện để P xác định là :; 0;1;0;0 + yxyyx . *). Rút gọn P: ( ) ( ) ( ) ( ) (1 ) (1 ) 1 1 x x y y xy x y P x y x y + + = + + ( ) ( ) ( ) ( ) ( ) ( ) 1 1 x y x x y y xy x y x y x y + + + = + + 6 www.VIETMATHS.com ( ) ( ) ( ) ( ) ( ) 1 1 x y x y x xy y xy x y x y + + + = + + ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 1 1 1 x x y x y x x x y + + + + = + ( ) 1 x y y y x y + = ( ) ( ) ( ) ( ) 1 1 1 1 x y y y y y + = .x xy y= + Vậy P = .yxyx + b). P = 2 .yxyx + = 2 ( ) ( ) ( )( ) 111 111 =+ =++ yx yyx Ta có: 1 + 1y 1 1x 0 4x x = 0; 1; 2; 3 ; 4 Thay vào ta cócác cặp giá trị (4; 0) và (2 ; 2) thoả mãn Bài 2: a). Đờng thẳng (d) có hệ số góc m và đi qua điểm M(-1 ; -2) . Nên phơng trình đờng thẳng (d) là : y = mx + m 2. Hoành độ giao điểm của (d) và (P) là nghiệm của phơng trình: - x 2 = mx + m 2 x 2 + mx + m 2 = 0 (*) Vì phơng trình (*) có ( ) mmmm >+=+= 04284 2 2 nên phơng trình (*) luôn có hai nghiệm phân biệt , do đó (d) và (P) luôn cắt nhau tại hai điểm phân biệt A và B. b). A và B nằm về hai phía của trục tung phơng trình : x 2 + mx + m 2 = 0 có hai nghiệm trái dấu m 2 < 0 m < 2. Bài 3 : ( ) ( ) =++ =++ =++ 327 )2(1 111 19 xzyzxy zyx zyx ĐKXĐ : .0,0,0 zyx ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 81 2 81 81 2 27 2( ) 2 0 ( ) ( ) ( ) 0 ( ) 0 ( ) 0 ( ) 0 x y z x y z xy yz zx x y z xy yz zx x y z x y z xy yz zx x y z xy yz zx x y y z z x x y x y y z y z x y z z x z x + + = + + + + + = + + = + + + + = + + = + + + + + + = + + = = = = = = = = = Thay vào (1) => x = y = z = 3 . 7 Q N M O C B A www.VIETMATHS.com Ta thấy x = y = z = 3 thõa mãn hệ phơng trình . Vậy hệ phơng trình có nghiệm duy nhất x = y = z = 3. Bài 4: a). Xét ABM và NBM . Ta có: AB là đờng kính của đờng tròn (O) nên :AMB = NMB = 90 o . M là điểm chính giữa của cung nhỏ AC nên ABM = MBN => BAM = BNM => BAN cân đỉnh B. Tứ giác AMCB nội tiếp => BAM = MCN ( cùng bù với góc MCB). => MCN = MNC ( cùng bằng góc BAM). => Tam giác MCN cân đỉnh M b). Xét MCB và MNQ có : MC = MN (theo cm trên MNC cân ) ; MB = MQ ( theo gt) BMC = MNQ ( vì : MCB = MNC ; MBC = MQN ). => ) ( cgcMNQMCB = => BC = NQ . Xét tam giác vuông ABQ có BQAC AB 2 = BC . BQ = BC(BN + NQ) => AB 2 = BC .( AB + BC) = BC( BC + 2R) => 4R 2 = BC( BC + 2R) => BC = R)15( Bài 5: Từ : zyxzyx ++ =++ 1111 => 0 1111 = ++ ++ zyxzyx => ( ) 0 = ++ ++ + + zyxz zzyx xy yx ( ) ( ) ( ) ( )( ) 0)( 0 )( 0 11 2 =+++ = ++ +++ + = ++ ++ xzzyyx zyxxyz xyzzyzx yx zyxzxy yz Ta có : x 8 y 8 = (x + y)(x-y)(x 2 +y 2 )(x 4 + y 4 ).= y 9 + z 9 = (y + z)(y 8 y 7 z + y 6 z 2 - + z 8 ) z 10 - x 10 = (z + x)(z 4 z 3 x + z 2 x 2 zx 3 + x 4 )(z 5 - x 5 ) Vậy M = 4 3 + (x + y) (y + z) (z + x).A = 4 3 Đề 4 Bài 1: 1) Cho đờng thẳng d xác định bởi y = 2x + 4. Đờng thẳng d / đối xứng với đ- ờng thẳng d qua đờng thẳng y = x là: A.y = 2 1 x + 2 ; B.y = x - 2 ; C.y = 2 1 x - 2 ; D.y = - 2x - 4 Hãy chọn câu trả lời đúng. 8 www.VIETMATHS.com 2) Một hình trụ có chiều cao gấp đôi đờng kính đáy đựng đầy nớc, nhúng chìm vào bình một hình cầu khi lấy ra mực nớc trong bình còn lại 3 2 bình. Tỉ số giữa bán kính hình trụ và bán kính hình cầu là A.2 ; B. 3 2 ; C. 3 3 ; D. một kết quả khác. Bìa2: 1) Giải phơng trình: 2x 4 - 11 x 3 + 19x 2 - 11 x + 2 = 0 2) Cho x + y = 1 (x > 0; y > 0) Tìm giá trị lớn nhất của A = x + y Bài 3: 1) Tìm các số nguyên a, b, c sao cho đa thức : (x + a)(x - 4) - 7 Phân tích thành thừa số đợc : (x + b).(x + c) 2) Cho tam giác nhọn xây, B, C lần lợt là các điểm cố định trên tia Ax, Ay sao cho AB < AC, điểm M di động trong góc xAy sao cho MB MA = 2 1 Xác định vị trí điểm M để MB + 2 MC đạt giá trị nhỏ nhất. Bài 4: Cho đờng tròn tâm O đờng kính AB và CD vuông góc với nhau, lấy điểm I bất kỳ trên đoan CD. a) Tìm điểm M trên tia AD, điểm N trên tia AC sao cho I lag trung điểm của MN. b) Chứng minh tổng MA + NA không đổi. c) Chứng minh rằng đờng tròn ngoại tiếp tam giác AMN đi qua hai điểm cố định. Hớng dẫn Bài 1: 1) Chọn C. Trả lời đúng. 2) Chọn D. Kết quả khác: Đáp số là: 1 Bài 2 : 1)A = (n + 1) 4 + n 4 + 1 = (n 2 + 2n + 1) 2 - n 2 + (n 4 + n 2 + 1) = (n 2 + 3n + 1)(n 2 + n + 1) + (n 2 + n + 1)(n 2 - n + 1) = (n 2 + n + 1)(2n 2 + 2n + 2) = 2(n 2 + n + 1) 2 Vậy A chia hết cho 1 số chính phơng khác 1 với mọi số nguyên dơng n. 2) Do A > 0 nên A lớn nhất A 2 lớn nhất. Xét A 2 = ( x + y ) 2 = x + y + 2 xy = 1 + 2 xy (1) Ta có: 2 yx + xy (Bất đẳng thức Cô si) => 1 > 2 xy (2) Từ (1) và (2) suy ra: A 2 = 1 + 2 xy < 1 + 2 = 2 Max A 2 = 2 <=> x = y = 2 1 , max A = 2 <=> x = y = 2 1 Bài3 Câu 1Với mọi x ta có (x + a)(x - 4) - 7 = (x + b)(x + c) Nên với x = 4 thì - 7 = (4 + b)(4 + c) Có 2 trờng hợp: 4 + b = 1 và 4 + b = 7 4 + c = - 7 4 + c = - 1 Trờng hợp thứ nhất cho b = - 3, c = - 11, a = - 10 Ta có (x - 10)(x - 4) - 7 = (x - 3)(x - 11) Trờng hợp thứ hai cho b = 3, c = - 5, a = 2 Ta có (x + 2)(x - 4) - 7 = (x + 3)(x - 5) 9 M D C B A x K O N M I D C B A www.VIETMATHS.com Câu2 (1,5điểm) Gọi D là điểm trên cạnh AB sao cho: AD = 4 1 AB. Ta có D là điểm cố định Mà AB MA = 2 1 (gt) do đó MA AD = 2 1 Xét tam giác AMB và tam giác ADM có MâB (chung) AB MA = MA AD = 2 1 Do đó AMB ~ ADM => MD MB = AD MA = 2 => MD = 2MD (0,25 điểm) Xét ba điểm M, D, C : MD + MC > DC (không đổi) Do đó MB + 2MC = 2(MD + MC) > 2DC Dấu "=" xảy ra <=> M thuộc đoạn thẳng DC Giá trị nhỏ nhất của MB + 2 MC là 2 DC * Cách dựng điểm M. - Dựng đờng tròn tâm A bán kính 2 1 AB - Dựng D trên tia Ax sao cho AD = 4 1 AB M là giao điểm của DC và đờng tròn (A; 2 1 AB) Bài 4: a) Dựng (I, IA) cắt AD tại M cắt tia AC tại N Do MâN = 90 0 nên MN là đờng kính Vậy I là trung điểm của MN b) Kẻ MK // AC ta có : INC = IMK (g.c.g) => CN = MK = MD (vì MKD vuông cân) Vậy AM+AN=AM+CN+CA=AM+MD+CA => AM = AN = AD + AC không đổi c) Ta có IA = IB = IM = IN Vậy đờng tròn ngoại tiếp AMN đi qua hai điểm A, B cố định . Đề 5 Bài 1. Cho ba số x, y, z thoã mãn đồng thời : 2 2 2 2 1 2 1 2 1 0x y y z z x+ + = + + = + + = Tính giá trị của biểu thức : 2007 2007 2007 A x y z= + + . Bài 2). Cho biểu thức : 2 2 5 4 2014M x x y xy y= + + + . Với giá trị nào của x, y thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó Bài 3. Giải hệ phơng trình : ( ) ( ) 2 2 18 1 . 1 72 x y x y x x y y + + + = + + = Bài 4. Cho đờng tròn tâm O đờng kính AB bán kính R. Tiếp tuyến tại điểm M bbất kỳ trên đờng tròn (O) cắt các tiếp tuyến tại A và B lần lợt tại C và D. 10 [...]... thức có nghĩa, rút gọn biểu thức đáp án Câu 1 : 1 1) A = + 1 + 1 + .+ 1 3+ 5 5+ 7 7+ 9 97 + 99 1 1 = ( 5 3 + 7 5 + 9 7 + .+ 99 97 ) = ( 99 3 ) 2 2 35 2) B = 35 + 335 + 3335 + + 3333 = 99 số 3 =33 +2 +333+2 +3333+2+ .+ 333 33+2 = 2.99 + ( 33+333+3333+ +333 33) = 198 + 198 + 1 ( 99+999+9999+ +999 99) 3 1 ( 102 -1 +103 - 1 +104 - 1+ +101 00 1) = 198 33 + 3 22 www.VIETMATHS.com 10 B= 10 27 101 ... (0 1)2 =10 BC2 = (0 1)2 + (4 1)2 = 10 AB2 = AC2 + BC2 ABC vuông tại C 1 10 10 = 5 ( đơn vị diện tích ) 2 Câu 3: Đkxđ x 1, đặt x 1 = u; 3 2 x = v ta có hệ phơng trình: u v = 5 2 3 u + v = 1 Vậy SABC = 1/2AC.BC = Giải hệ phơng trình bằng phơng pháp thế ta đợc: v = 2 x = 10 Câu 4 a.áp dụng định lí Pitago tính đợc AB = AC = R ABOC là hình B vuông (0.5đ) Kẻ bán kính OM sao cho D BOD = MOD M MOE... x=0 loại * x- 1 =2 thì x=5 vậy với x = 5 thì A nhận giá trị nguyên bằng 1 Câu 2: Ta có x = (m+5)2-4(-m+6) = m2+14m +10 để phơng trìnhcó hai nghiệmphân biệt khi vàchỉ khi m-7-4 3 và m-7+4 3 (*) a/ Giả sử x2>x1 ta có hệ x2-x1=1 (1) x1+x2=m+5 (2) x1x2 =-m+6 (3) Giải hệ tađợc m=0 và m=-14 thoã mãn (*) b/ Theo giả thi t ta có: 2x1+3x2 =13(1) x1+x2 = m+5(2) x1x2 =-m+6 (3) giải hệ ta đợc m=0 và m= 1 Thoả mãn... định lý Viét và giả thi t ta có: 2m 1 x1 + x 2 = 2 m 1 x 1 x 2 = 2 3x 1 4x 2 = 11 Giải phơng trình 3 13 - 4m x1 = 7 7m 7 x1 = 26 - 8m 7m 7 13 - 4m 3 7 4 26 - 8m = 11 13 - 4m 7m 7 4 = 11 7 26 - 8m ta đợc m = - 2 và m = 4,125 (2) Đối chiếu điều kiện (1) và (2) ta có: Với m = - 2 hoặc m = 4,125 thì phơng trình đã cho có hai nghiệm phân biệt thỏa mãn: x1 + x2 = 11 Đề 7 Câu 1: Cho P... 2 và m = 4,125 (2) Đối chiếu điều kiện (1) và (2) ta có: Với m = - 2 hoặc m = 4,125 thì phơng trình đã cho có hai nghiệm phân biệt t Đề 10 Câu I : Tính giá trị của biểu thức: 1 A= 3+ 5 1 + 5+ 7 1 + + .+ 7+ 9 35 B = 35 + 335 + 3335 + + 3333 1 97 + 99 99 số 3 Câu II :Phân tích thành nhân tử : 1) X2 -7X -18 2) (x+1) (x+2)(x+3)(x+4) 3) 1+ a5 + a10 Câu III : 1) Chứng minh : (ab+cd)2 (a2+c2)( b2 +d2)... Với m 2 thì (1) có 2 nghiệm Gọi một nghiệm của (1) là a thì nghiệm kia là 3a Theo Viet ,ta có: a + 3a = 2m 2 2 a.3a = m 3 m 1 m 1 2 a= 3( ) = m2 3 2 2 m2 + 6m 15 = 0 m = 3 2 6 ( thõa mãn điều kiện) Câu 3: Điều kiện x 0 ; 2 x2 > 0 x 0 ; x < 2 Đặt y = 2 x 2 > 0 x 2 + y 2 = 2 (1) Ta có: 1 1 x + y = 2 (2) 16 www.VIETMATHS.com Từ (2) có : x + y = 2xy Thay vào (1) có : xy = 1 hoặc... (x-1)(x-3), Vì x < 1 nên ta có : (x-1) < 0 và (x-3) < 0 từ đó suy ra tích của (x-1)(x-3) > 0 Vậy với x < 1 thì biểu thức có nghĩa Với x < 1 Ta có : P= x 2 4x + 3 1 x = ( x 1)( x 3) 1 x = 3 x 23 www.VIETMATHS.com Đề 11 Câu 1 : a Rút gọn biểu thức A = 1 + b Tính giá trị của tổng 1 1 + 2 a ( a + 1) 2 B = 1+ Với a > 0 1 1 1 1 1 1 + 2 + 1 + 2 + 2 + + 1 + 2 + 2 1 2 2 3 99 100 2 Câu 2 : Cho pt x 2 mx... AH AD = MB 2 BD BH Hớng dẫn a2 + a +1 Câu 1 a Bình phơng 2 vế A = a ( a + 1) (Vì a > 0) c áp dụng câu a A = 1+ 1 1 a a +1 1 9999 = 100 100 Câu 2 a : cm 0 m B = 100 B (2 đ) áp dụng hệ thức Viet ta có: 24 www.VIETMATHS.com x1 + x 2 = m 2m + 1 (1) Tìm đk đẻ pt (1) có nghiệm theo ẩn P= 2 m +2 x1 x 2 = m 1 1 P 1 2 1 GTLN = m = 2 2 GTNN = 1 m = 1 Câu 3 : Chuyển vế quy đồng ta đợc bđt x(... x Đáp án Câu 1: a) - Điều kiện xác định của D là - Rút gọn D a 0 b 0 ab 1 2 a + 2b a a + b + ab : 1 ab 1 ab D= D= 2 a a +1 b) a = 2 2+ 3 Vậy D = = 2(2 + 3 = ( 3 + 1) 2 a = 3 + 1 1 2+2 3 2 32 = 2 +1 4 3 2 3 c) áp dụng bất đẳng thức cauchy ta có 2 a a +1 D 1 Vậy giá trị của D là 1 1 2 9 2 Câu 2: a) m = -1 phơng trình (1) x 2 + x = 0 x 2 + 2 x 9 = 0 x = 1 10 1 x 2 = 1 + 10. .. Kết luận 2 x 1 Với 1 < x < 2 thì A = Với x > 2 thì A = 2 1 x 2 x 1 Bài 2: a) A và B có hoành độ và tung độ đều khác nhau nên phơng trình đờng thẳng AB có dạng y = ax + b A(5; 2) AB 5a + b = 2 B(3; -4) AB 3a + b = -4 Giải hệ ta có a = 3; b = -13 Vậy phơng trình đờng thẳng AB là y = 3x - 13 b) Giả sử M (x, 0) xx ta có MA = ( x 5)2 + (0 2)2 MB = ( x 3)2 + (0 + 4)2 Bài 3: Bài 4: MAB cân MA = MB . phơng trình có hai nghiệm phân biệt x 1 ; x 2 thỏa mãn: 3x 1 - 4x 2 = 11 đáp án Câu 1a) f(x) = 2)2(44 22 ==+ xxxx Suy ra f(-1) = 3; f(5) = 3 b) = = = = = 8 12 102 102 10) ( x x x x xf c). phơng trình có hai nghiệm phân biệt x 1 ; x 2 thỏa mãn: 3x 1 - 4x 2 = 11 đáp án Câu 1 a) f(x) = 2)2(44 22 ==+ xxxx Suy ra f(-1) = 3; f(5) = 3 b) = = = = = 8 12 102 102 10) ( x x x x xf 19 www.VIETMATHS.com c). www.VIETMATHS.com Phòng GD-ĐT Hải Hậu Trờng THCS B Hải Minh Đề thi thử vào lớp10 thpt đề dùng cho hs thi vào trờng chuyên (Thời gian làm bài 150 ) Bài 1(1đ): Cho biểu thức x x x x xx xx P + + + = 3 3 1 )3(2 32 3 Rút