Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
208 KB
Nội dung
BÀI TẬP CÁC QUY LUẬT PHÂN PHỐI 1) Theo một điều tra xã hội học, tại một địa phương có 70% các ông chồng chưa hề làm việc nhà. Một phóng viên tranh thủ lúc chờ lên tàu điện ngầm của hành khách, đã phỏng vấn một số “quý ông”. Anh ta dự định phỏng vấn tối đa 5 người, nhưng nếu gặp được “quý ông” đã từng làm việc nhà thì thôi không phỏng vấn nữa. Gọi X là số “quý ông” được phỏng vấn. Hãy lập bảng phân phối xác suất của X. 2) Theo một điều tra cho biết tỷ lệ sinh viên học không đúng ngành nghề mà họ yêu thích là 34%. Tại một trường đại học chọn ngẫu nhiên 300 sinh viên. Gọi X là số sinh viên không theo đúng ngành nghề mà mình yêu thích trong mẫu trên. a) Tìm quy luật phân phối xác suất của X. b) Theo anh chị tin chắc nhất có bao nhiêu sinh viên không theo đúng ngành nghề mà mình yêu thích theo mẫu trên. c) tính xác suất trong mẫu trên có từ 90 – 110 sinh viên không theo đúng ngành nghề mình yêu thích. ( tính theo hai phương pháp: tính trực tiếp và tính xấp xỉ) 3) Một người cân nhắc việc mua nhà bây giờ hay gởi tiền vào tiết kiệm với lãi suất 12% một năm, để chờ một năm sau sẽ mua. Biết biến động của giá nhà là một ĐLNN X(%) có phân phối chuẩn với trung bình là 8% và độ lệch chuẩn là 10%. Tính khả năng rủi ro của người này nếu gởi tiền vào tiết kiệm và chờ một năm mới mua nhà. 4) Một người cân nhắc giửa việc mua cổ phiếu của công ty A hay công ty B, hoạt động trong hai lĩnh vực độc lập nhau. Biết cổ phiếu của hai công ty có phân phối chuẩn: CP A : X(%) ~N(11; 16 ) CP B : Y(%) ~N(10.4 ; 6.76 ) a) Nếu người đó muốn đạt được lãi suất tối thiểu là 10% thì nên đầu tư vào cổ phiếu của công ty nào ? b) Nếu muốn đạt tổng lãi suất kỳ vọng lớn nhất thì nên đầu tư vào hai loại cổ phiếu trên theo tỷ lệ nào? c) Nếu người đó muốn hạn chế rủi ro thấp nhất thì nên đầu tư vào hai loại cổ phiếu trên theo tỷ lệ nào? 5) Ký túc xá trường ĐHKT có 500 sinh viên. Nhà ăn của trường phục vụ cơm trưa cho sinh viên theo hai ca. Ca 1: từ 11.00 giờ - 11.30 giờ Ca 2: từ 11.40 giờ - 12.10 giờ Các sinh viên có thể chọn bất cứ ca nào trong hai ca để dùng cơm trưa. Theo anh chị nhà ăn cần ít nhất bao nhiêu chỗ ngồi đề xác suất luôn luôn đáp ứng đủ chỗ ngồi cho sinh viên đến dùng cơm không bé hơn 95%. 6) Một công ty du lịch tổ chức tuần trăng mật cho 100 cặp vợ chồng mới cưới tại Đà Lạt, nhà hàng của khách sạn nơi các cặp vợ chồng trên ở phục vụ điểm tâm sáng cho các cặp trên theo hai ca: ca 1: từ 7.30 - 8.00 ca 2: từ 8.10 - 8.40 các cặp vợ chồng có thể chọn một trong hai ca để dùng điểm tâm, mỗi cặp vợ chồng luôn đi cùng nhau để dùng điểm tâm. Nhà hàng cần ít nhất bao nhiêu chỗ ngồi để luôn đáp ứng đủ chỗ ngồi cho các cặp vợ chồng đến dùng điểm tâm với xác suất không bé hơn 99%. 7) X(mm) là độ dài của linh kiện A có phân phối chuẩn với độ lệch chuẩn là 0,2mm. Sản phẩm được xem là đạt tiêu chuẩn nếu độ dài của sản phẩm sai lệch so với độ dài trung bình không quá 0,3mm. a) Chọn ngẫu nhiên một sản phẩm. Tính xác suất được sản phẩm đạt tiêu chuẩn. b) Trong quá trình kiểm tra chất lượng sản phẩm,có thể bị nhầm lẫn: -sản phẩm đạt tiêu chuẩn nhưng bị loại, được gọi là sai lầm loại 1, xác suất mắc sai lầm loại 1 là 1%. -sản phẩm không đạt tiêu chuẩn nhưng được nhận, được gọi là sai lầm loại 2, xác suất mắc sai lầm loại 2 là 2%. Tính xác suất bị nhầm lẫn trong một lần kiểm tra. c) Tính xác suất khi kiểm tra 100 sản phẩm có ít nhất 2 lần bị nhầm lẫn. 8) X(g) là trọng lượng sản phẩm A do một dây chuyền tự động sản xuất có phân phối chuẩn X~N(100 ; 1), sản phẩm được xem là đạt tiêu chuẩn nếu trọng lượng sản phẩm sai lệch so với trọng lượng trung bình không quá 2g . a) Tìm tỷ lệ sản phẩm đạt tiêu chuẩn của dây chuyền tự động trên. b) Tìm tỷ lệ phế phẩm của dây chuyền trên. c) Trong quá trình kiểm tra chất lượng sản phẩm có thể mắc phải hai sai lầm: .Sp đạt tiêu chuẩn nhưng bị loại: sai lầm 1 .Sp không đạt tiêu chuẩn nhưng được nhận: sai lầm 2 Xác suất mắc sai lầm 1 là 1%, mắc sai lầm 2 là 2%. Tính xác suất bị nhầm lẩn khi kiểm tra một sản phẩm. d) Theo anh chị khi kiểm tra 10 ngàn sản phẩm thì khả năng lớn nhất là có bao nhiêu lần bị nhầm lẩn. 9) X, Y là hai đại lượng ngẫu nhiên độc lập có phân phối xác suất như sau: a) Tìm quy luật phân phối xác suất của Z=X+Y b) Lập bảng phân phối xác suất đồng thời của (X, Y). X 1 2 P 0,2 0,8 Y 3 4 P 0,6 0,4 [...]... bảng phân phối xác suất đồng thời của (X,Y) b) Tìm E(X), Var(X), E(Y), Var(Y) c) S là tổng thu nhập của mỗi cặp vợ chồng, tính E(S) và Var(S) d) Thu nhập sau thuế của các cặp vợ chồng được xác định bằng biểu thức : W= 0,6 Y + 0,8 X Tính E(W) và Var(W) 11)Một người đang cân nhắc việc đầu tư vào hai loại cổ phiếu A và B Lãi suất X(%) của cổ phiếu A và Y(%) của cổ phiếu B X -10 0 20 30 Y có bảng phân phối. .. người đang cân nhắc việc đầu tư vào hai loại cổ phiếu A và B Lãi suất X(%) của cổ phiếu A và Y(%) của cổ phiếu B X -10 0 20 30 Y có bảng phân phối xác suất đồng thời như sau: 8 0 0 0,1 0,1 15 0 0,1 0,3 0 ,2 20 0,1 0,1 0 0 a) Nếu đầu tư toàn bộ vào cổ phiếu A thì lãi suất kỳ vọng và độ lệch chuẩn là bao nhiêu? b) Nếu đầu tư vào cả hai loại cổ phiếu thì nên đầu tư theo tỷ lệ nào để tổng lãi suất kỳ vọng lớn . lượng ngẫu nhiên độc lập có phân phối xác suất như sau: a) Tìm quy luật phân phối xác suất của Z=X+Y b) Lập bảng phân phối xác suất đồng thời của (X, Y). X 1 2 P 0 ,2 0,8 Y 3 4 P 0,6 0,4 10) Thăm. BÀI TẬP CÁC QUY LUẬT PHÂN PHỐI 1) Theo một điều tra xã hội học, tại một địa phương có 70% các ông chồng chưa hề làm việc nhà. Một phóng viên. Đà Lạt, nhà hàng của khách sạn nơi các cặp vợ chồng trên ở phục vụ điểm tâm sáng cho các cặp trên theo hai ca: ca 1: từ 7.30 - 8.00 ca 2: từ 8.10 - 8.40 các cặp vợ chồng có thể chọn một trong